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ABSTRACT
Emerging byte-addressable Non-Volatile Main Memory (NVMM)
is expected as a new class of memory device in computer archi-
tecture. A CPU access persistent data on NVMM simply by load,
store, and cache eviction instructions without a rich file system
and costly system calls for it. One of expected NVMM use cases
is secure non-volatile storage for IoT edge devices using RISC-V
Keystone TEE. For this purpose, optimization techniques for TEE
with NVMM should be fully explored in terms of system software as
well as hardware. However, NVMM simulators have a difficulty in
system-wide performance analysis despite their flexibility. NVMM
emulators are also difficult to evaluate a system considering NVMM
access characteristics such as access locality with a soft RISC-V CPU.
In this paper, we build a Keystone-compatible RISC-V NVMM emu-
lator. We extend the existing NVMM emulation model to exploit
access locality even on a slow soft CPU. Besides, we modify the
cache flush instruction to allow user applications. The proposed
emulation model is validated by a micro benchmark. Then, they are
compared by using SPEC CPU 2017 benchmark. The result shows
that only the proposed emulation model can capture the impact of
access locality and r/w ratio, which are important factors to reduce
NVMM latency.

CCS CONCEPTS
• Hardware → Reconfigurable logic and FPGAs; Non-volatile
memory.
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1 INTRODUCTION
Emerging Non-Volatile Main Memory (NVMM) is expected as a
byte-addressable and non-volatile memory device. NVMM can re-
alize higher density, and lower standby power consumption than
DRAM. Besides, a CPU can access it like DRAM without a rich file
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system. Data persistency can be ensured by cache eviction opera-
tions instead of costly system calls. On the other hand, NVMM has
longer latency than DRAM, especially for writes. For data persis-
tency, additional cache evictions and memory barriers are required
[17].

To fully exploit NVMM performance, whole system including
hardware and software should be optimized for NVMM. This de-
mands has not been satisfied due to the lack of a real NVMM.NVMM
simulators [4, 15, 19, 20, 27] provide high flexibility and detailed per-
formance analysis. On the other hand, they usually take a long time
for system-wide evaluation. NVMM emulators [9, 10, 12, 13, 26] can
evaluate whole system much faster than simulators at the sacrifice
of flexibility. However, existing NVMM emulators cannot consider
NVMM architecture. NVMM usually has an internal buffer to re-
duce latency. It must be considered in optimization for NVMM.
TUNA v2.1 [13] solved it by the new NVMM emulation model. De-
spite the contribution, it was unclear which factors are important
in optimization for NVMM. In addition, existing NVMM emulators
did not focus on Intel Optane DC Persistent Memory (DCPMM)
[14]. We developed the NVMM emulator that can emulate exist-
ing models and DCPMM, then revealed the important factors for
NVMM [17].

One of expected NVMM usages is secure non-volatile storage in
Trusted Execution Environment. RISC-V Keystone [11] is a promis-
ing solution for secure IoT edge devices. Despite high security,
Keystone does not provide an access to auxiliary storage devices by
itself due to its design. It instead uses a file system on an untrusted
OS, for instance Linux, for persistent data accesses. On the other
hand, NVMM enables persistent data accesses in Keystone. How-
ever, existing works are difficult to explore this possiblity. A real
DCPMM is limited to specific Intel server CPUs. Existing NVMM
emulation models assume that a CPU is as fast as memory system.
They cannot be directly ported to RISC-V SoCs on an FPGA.

In this paper, we propose an open-source RISC-V NVMM emula-
tor on an FPGA. The emulator is based on Freedom SoC U500 Dev
Kit [23]. It is compatible with Linux and Keystone. We extended
existing NVMM models [13, 17] to exploit access locality even on a
slow soft CPU. The emulator has heterogeneous memory consisting
of DRAM and NVMM. Researchers can investigate optimization
techniques for Keystone TEEwith NVMM. In addition, a cache flush
instruction is required to ensure data persistency on NVMM [18].
The flush instruction in Rocket on Freedom SoC is available only in
M-mode. We slightly modified the instruction so that a user appli-
cation can call it directly. Then, we validated the proposed NVMM
emulation models by using the micro benchmark, and confirmed
the effectiveness of them by using SPEC CPU 2017 benchmark.

