Green Multicore by Codesign of Compiler and Architecture

Prof. Hironori Kasahara, IEEE Life-Fellow, IPSJ Fellow

Senior Executive Vice President (2018-2022), Waseda Univ. IEEE Computer Society President 2018 ACM/IEEE ISCA'25 General Co-Chair

URL: http://www.kasahara.cs.waseda.ac.jp/

1980 BS, 82 MS, 85 Ph.D., Dept. EE, Waseda Univ.
1985 Visiting Scholar: U. of California, Berkeley,
1986 Assistant Prof., 1988 Associate Prof., 1989-90
Research Scholar: U. of Illinois, Urbana-Champaign,
Center for Supercomputing R&D, 1997 Prof.,
2004 Director, Advanced Multicore Research Institute,
2017member: the Engineering Academy of Japan
(2020- Board Mem) and the Science Council of Japan
2018 IEEE Computer Society President
Senior Exectutive Vice President, Waseda U. (2018-22)

AWARD: 1987 IFAC World Congress Young Author Prize 1997 IPSJ Sakai Special Research Award, 2005 STARC Academia-Industry Research Award, 2008 LSI of the Year Second Prize,

2008 Intel Asia Academic Forum Best Research Award,

2010 IEEE CS Golden Core Member Award 2014 Minister of Edu., Sci. & Tech. Research Prize 2015 IPSJ Fellow, 2017 IEEE Fellow, Eta Kappa Nu

2019 Spirit of IEEE Computer Society Award,

2020 IPSJ Contribution Award, , 2023 IEEE Life Fellow

Reviewed Papers: 243, Invited Talks: 246, Granted Patents: 72 (Japan, US, GB, DE, China), Articles in News Papers, Web News, TV etc.: 713

Committees in Societies and Government 300
IEEE Computer Society: President 2018, Executive
Committee(2017-2019), BoG(2009-14), Strategic
Planning Committee Chair 2018, Multicore STC Chair
(2012-), Japan Chair(2005-07),

IPSJ Chair: HG for Magazine. & J. Edit, Sig. on ARC.
[METI/NEDO] Project Leaders: Multicore for
Consumer Electronics, Advanced Parallelizing Compiler,
Chair: Computer Strategy Committee [Cabinet Office]
CSTP Supercomputer Strategic ICT PT, Japan Prize
Selection Committees, etc.

[MEXT] Info. Sci. & Tech. Committee, Supercomputers Development Member (Top 1:NWT, Earth Simulator, K)

JST SPRING Ph.D Promotion Chair, Boost AI Ph.D.

Boosting Chair, SBIR Phase 1 Chair, Moonshot Project
G3 Robot & AI Advisor & Int'l Symp Vice Chair,

[COCN] Council of Competitiveness Nippon Ex-Board

Research on OSCAR Parallelizing Compiler & Co-designed Hardware Since 1984

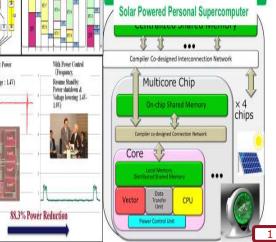
72 international patents in USA, UK, China, Japan to improve effective performance, cost-performance, software productivity and power efficiency

High Performance & Low Power

1) Multigrain Parallelization for Embedded to HPC Homogeneous and Heterogeneous Multicores

Coarse-grain task parallelism among loops, subroutines & basic blocks in addition to the loop parallelism

2) Data Localization:


Optimization of Cache & Local Memory Usage

- Automatic data decomposition and data reuse control for Distributed shared memory, Cache and Local memory
- Data Transfer Control
 - Overlapping Data Transfer using <u>Data</u>
 <u>Transfer Unit</u>, or <u>DMAC</u>

3) Automatic Power Reduction

- OSCAR Compiler can reduce power consumption by using DVFS and Clock- & Power-gating with hardware supports.
- 4) Codesigned Accelerator: See right figure

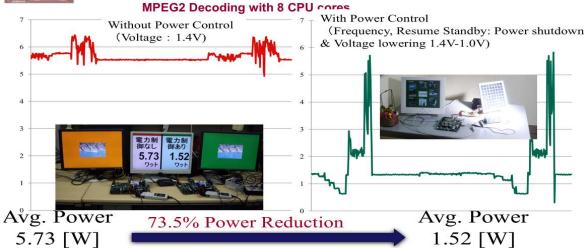
& parallelizing compiler

Demo of NEDO Green Multicore Processor for Real Time Consumer Electronics at Council of Science and Engineering Policy on April 10, 2008

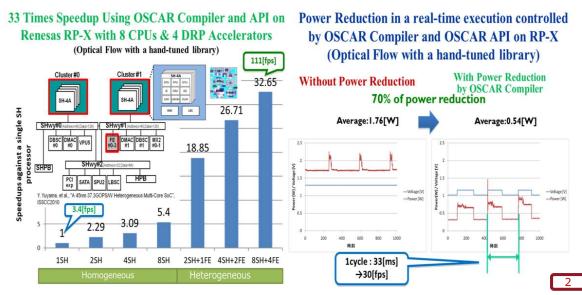
http://www8.cao.go.jp/cstp/gaiyo/honkaigi/74index.html

