
Fast and Highly Optimizing Separate Compilation
for Automatic Parallelization

Tohma Kawasumi
Waseda University

Tokyo, Japan
tohma@kasahara.cs.waseda.ac.jp

Ryota Tamura
Waseda University

Tokyo, Japan
r tamura@kasahara.cs.waseda.ac.jp

Yuya Asada
Waseda University

Tokyo, Japan
yu asd@kasahara.cs.waseda.ac.jp

Jixin Han
Waseda University

Tokyo, Japan
kalfazed@kasahara.cs.waseda.ac.jp

Hiroki Mikami
Waseda University

Tokyo, Japan
hiroki@kasahara.cs.waseda.ac.jp

Keiji Kimura
Waseda University

Tokyo, Japan
keiji@waseda.jp

Hironori Kasahara
Waseda University

Tokyo, Japan
kasahara@waseda.jp

Abstract—Automatic parallelization by a compiler is a promis-
ing approach for fully utilizing a multicore processor. Without
compiler support, a programmer must simultaneously take into
account parallelism in a program and memory hierarchy utiliza-
tion. However, the possibility of parallelization and optimization
across multiple compilation units is limited due to the lack of
interprocedural analysis information at the compile time. This is
a serious challenge surrounding parallelizing practical programs
because they usually consist of multiple compilation units and
employ separate compilation to ensure program maintainability
and reduce the recompilation time. In this paper, for automatic
parallelization by a compiler, we propose a separate compilation
method that enables parallelization across multiple compilation
units and minimizes recompilation time by providing information
about the analysis along with an object file for each compilation
unit at the compile time. We also propose an automatically
parallelizing compilation flow with analysis information. The
experimental evaluation using large size real control system
programs from industry shows the proposed technique can obtain
29% better performance than the separate compilation without
the proposed method, and reduce compilation time by up to 90%
with only 1% of performance loss, compared with the compilation
for the fully unified source code into a single compilation unit.

Index Terms—parallelizing compiler, program analysis, link
time optimization

I. INTRODUCTION

Parallel programming APIs and parallelizing compilers are
widely used because multicore and manycore systems are
ubiquitous. Programs must be parallelized to fully exploit the
performance of those systems [3], [4], [8]–[11]. Investigating
only parallelism from a program is not enough to obtain higher
performance from them. A programmer also needs to carefully
consider utilizing memory hierarchy on the target system. Fur-
thermore, reducing power consumption while keeping higher
performance is becoming important. Developing a parallelized
program taking into account all of them is a difficult task for an
ordinary programmer even with a good parallel API. However,
automatic parallelization by a compiler can overcome this
challenge [3], [7].

While employing automatic parallelizing compilers is a
promising approach, it comes with several considerations dur-

ing the development of a large practical program. A compiler
must employ pointer analysis and data-flow analysis as widely
as possible to exploit parallelism from a program; without
analysis result, it must stop parallelization in a part of the pro-
gram where enough analysis information cannot be obtained,
to avoid faulty parallelization. Thus, a compilation unit should
be satisfactory large such that the program analysis can exploit
existing parallelism in a program. On the other hand, the
compiler may also employ code restructuring techniques, such
as inlining, for a program multiple times for parallelization;
these are followed by costly program analysis passes to update
the analysis information. Those characteristics of program
analysis and restructuring increase both compilation time and
the size of the compilation unit [16], [17].

The expensive parallelizing compilation cost becomes sig-
nificant especially for large practical programs. They usually
consist of multiple compilation units to keep program main-
tainability and reduce recompilation time. If all the compi-
lation units are unified into a single file to apply program
analysis across multiple original compilation units, it intro-
duces large recompilation time, even if only a small part of
the program is modified.

Link Time Optimization (LTO) has been used to employ
interprocedural analysis and restructuring techniques across
multiple compilation units [1], [2], [5], [12], [13]. They
provide compile time information, such as the intermediate
representation (IR) and analysis information, of each compi-
lation unit along with an object file. Then, they are integrated
at the link time to employ compiler optimization techniques
for the entirety of a program.

Though the LTO is also valuable for automatic paralleliza-
tion, there are two limitations arising from simply employing
previously proposed LTO techniques: the large recompilation
time and the compilation order among the compilation units.

