
OSCAR Multicore Compiler
Automatic Speedup and Secure Multicore

Kasahara & Kimura Lab, Waseda University, TOKYO

http://www.kasahara.cs.waseda.ac.jp

SC 25 ITBL community

if(X[2]){
if(M[0]){

D[2] = D[2] + M[2];
}
if(M[1]){

D[2] = D[2] - M[2];
}

}
return;

#pragma omp parallel sections
{
#pragma omp section
{
example_PE0();
}
#pragma omp section
{
example_PE1();
}
}

Parallel Processing of Ladder Programs
for Factory Automation by the OSCAR Compiler

Speedup of Factory Automation Program
on ARM Cortex-A53

Task Fusion Technique
for Avoiding Synchronization Overheads

Caused by Small Task Granularity

Ladder program C code

Our Proposal:
Automatic Parallelizing Compilation Flow for Ladder Programs

OSCARTranslate

K. Takamatsu, T. Kawasumi, A. Saiki, B. Magnussen, H. Mikami, K. Kimura, H. Kasahara

1,614

1,335

0

500

1,000

1,500

2,000

GCC 1 Core OSCAR 2 Cores

To
ta

l
C

lo
ck

1.2x speedup

Before task fusion After task fusion

• Each block shows a basic block.

NAS Parallel Benchmark CG Class C
Speedup on AMD EPYC 64-core processor by the OSCAR Compiler

Computational Environment

CPU: AMD EPYC 7702P × 1
Zen 2 “Rome” architecture
64 cores, 64 threads
2.0 [GHz] base frequency
3.35 [GHz] boost frequency
32 [KiB] L1d cache
512 [KiB] L2 cache
256 [MiB] L3 cache

Grouped into 4-core clusters

Memory: DDR4-3200 ECC Registered
64GB × 8 modules(total 512 [GB])

NUMA topology: Configured as 1 NUMA node

Problem Class: NPB CG C

130
121.9

61.4

31.26
16.39

8.94

0

2

4

6

8

10

12

14

16

0

20

40

60

80

100

120

140

sequensial 1 2 4 8 16

Sp
ee

d
u

p

Ex
e

cu
ti

o
n

 T
im

e
 [

s]

of Cores

Execution Time Speedup

Execution Time in
8 cores

7.93x speed up

Speedup of NAS Parallel Benchmark CG Class C
on AMD EPYC 7702P

LAMMPS Speedup on Intel 64 cores
by the OSCAR Compiler

Parallelization of LAMMPS C++ code by OSCAR Compiler

OSCAR
Clang Frontend

OSCAR Compiler

LAMMPS C++
Code

OSCAR IR
(Intermidiate Code)

LAMMPS Compilation Flow

Execution Time of “LAMMPS
MEAM Potential Getscreen” Function

on Intel Xeon Gold 6448Y

Original LAMMPS on 64 threads consumed 59.7[s]
OSCAR Compiler Reduced It to 1.2[s]

59.71

1.23
0

10

20

30

40

50

60

70

Original LAMMPS OSCAR 64 Cores

Ex
ec

u
ti

o
n

 T
im

e[
s]

getscreen function

48.54x speedup

Parallelized
LAMMPS C code

Future Security Extension – Performance Improvements on RISC-V TEEs

Trusted Execution Environments (TEEs)

• Secure environments isolated from the host systems
• Do not trust even the operating systems
• e.g.,) Intel SGX, ARM TrustZone, RISC-V Keystone Enclave

Issues on Keystone Enclave

• TEEs need a data transfer method with the host system to send/receive data
processed in the enclave to delegate system-related operation (e.g., I/O)

• Keystone has insecure, inflexible data transfer method
• Not suitable for large data (too much overhead)
• Overlook integrity of the data

Keyston Enclave with ADM

• We introduce the memory region dedicated to secure and flexible data transfer,
Additional Data Memory (ADM).

• Dynamic access permission controls and data verifications realize
stronger integrity and more flexible memory sizing.

For large data (>1M)

2.2x speed up

Evaluated on
HiFive Unmatched
(RISC-V Physical System)

	スライド 1