第74回総合科学技術会議【平成20年4月10日】

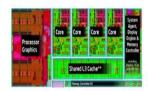
第74回総合科学技術会議の様子(3)


Codesign of Compiler and Multiprocessor Architecture since 1985

4 core multicore RP1 (2007), 8 core multicore RP2 (2008) and 15 core Heterogeneous multicore RPX (2010) developed in NEDO Projects with Hitachi and Renesas


RP-1 (ISSCC2007 #5.3)	RP-2(ISSCC2008 #4.5)	RP-X (ISSCC2010 #5.3)		
Core 2 Core 3 GCPG →	Core2 Core3 Core2 Core3 Core4 Core5 Core4 Core5 Core4 Core5	PCIe S-ATA Core 0-3 FE Sou Reside Part Core 4-7		
90nm, 8-layer, triple-Vth, CMOS	90nm, 8-layer, triple-Vth, CMOS	45nm, 8-layer, triple-Vth, CMOS		
97.6 mm ² (9.88 x 9.88 mm)	104.8 mm ² (10.61 x 9.88 mm)	153.8 mm ² (12.4 x 12.4 mm)		
1.0V (internal), 1.8/3.3V (I/O)	1.0-1.4V (internal), 1.8/3.3V (I/O)	1.0-1.2V (internal), 12-3.3V (I/O)		
600MHz ,4.32 GIPS, 16.8 GFLOPS	600MHz , 8.64 GIPS, 33.6 GFLOPS	648MHz, 13.7GIPS, 115GOPS, 36.2GFLOPS		
11.4 GOPS/W(32b換算)	18.3 GOPS/W(32b换算)	37.3 GOPS/W(326換算)		

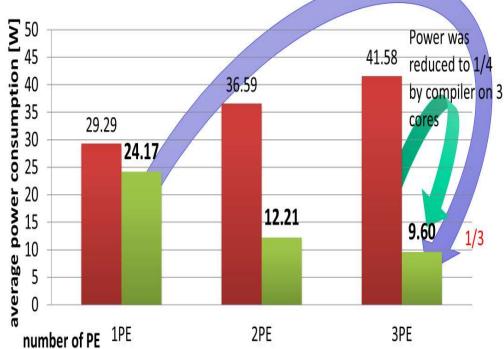
Power Reduction of MPEG2 Decoding to 1/4 on 8 Core Homogeneous Multicore RP-2 by OSCAR Parallelizing Compiler



Speedups & Power Reduction on RP-X Heterogeneous Multicore with 8 CPUs and 4 DRPs

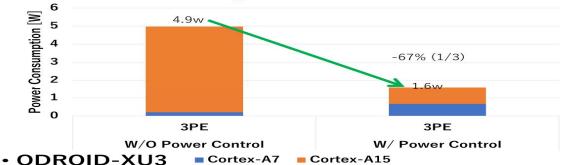
Prime Minister FUKUDA is touching our multicore chip during execution.

Power Reduction on Intel Haswell for Real-time Optical Flow


Automatic Power Reduction for MPEG2 Decode on Android Multicore

ODROID X2 ARM Cortex-A9 4 cores

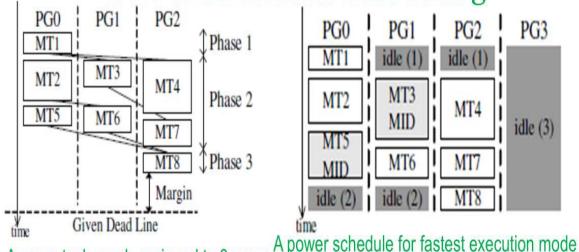
http://www.youtube.com/channel/UCS43INYEIkC8i KIgFZYQBQ


number of PE 1PE 2PE 3PE

Power was reduced to 1/4 (9.6W) by the compiler power optimization on the same 3 cores (41.6W).

Power with 3 core was reduced to 1/3 (9.6W) against 1 core (29.3W).

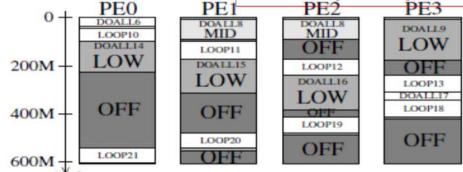
Automatic Power Reduction of OpenCV Face Detection on big.LITTLE ARM Processor



- Samsung Exynos 5422 Processor
 - 4x Cortex-A15 2.0GHz, 4x Cortex-A7 1.4GHz big.LITTLE Architecture
 - 2GB LPDDR3 RAM cluster unit

Frequency can be changed by each

3


Power Reduction Scheduling

A macrotask graph assigned to 3 cores

Realtime scheduling mode
MTs 1,4,7,8 are on Critical Path (CP)

- 1) Reduce frequencies (Fs) of MTs on CP considering dead line.
 - Reduce Fs of MTs not on CP. Idle: Clock or Power Gating considering overheads.