Our contributions are summarized as follows:
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• We built a RISC-V NVMM emulator 1. It has the extended
NVMM emulation model for a soft CPU. It also has the
DCPMM emulation model.
• We made the cache flush instruction available in U-mode.
The original implementation allows only M-mode.
• We validated the models by using the micro benchmark. The
result showed that only the proposed model can capture the
impact of access locality. Besides, the DCPMM model can
emulate behavior of a real DCPMM.
• We confirmed the effectiveness of the proposed model. The
result showed that only the proposed model can capture the
important factors for NVMM: access locality and r/w ratio.

2 RELATEDWORKS
2.1 NVMM Simulators and Emulators
Gem5, NVMain, PCMSim, HMMSim [4, 15, 19, 20, 27] are software
simulators that enables system simulation having NVMM. They
have beenwidely used thanks to their detailed performance analysis
and high flexibility, while suffering from about three to five orders
of magnitude longer execution time than a real hardware. Thus, the
system-wide performance analysis including OS on them is difficult
task.

TUNA [12, 13], Quartz [26], and write-back aware Quartz [9, 10]
are NVMM emulators. They emulate NVMM performance by in-
jecting additional latency to DRAM accesses. Emulators can evalu-
ate large workloads on whole system at the speed of a base hard-
ware, however, existing emulators have issues of NVMM emulation.
Quartz based emulators [9, 10, 26] cannot consider NVMM micro
architectures due to their design. TUNA [12, 13] is the hardware
emulator on an FPGA. TUNA v2.1 [13] solved the issue by introduc-
ing the new NVMM emulation model. Despite their contributions,
effectiveness of the model on a system with NVMM was not fully
discussed. Therefore, we implemented the NVMM emulator [17]
based on TUNA v2.1 [13], and confirmed the effectiveness of the
emulation model. Then, we revealed the important factors for a
system with NVMM by analyzing an impact of memory access
characteristics on application performance. Besides, we introduced
the new NVMM emulation technique for DCPMM (Intel Optane
DC Persistent Memory) [14] and validated its behavior.

Despite existing emulators’ contributions, they do not target to
RISC-V. Quartz-based emulators require specific Intel CPUs. TUNA-
based emulators assumes that a hardware implemented CPU is
sufficiently faster than its memory subsystem. To investigate a
RISC-V system with NVMM, CPU and memory system should be
customizable. A soft RISC-V CPU on an FPGA is usually slower
than its memory system. An existing RISC-V NVMM emulator [21]
uses the TUNA-based emulation model. In the paper, we propose a
new NVMM emulation model that can be applied to a RISC-V SoC
on an FPGA. It can consider NVMM micro architecture even on a
soft CPU.

2.2 RISC-V Boards and SoCs
NVMM emulation technique proposed in [17] requires modification
of a memory controller to inject additional latency. It cannot be

1https://github.com/uyiromo/freedom

ported to RISC-V boards: [3, 16, 24], Some customizable SoC have
been also released: Rocket/BOOM [1], Freedom SoC [23], Shakti [22]
and Ariane [29]. They have a RISC-V core IP and some peripheral
IPs. The SoCs can be implemented on an FPGA according various
demands. In the paper, we used Freedom SoC as a base RISC-V SoC
considering customizability and Keystone requirements [7]. We
implemented NVMM performance emulation models on the SoC.

3 NVMM EMULATION TECHNIQUES
This section introduces overviews of four NVMM emulation be-
havior models: coarse-grain [12], fine-grain [13, 17], new extended
fine-grain, and DCPMM [17]. The former three models are based
on NVMM which architecture is similar to DRAM. The last one is
based on a real DCPMM behavior.

3.1 Coarse-Grain Behavior Model
The coarse-grain behavior model is a simple NVMM model origi-
nally proposed in TUNA v1 [12]. It injects additional latency into
DRAM accesses at a module on a memory bus. More specifically,
it delays a handshake between an LLC and a memory controller.
When a CPU misses LLC and issues a memory request, the module
interrupt the request and start the timer. The handshake is blocked
until the timer reaches the configured latency.

This model injects the same latency into every memory requests.
Its simple emulation ignores NVMM micro architecture. For in-
stance, DRAM latency depends on row buffer hit ratio, or access
locality, at memory bus. Intel DCPMM also has an internal buffer
[14]. The impact of access locality should be bigger on NVMM than
DRAM. It must be considered in optimization for NVMM.