The LTO basically provides the IR and integrating all of
them at the link time [1], [5], [12]. This actually enables
compiler optimization techniques across multiple compilation
units. However, this cannot reduce recompilation time because

1



the ordinary compilation passes are employed for the entirety
of the integrated program.

To reduce the recompilation time, ThinLTO was proposed
[2], [13]. It generates analysis information for each compila-
tion unit and integrates them at the link time. Thus, it can
reduce recompilation time because a compiler does not have
to employ program analysis in a compilation unit if it was not
modified. However, for automatic parallelization, the compiler
should distinguish the types of compilation units. The program
to be parallelized usually consists of one, or at most a few
parallelizable parts that occupy much of program execution
time, and many functions called by parallelized parts, for
which a compiler does not have to employ parallelization.
In addition, if a function is worth employing interprocedural
restructurings for, it should be combined with a compilation
unit that includes parallelized parts to employ those restructur-
ings. Those compilation processes and the order of compilation
units must be defined in the flow for automatic parallelization.

In this paper, we propose a separate compilation flow for
automatic parallelization. It firstly categorizes the compilation
units into two groups: the parallelizing group and the sequen-
tial group. The compiler then employs program analysis passes
for compilation units of the sequential group, and generates
program analysis information files. Then, the compiler utilizes
the information files to parallelize the compilation units of the
parallelizing group. Thus, it can ensure both of the reduction
of recompilation time and the capability of parallelization.

This paper includes the following contributions:

• The contents of the analysis information that enable au-
tomatic parallelization across multiple compilation units
are specified.

• A separate compilation flow for automatic parallelization
is proposed. It categorizes multiple compilation units
into two groups to employ interprocedural parallelization
across original compilation units. For this grouping, the
manual approach and automatic approach are prepared. It
also specifies the order of compilation, taking the types
of compilation units into consideration.

• The experimental evaluation using large size real control
system programs from industry shows that the proposed
separate compilation flow can obtain 29% better per-
formance than the separate compilation without analysis
information, and can reduce compilation time by up to
90%, with only 1% loss of performance, compared with
the compilation on a single file unifying all compilation
units when the automatic grouping is employed.

The rest of this paper is organized as follows: Section II
reviews the overview of the LTO and discusses the challenges
of employing it for automatic parallelization. Section III pro-
vides the overview of the automatic parallelizing compiler to
clarify the requirement for analysis information for automatic
parallelization. Section IV introduces the proposed method
in this paper. Section V shows the experimental evaluation
results. Finally, Section VI concludes this paper.

II. RELATED WORKS: LINK TIME OPTIMIZATION (LTO)

Link Time Optimization (LTO) has been used to overcome
the limitation of separate compilation that cannot employ
interprocedural optimization in some part of a program where
a compiler cannot use the information of other compilation
units. The basic idea of the LTO is utilizing some program
information of other compilation units at compile time. It
consists of two steps. In the first step, the compiler performs
compilation for each compilation unit as usual. In the second
step, the compiler integrates the information of compilation
units and employ interprocedural optimization passes.

In terms of the types of compilation information to be
integrated, there are mainly two kinds of LTO techniques.
Here, refer to them as (1) IR-based LTO and (2) Analysis
information-based LTO. Because the proposed method in this
paper can be seen as an LTO technique in terms of the above
idea, we briefly review the two kinds of LTO in the following
subsections.

A. Intermediate Representation (IR) based LTO

For the IR-based LTO, all available IR from all the com-
pilation units are integrated to employ interprocedural opti-
mization passes. Figure 1 shows the overview of the compile
flow for IR-based LTO. The IR derived from each compilation
unit is embedded into its object file at the first compilation
step as a large object file. At the second compilation step,
a linker integrates all the IR of those compilation units and
employs interprocedural optimization passes. In this step, the
linker traverses the entire source program by using the IR
in all the available large object files. Finally, the optimized
executable binary is generated.

This approach can perform optimization passes on the
source program as if it consists of a single file. Though
this approach can fully employ interprocedural optimization
passes, it cannot reduce the compilation time. This is because
the compiler must traverse the entire program at the link time.

This approach has been used by GCC, LLVM, and other
compilers [1], [5], [6], [12].

Compilation unit

Compiler

Object with IR

Linker

Compilation unit

Object with IR

Optimized binary

Fig. 1. Overview of the compile flow for IR-based LTO. The compiler
generates the object with IR of each compilation unit.