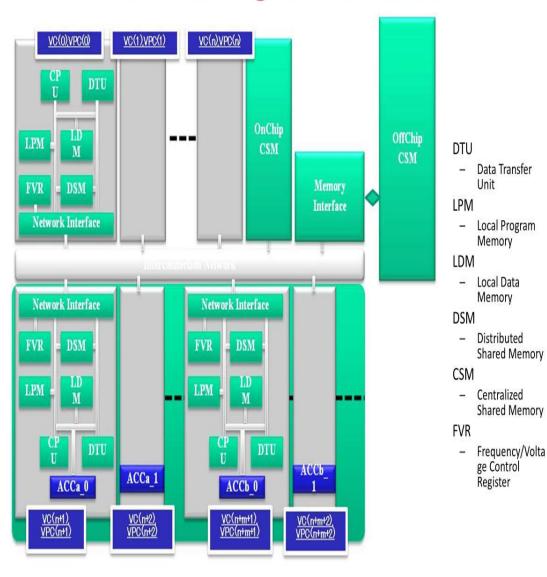
A power schedule for SPEC95 APPLU for fastest execution mode

Doall6, Loop 10,11,12,13, Doall 17, Loop 18,19,120, 21 are on CP

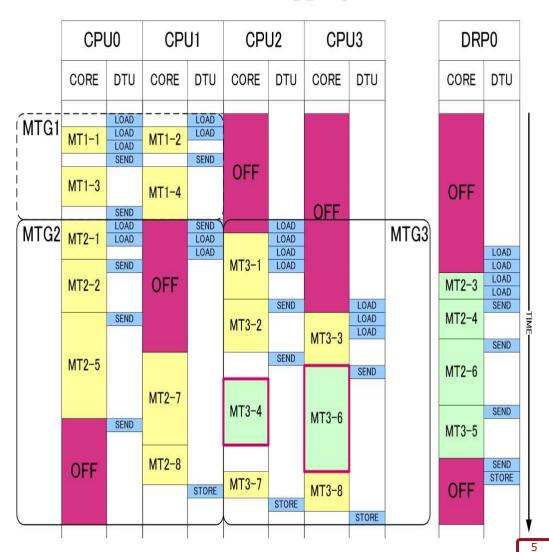
An Example of Machine Parameters for the Power Saving Scheme

- Functions of the multiprocessor
 - Frequency of each proc. is changed to several levels
 - Voltage is changed together with frequency
 - Each proc. can be powered on/off

state	FULL	MID	LOW	OFF
frequency	1	1/2	1/4	0
voltage	1	0.87	0.71	0
dynamic energy	1	3/4	1/2	0
static power	1	1	1	0


State transition overhead

state	FULL	MID	LOW	OFF	state	FULL	MID	LOW	OFF
FULL	0	40k	40k	80k	FULL	0	20	20	40
MID	40k	0	40k	80k	MID	20	0	20	40
LOW	40k	40k	0	80k	LOW	20	20	0	40
OFF	80k	80k	80k	0	OFF	40	40	40	0


delay time [u.t.]

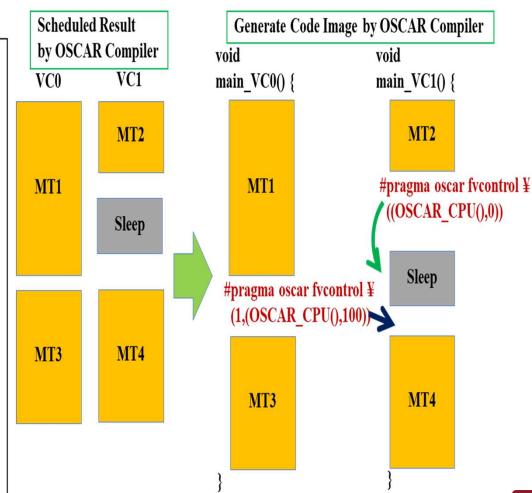
energy overhead [µJ]

OSCAR Heterogeneous Multicore

An Image of Static Schedule for Heterogeneous Multicore with Data Transfer Overlapping and Power Control

OSCAR API for Homogeneous/Heterogeneous Multicores with Multigrain Parallelization, Local Memory Management, Software Cache Coherent Control, DMA Data Transfer, Power Reduction

OSCAR API Ver. 2.0 for Homogeneous/Heterogeneous
Multicores and Manycores


LCPC2009Homogeneous, 2010 Heterogeneous)

<u>List of Directives (22 directives)</u> Parallel Execution API Power Control API parallel sections (*) fvcontrol flush (*) get fystatus critical (*) Timer API execution get current time Memoay Mapping API Accelerator threadprivate (*) accelerator task entry distributedshared Cache Control For systems onchipshared cache writeback having no Synchronization API cache selfinvalidate cache coherent groupbarrier complete memop control Data Transfer API noncacheable hardware dma transfer aligncache dma contiguous parameter dma stride parameter 2 hint directives for OSCAR compiler dma flag check accelerator task dma flag send oscar comment

from V2.0

(* from OpenMP)

Low-Power Optimization with OSCAR API