3.2 Fine-Grain Behavior Model
The fine-grain behavior model is a detailed NVMM model origi-
nally proposed in TUNA v2.1 [13]. It injects additional latency into
timing parameters in a memory controller. It assumes that NVMM
architecture and protocol are similar to those of DRAM. NVMM
consists of banks, rows, and columns. Each bank has a row buffer
which works as a write-back cache. NVMM module is mainly oper-
ated by three commands: Activate (ACT), Read/Write (R/W), and
Precharge (PRE). For latency and endurance, PRE write back only
dirty row buffers. tRCD is the minimal interval between ACT and
R/W, and tRP is the minimal interval between PRE and ACT.

• ACT: Read data from memory cells to a row buffer
• R/W: Read data from or Write data into a row buffer
• PRE: Write back a row buffer to memory cells

According to the protocol, memory cells are read by only ACT,
and written by only PRE. NVMM latency depends on memory cells,
thus, read latency depends on tRCD, and write latency depands
on tRP. The fine-grain behavior model injects additional latency
into these parameters. When a memory request hits a row buffer,
memory latency will be reduced since ACT is omitted. Latency of
an internal buffer on NVMM can be adjusted by the coarse-grain
model. This model injects different latency depending on memory
requests. We confirmed that the fine-grain model can consider
access locality on the NVMM emulator [17].
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Figure 1: DDR3 Timing Parameters

3.3 Extended Fine-Grain Behavior Model
The extended fine-grain behavior model is an extension of the fine-
grain one. The motivation of introducing it is the porting difficulty
of the original fine-grain model to a system with a slow CPU. A
memory controller issues implicit PRE if it receives no command
within tRTP/tWTP from the preceding R/W. On 200MHz memory
controller, they are 2CLK(10ns) and 3CLK(15ns) respectively by
rounding up from the protocol values (Table 1). While existing
emulators [12, 13, 17] use 667MHz hard CPU, the proposed emulator
on an FPGA uses 50MHz soft Rocket CPU. The default tRTP and
tWTP are less than 1 CPU-clock on the slow CPU and implicit PRE
is issued. Thus, the buffer locality is spoiled.

Figure 1 depicts the DDR3 timing parameters [2] used in our
emulator. PRE can be issued after tRAS from the preceding ACT.
Similarly, PRE can be issued after tRTP or tWTP from the preceding
READ or WRITE. The extended fine-grain model injects additional
latency into these parameters. By setting tRAS long enough, suc-
cessive commands can be issued before the implicit PRE. Figure 2
depicts an example. The original fine-grain model requires addi-
tional ACT for the request #2 due to the implicit PRE. In contrast,
the extended fine-grain model can omit ACT for the request #2. It
also needs to adjust tRTP and tWTP. Before issuing PRE, all timing
constraints of tRAS, tRTP, and tWTP must be satisfied. In some
cases, if 𝑡𝑅𝐶𝐷 + 𝑡𝑅𝑇𝑃/𝑡𝑊𝑇𝑃 is grater than 𝑡𝑅𝐴𝑆 , a memory con-
troller may ignore tRAS when issuing PRE. To ensure the timing
constraint of tRAS strictly, we set tRTP and tWTP as below. Here,
“(spec)” are specified values in the DDR3 protocol, and “(rest)” are
the rest of configured tRAS when a R/W command is issued. By
choosing a maximum of them, both the extended fine-grain model
and the protocol requirement can be satisfied.

𝑡𝑅𝑇𝑃 = 𝑚𝑎𝑥{ 𝑡𝑅𝑇𝑃 (𝑠𝑝𝑒𝑐), 𝑡𝑅𝐴𝑆 (𝑟𝑒𝑠𝑡) }
𝑡𝑊𝑇𝑃 = 𝑚𝑎𝑥{ 𝑡𝑊𝑇𝑃 (𝑠𝑝𝑒𝑐), 𝑡𝑅𝐴𝑆 (𝑟𝑒𝑠𝑡) }

As described above, the extended fine-grain model adjusts tRAS,
tRTP and tWTP in addition to tRCD and tRP. Table 1 shows their
specified values in the DDR3 protocol [2]. Maximum values are not
defined except for tRAS. The extended fine-grain model does not
violate the protocol unless tRAS is set to extremely big value.

3.4 DCPMM Behavior Model
The DCPMM behavior model emulates a real Intel Optane DC Per-
sistent Memory (DCPMM) [14]. DCPMM shows inconsistent perfor-
mance characteristics [17, 28].We analyzedDCPMMbehavior in the
literature [17], then modeled it as the DCPMM behavior model with
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Table 1: DDR3-1600 Timing Parameters

Timing Parameter Minimum [ns] Maximum [ns]

tRCD, tRP 13.75 undef.
tRAS 35 70,200
tRTP 7.5 undef.

tWTP (tWR) 15 undef.