B. Analysis Information-based LTO

For the analysis information-based LTO, the analysis in-
formation (or summary information) from all the compilation

2



units is integrated, instead of the IR incorporating all their
program structure [2], [13]. Figure 2 shows the overview of
the compile flow for the analysis information-based LTO. A
compiler generates analysis information from each compila-
tion unit as well as its object file in the first step. The generated
information may be embedded inside the object file. Then,
a linker integrates all the available analysis information to
perform interprocedural program analysis in the second step.
From the analysis result, the compiler optimizer can detect the
program location where interprocedural optimization passes is
effective, and can deploy it with the corresponding IR.

This approach can reduce the compilation and the recom-
pilation time because the interprocedural program analysis
can be performed on the analysis information of the target
program, instead of on relatively larger IR from all compilation
units.

While this approach is scalable against the size of a source
program, it is difficult to simply employ it for the automatic
parallelizing compiler. Program parallelization must consider
both exploiting parallelism and reducing parallel execution
overhead. When a part of a program has little parallelism, the
compiler should avoid employing expensive analysis. There-
fore, a parallelizing compiler should categorize compilation
units into two groups, such as a sequential group and a
parallelizing group, and employ the appropriate compilation
for them. On the other hand, existing analysis information-
based LTO techniques deal with all the compilation units
evenly. The main uniqueness of our technique is that it builds
a separation compilation flow based on this insight.

Compilation unit

Compiler front end

Compiler back end

Object Analysis 
information

Compilation unit

Object Analysis 
information

Optimized object Optimized object

Linker

Optimized binary

Fig. 2. Overview of the compile flow for the analysis information-based LTO.
The compiler front end generates the object and analysis information file of
each compilation unit. Then, compiler back end optimizes the object of the
compilation unit by using the analysis information of other compilation units.

III. OSCAR AUTOMATIC PARALLELIZING COMPILER

In this section, to clarify the information that supports sep-
arate compilation for automatic parallelization by a compiler,
we first review the overview of the OSCAR automatic paral-
lelizing compiler as an example of a parallelizing compiler; the
required analysis information is discussed based on it. Though
the OSCAR compiler is reviewed here, the required analysis
information can be used for other parallelizing compilers.

A. Overview of OSCAR Compiler

The OSCAR automatic parallelizing compiler takes an
ordinary sequential C or Fortran program and generates a
parallelized code annotated by OpenMP or OSCAR-API di-
rectives [3], [7]. It employs multi-grain parallel processing that
can exploit multiple grains of parallelism hierarchically.

The compiler consists of the front-end, the middle-end,
and the back-end. The front-end takes a source program
and translates it into a form of intermediate representation,
OSCAR-IR. The middle-end performs parallelization on the IR
along with multiple program analysis and restructuring passes.
Finally, the back-end generates the parallelized C or Fortran
code, then a target platform compiler, such as GCC, generates
an object file from it.

The OSCAR compiler first decomposes a source program
into three kinds of blocks: basic block (BB), repetition block
representing an outer most loop (RB), and subroutine block
representing a function call statement (SB). Each block is
called a macro-task (MT).

Then, the compiler employs control flow analysis, pointer
analysis, data-flow analysis, and data-dependence analysis like
the other compilers. It also employs several restructuring
techniques to exploit parallelism as much as possible.

The results of the control flow analysis and data dependence
analysis are represented as a macro-flow graph (MFG), where
each node represents an MT. Then, the compiler employs
the earliest executable condition analysis that can exploit the
earliest MT starting condition from the control dependence
and data dependence of each MT. The analysis results are
represented as a macro-task graph (MTG). Thus, the compiler
can exploit parallelism from the MTs, namely coarse grain
task parallelism.

If the compiler can detect coarse grain task parallelism
inside the MT of the RB or SB, the compiler hierarchically
exploits it. If the RB is a parallelizable loop (do-all/for-all),
the compiler employs loop iteration level parallelism for it,
similar to ordinary parallelizing compilers.

Finally, the compiler decides the scheduling policy for each
MTG and generates the parallelized code. If an MTG has
conditional branches in it, the MTs in it are dynamically
scheduled to processor cores at the runtime. The compiler
generates the runtime scheduling code for that MTG as well as
the code for each MT as the parallelization result. Otherwise,
the static scheduling is employed for it to minimize the runtime
overhead caused by the scheduling code.

