Evaluation of Deep Predictive Learning for AI-driven Robots on an Edge-GPU

Keiji Kimura, Zhu Yunkai, Dan Umeda, Hiroshi Ito, Tetsuya Ogata Waseda University

AIREC

VASEDA

MPSoC'24

AIREC (AI-driven Robot for Embrace and Care) Project in Waseda University

- **GOAL:** Realizing Al-driven Robots helping our daily life.
- Soft Robotics

MPSoC'24

- Combining flexible machine hardware and Al innovation for advanced environment adaptability
- Physical Intelligence and Mutually Induced Communication Intelligence

• Enabling flexible response to and interaction with real space

Predictive Deep Learning and Low-Power AI Accelerator are the key technologies

AI-Accelerator Developed in AIREC Project: OSCAR Compiler Cooperative Vector Multicore

EIPL Model: SARNN Spatial Attention with Recurrent Neural Network

Exploring Optimization

- Introducing TensorRT
 - Replacing Pytorch
- Quantization
 - Very popular for image processing
 - ► Original: FP32
 - ► Evaluated: FP16, INT8
 - Expecting more computational throughput, less energy consumption, and less memory bandwidth

MPSoC'24

Evaluation Platform

- Jetson Orin Nano 4GB
 - Ampere architecture GPU
 - ▶ 512 CUDA core
 - 16 Tensor Cores
 - ▶ 306 **625**MHz
 - 4GB 64-bit LPDDR5 Memory 34GB/s
 - 6-core Arm[®] Cortex[®]-A78AE v8.2 64-bit CPU 1.5MB L2 + 4MB L3 1.5 GHz

MPSoC'24

Evaluation Result: Inference Time

- ► Compared to FP32...
 - SARNN
 - ▶ FP16: 1.79x, INT8: 1.53x
 - CNNRNN

- Data conversion overhead FP32 <> FP16/INT8
- Utilizing images and angles
- Utilizing several math functions

Data conversion overhead is

a significant factor.

▶ FP16: 1.42x, INT8: 1.47x

Inference time on Jetson	Orin Nano 4GB [ms]
--------------------------	--------------------

	PyTorch	TensorRT		
Model	FP32	FP32	FP16	INT8
SARNN	5.13	4.42	2.47	2.88
CNNRNN	3.11	1.87	1.32	1.27
CNNRNNLN	4.13	3.55	2.77	2.88

MPSoC'24

Evaluation Result: Energy

Compared to FP32...

SARNN

▶ FP16: 61.9%, INT8: 66.7%

- CNNRNN
 - ► FP

Model	Data Type	Power [mw]	Energy [mJ]	Energy / Frame [mJ]
	FP32	7,219	397,395	42
SARNN	FP16	$6,\!689$	234,353	26
	INT8	6,490	259,854	28
CNNRNN	FP32	6,218	180,513	20
	FP16	6,350	$152,\!544$	17
	INT8	5,934	$136,\!619$	16
	FP32	6,601	297,334	32
CNNRNNLN	FP16	$6,\!622$	265,167	29
	INT8	$6,\!429$	250,989	28

MPSoC'24

Summary

- ▶ EIPL: Enabling flexible AI-Robot control in the real-world
- OSCAR Compiler Cooperative Vector Multicore
 - ▶ For Power-Efficient AI Acceleration in Robots
 - > We need to explore the required architecture and function units!
- Evaluation of EIPL on Jetson for exploring the expected architecture
 - ▶ We need to revise the appropriate data precision.
 - Of course, we need to tune the software more.
- This work is supported by JST [Moonshot R&D][Grant Number JPMJMS2031].

MPSoC'24