Table 2: Specification of the Proposed NVMM Emulator

FPGA Xilinx Virtex-7 FPGA VC707
Device Virtex-7 XC7VX485T-2FFG1761

Rocket Core Spec. RV64GC, Unpriv. 2.1 / Priv. 1.11
L1 Cache I=16 KiB/core, D=16 KiB/Core

System RAM 1 GiB, DDR3-1600, SO-DIMM
Configurable NVMM 3 GiB, DDR3-1600, SO-DIMM

SoC Frequency 50 MHz
Memory System Frequency 200 MHz

Kernel/OS GNU/Linux riscv64 5.6.0-dirty
Debian GNU/Linux bullseye/sid

some abstraction. On the model, memory read latency increases to
1.84×/2.16× when crossing 256-byte/4,096-byte boundaries, respec-
tively. Memory write latency also increases to 1.90×/3.32× when
crossing 256-byte/4,096-byte boundary, respectively.

4 EMULATOR IMPLEMENTATION
4.1 Overview of NVMM Emulator
The proposed NVMM emulator is implemented on Freedom U500
VC707 FPGA Dev Kit [23] provided by SiFive. Table 2 shows the
detailed specification. Freedom SoC has a Rocket core [1] employ-
ing RV64GC ISA. It has single-issue, 5-stage pipeline and in-order
architecture. To build a Keystone-compatible NVMM emulator, we
chose Freedom SoC following Keystone requirements [7].

We built the Linux kernel on the e448fa3 commit in the Key-
stone repository [6]. It is the extended Linux 5.6.0 for Keystone. We
selected Debian bullseye/sid from Debian RISC-V Ports [5].
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4.2 NVMM Emulation
Freedom SoC uses the MIG (Memory Interface Generator) IP pro-
vided by Xilinx as a memory controller. As shown in Table 2, CPUs
are slow relative to memory system. Thus, the fine-grain model de-
scribed in Section 3.2 cannot exploit access locality on this emulator.
We implemented the coarse-grain, fine-grain, extended fine-grain,
and DCPMM models described in Section 3 in the emulator for the
comparison. They can be dynamically switched. The amount of
additional latency can be configured via the MMIO registers.

Freedom SoC on VC707 FPGA has only one DIMM. We logically
divided it to realize heterogeneous memory consisting of DRAM
and NVMM. 1-GiB of DIMM is reserved as system RAM for Linux
and Debian OS. The rest is configurable NVMM. The configurable
NVMM must be explicitly and manually allocated by a dedicated
API, like mmap. This can avoid the kernel’s implicit memory al-
location from NVMM area, which causes unintentional system
performance degradation.

4.3 Cache Flush Operation
Cache eviction is required to ensure data persistency on NVMM.
As of May 2022, RISC-V ISA standard does not define a cache flush
instruction. On the other hand, the SiFive custom L1D$ flush in-
struction, CFLUSH.D.L1, is ported into the Rocket core. While it is
also available on Freedom SoC, it can be used only in M-mode. A
dedicated API to call the instruction from S/U-mode should cause
large overhead.

We modified the implementation of CFLUSH.D.L1 to allow S/U-
mode. This modification does not interfere with other instructions.
An inline assembly of CFLUSH.D.L1 is shown below. If the zero
register is specified, whole L1 D$ is flushed. Otherwise, only one
line containing the specified virtual address by reg is flushed.

(". insn i 0x73 , 0, x0, %0, -0x340 :: "r"(reg));

5 EXPERIMENTAL EVALUATION
This section validates the NVMM emulation models and confirms
their effectiveness. We used the micro benchmark and SPEC CPU
2017 benchmark [25]. Through this section, we configure theNVMM
emulation as below:

• coarse-grain: read+1,000ns and write+1,000ns
• fine-grain: tRCP = tRP = 1,000ns
• extended fine-grain: fine-grain + tRAS = 7,000ns

time
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Figure 4: Detailed Behavior of the Extended Fine-Grain
Model.
“addr(𝑋 )” is a read request to address 𝑋 . Some latency are
simplified for descriptions.

5.1 Validation of the Extended Fine-Grain
model

This section validates the extended fine-grain model by comparing
with the coarse- and the fine-grain models. The viewpoint is that
three NVMM models can consider access locality or not. We used
the micro benchmark shown in Algorithm 1. The 𝑆𝑇𝑅𝐼𝐷𝐸 is set to
4,096 or 8,192. If 𝑆𝑇𝑅𝐼𝐷𝐸 is smaller than row buffer size (8,192),
average access latency will be reduced by locality.

Table 3a shows the result of read latency. Only the extended
fine-grain model can capture the impact of 𝑆𝑇𝑅𝐼𝐷𝐸. However, the
extended fine-grain model is only reduced to 67% when 𝑆𝑇𝑅𝐼𝐷𝐸 is
4,096. It decreases to 50% in ideal, because row buffer hit ratio will
be 50% when 𝑆𝑇𝑅𝐼𝐷𝐸 is one half of row buffer size. Figure 4 depicts
detailed analysis of the extended fine-grain model. A read request
to address 0 activates the row buffer for address 0-8191. Then, the
read request to address 4096 hits the row buffer. The latency is
1,200 ns when viewed from a CPU (“addr(4096)” to “data”). The
next read request to address 8192 misses the row buffer. Although
PRE and ACT are required to activate the new row buffer, tRAS
must be satisfied. Thus, the latency of 8,192 becomes about 6,000 ns
(“addr(8192)” to “data”). When 𝑆𝑇𝑅𝐼𝐷𝐸 is 4,096, memory requests
hit or miss a row buffer in turn. Average latency should be about
(1, 200 + 6, 000)/2 = 3, 600 ns. The result in Table 3a follows the
expected behavior.

Table 3b shows the result of write latency. Unlike Table 3a, the
fine-grain model and the extended fine-grain model show same
trends. When a CPU has a write-back cache, the order of write
requests viewed at thememory bus is not the same aswhat is viewed
at the CPU. Access locality is to be lower than the expected. We
measured that row buffer hit ratio is lower than 5%when 𝑆𝑇𝑅𝐼𝐷𝐸 =

4, 096. In addition, the fine-grain model shows longer latency than
the coarse-grain one. This is due to total injected latency into a
write request. The coarse-grain injects additional 1,000ns into a
write request on the memory bus. In contrast, the fine-grain injects
additional tRCD (1,000ns) and tRP (1,000ns) into a write request on
the memory controller.

The experiment result above showed that the extended fine-grain
model can exploit the access locality that are ignored on the fine-
grain model. The extended fine-grain model cannot fully exploit
access locality on a pure write benchmark as shown in Table 3b,
however, real applications do not usually show such extreme high
write/read ratio. Therefore, the extended fine-grain model can be
thought to exploit access locality on real applications. Section 5.3
confirms the effectiveness of the extended fine-grain model using
real benchmarks.
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Algorithm 1 A Micro Benchmark for Access Locality
Parameters 𝑆𝑇𝑅𝐼𝐷𝐸: access stride in bytes
Input 𝑝: a pointer to the allocated NVMM region
Input 𝑆𝐼𝑍𝐸: allocated size to 𝑝 in bytes

warm up TLB, then evict all cachelines
start timer
𝑎𝑑𝑑𝑟 ← 𝑝

while 𝑎𝑑𝑑𝑟 < (𝑝 + 𝑆𝐼𝑍𝐸) do
read from / write into Mem[𝑎𝑑𝑑𝑟 ]
𝑎𝑑𝑑𝑟 ← 𝑎𝑑𝑑𝑟 + 𝑆𝑇𝑅𝐼𝐷𝐸

end while
stop timer
divide “elapsed time” by “number of iterations”

Table 3: Average Latency while Changing 𝑆𝑇𝑅𝐼𝐷𝐸. (×N) is the
normalized latency against 8192

(a) Read Latency

Average Latency [ns]
STRIDE coarse-grain fine-grain extended fine-grain

4,096 2,702 (×0.94) 2,708 (×0.94) 4,081 (×0.67)
8,192 2,881 2,872 6,064

(b) Write Latency

Average Latency [ns]
STRIDE coarse-grain fine-grain extended fine-grain

4,096 4,399 (×0.98) 4,879 (×0.91) 14,457 (×0.91)
8,192 4,479 5,334 15,913

5.2 Validation of the DCPMM-based model
This section validates the DCPMM-based model by comparing it
with a real DCPMM [17]. The viewpoint is that the DCPMM-based
model shows the same trend of access latency as a real DCPMM
while changing 𝑆𝑇𝑅𝐼𝐷𝐸. We also used the micro benchmark shown
in Algorithm 1. The 𝑆𝑇𝑅𝐼𝐷𝐸 was set from 64 to 1-MiB.

Figure 5 shows the result. The DCPMM-based model on the
emulator shows the similar trend to a real DCPMM. However, in
Figure 5b, the trend of the DCPMM-based model from 4K- is differ-
ent from that of a real DCPMM. Its behavior should be caused by
the DCPMM advanced controller [17]. Such advanced controllers
are not expected for an edge-device in terms of cost, area, power,
and so on. Thus, the write behavior from 4K- is abstracted on the
DCPMM-based model.

5.3 Effectiveness of the Extended Fine-Grain
Model on SPEC CPU 2017 Benchmark

This section confirms the effectiveness of the extended fine-grain
model by using SPEC CPU 2017 benchmark [25]. We used 14 of
24 programs, which can be successfully compiled and executed
on the emulator. All dynamic memory allocation in them were
replaced with the modified jemalloc [8] to allocate memory from

(a) Read Latency

(b) Write Latency

Figure 5: Normalized Average Latency of a Real DCPMM and
the DCPMM-based Model on the Emulator

configurable NVMM (Table 2). Additional latency is configured as
described at the beginning of Section 5.

Figure 6 shows the results. Bar graphs are normalized execution
time of the coarse-, fine-, and extended fine-grain against execution
time. The line graph is memory access frequency measured on
the memory bus in the emulator when executed on the system
RAM. The programs are sorted in ascending order of the extended
fine-grain model from left to right. If a program issues memory
requests frequently, its execution time should be heavily affected
by memory latency. Thus, the line graph is expected to increase
from left to right following bars of the extended fine-grain model.
Most of benchmarks follow this expectation, however, a few of
them marked with squares are contrary to the expectation.

First, we focused on the programs marked with rounded squares
(511.povray_r, 523.xalancbmk_r and 505.mcf_r). We measured ac-
cess locality (i.e. row buffer hit ratio) in the memory controller
of each program for detailed investigation. It was calculated from
the number of issued ACT, and the number of accepted memory
requests. The three programs showed high access locality. While
the average was 0.18, their hit ratio were 0.52, 0.50, and 0.48, respec-
tively. These exception are shown in only the extended fine-grain
model. This result confirms the discussion in Section 5.1.

Second, we focused on the benchmarks marked with sharp
squares (525.x264_r, 503.bwaves_r, and 508.namd_r). We measured
r/w ratio of memory requests for detailed investigation. It is calcu-
lated by dividing the number of read requests issued to configurable
NVMM on the memory bus by that of write requests. The three
programs showed high r/w ratio (13.22, 5.44, and 5.40, respectively).
According to Table 3a and Table 3b, emulated NVMMwrite latency
is longer than read latency. If a benchmark is read intensive, total
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Figure 6: Normalized Execution Time of SPEC CPU 2017 Benchmark Programs. All results are normalized against the execution
time when they are executed on DRAM. The left side vertical axis is for normalized execution time (bar graph). The right side
vertical axis is for memory access frequency (line graph).

NVMM latency will be smaller. It is confirmed that the extended
fine-grain model can capture the impact of r/w ratio.

The discussion above confirmed that only the extended fine-
grain model can exploit memory access characteristics of programs.
In some cases, access locality and r/w ratio exceed the impact of
access frequency. They are important factors to reduce NVMM
latency and performance degradation. Only the proposed extended
fine-grain model can enables optimization by utilizing them.

6 CONCLUSION
In this paper, we implemented a RISC-V NVMM emulator on an
FPGA using the Freedom U500 VC707 FPGA Dev Kit. We extended
the fine-grain model as the extended fine-grain model to exploit
access locality even on a slow soft CPU on an FPGA. In addition,
we modified the Rocket core so that programs in S/U-mode can
directly issue the cache flush instruction. It enables low overhead
cache eviction from an user application. We also confirm that a
Linux kernel and Debian OS works well on the emulator.

We validated the extended fine-grain model using the micro
benchmark. The result showed that the extended fine-grain model
can capture the impact of access locality that is ignored on the
coarse- and fine-grain models. We also confirmed the effectiveness
of the extended fine-grain model on real applications by using
the SPEC CPU 2017 benchmark. It revealed that the impact of
NVMM latency on execution time is mainly affected by memory
access frequency, however, it can be reduced by access locality and
r/w ratio. Only the extended fine-grain model can consider these
two factors. Besides, we validated the DCPMM-based model by
comparing with a real DCPMM.

We confirmed that the proposed NVMM emulator enables to
fully investigate optimization techniques for NVMM even on a
system with a slow CPU. The NVMM emulator has an important
role as Keystone-compatible NVMM emulator.
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