As described in the above, the OSCAR compiler can hierar-
chically exploit parallelism from a program. While this means
that the compiler can fully exploit the parallelism from the
program, it also requires that the number of processor cores
for each part of the program must be appropriately decided de-
pending of the amount of the parallelism there. This is because
the parallel execution for the part with little parallelism suffers
from the large synchronization overhead. For this purpose,
the OSCAR compiler calculates the parameter Para for each

3



MTG [15]. Para is calculated by the following equation:

Para = Cost/CriticalPathLength (1)

Here, Cost is the sum of execution costs of all the MTs in the
MTG, and CriticalPathLength is the critical path length of
the MTG, respectively. In short, Para indicates the magnitude
of the parallelism in the MTG. For instance, if Para is less
than 2, the compiler stops to parallelize that MTG anymore.

The compiler estimates the execution cost of an MT to
calculate Cost in the equation 1 by accumulating all operation
costs in it. The profile result can be also used to obtain more
accurate Cost.

Throughout the compilation flow described above, the pro-
gram structure and MTGs as well as other information related
with parallel processing are maintained by OSCAR-IR.

B. Analysis Information Supporting Separate Compilation for
Automatic Parallelization

Now, the required analysis information that enables paral-
lelization over multiple compilation units is discussed accord-
ing to the above compilation flow.

Needless to say, the information of the defined and used
variables of a function in another compilation unit must be
present because the parallelism analysis relies on the data
dependence among tasks for task parallel processing, or it-
erations in a loop for loop iteration-level parallel processing.
Access range information is also useful for arrays. For pointer
variables, the defined and used information of an object
pointed to by a pointer variable should be provided.

In addition, there are several considerations if a function in
another compilation unit modifies the function scope or the
compilation unit scope static variables. When a function mod-
ifies a function scope static variable, its multiple function call
must not be executed in parallel (1). On the other hand, when
multiple functions have data dependence on each other through
having the same compilation unit scope static variable, they
too must not be executed in parallel (2). Furthermore, when
a function modifies a machine’s global state, for instance, by
accessing some I/O peripherals, it must not be executed with
other tasks (3). A parallelizing compiler must consider those
situations. However, the variables causing those dependencies
are not visible from other compilation units. Therefore, the
analysis information should include the attributes of each
function, such as “having a state” for the case (1), “dependent
on other functions in same compilation unit” for the case (2),
and “sequential” for the case (3).

In terms of the task scheduling phase, cost information is
important. Therefore, the analysis information should include
it for each function.

IV. SEPARATE COMPILATION FOR AUTOMATIC
PARALLELIZATION

In this section, we explain the proposed separate com-
pilation flow. This is similar to the analysis information-
based LTO described in Section II-B. Before the separate
compilation, the compilation units of a source program are

divided into two groups. Then, they are appropriately ordered
and employed for sequential or parallelizing compilation for
the flow. The recompilation with the proposed flow is also
described here.

A. Code Separation

Before the compilation, the compilation units of a source
program are divided into two groups, the parallelizing group
and the sequential group, to decide the order of the compi-
lation among them and to perform appropriate analysis and
optimization passes on them.

• Parallelizing Group
A compilation unit including program parts to be par-
allelized is categorized into the parallelizing group. The
compilation units in this group is performed paralleliz-
ing compilation. At the parallelizing compilation for
the compilation unit, the compiler employs the analysis
information from other compilation units categorized in
the sequential group. If a function is worth employing
interprocedural restructuring, such as inlining, for, its
body should be defined in the compilation unit of this
group. In other words, if a function that should be inlined
and its caller function are defined in separate compilation
units, they should be integrated at the compilation unit
level or IR level.
As mentioned in Section III-A, the OSCAR compiler
can employ hierarchical parallel processing for the source
program. When there are nested parallel processing parts
across different compilation units, the program part hav-
ing the highest parallelism is put in the parallelizing
group. Para calculated by Equation (1) can be used as
a measure of this decision for the case of the OSCAR
compiler. Considering the nested parallelism is a future
work.

• Sequential Group
Other compilation units than those in the parallelizing
group is categorized in the sequential group. Program
analysis, instead of parallelization, is performed on the
compilation unit in this group. The compiler generates
an analysis information file from it as well as its IR. A
compilation unit in this group includes the body of func-
tions called by the compilation units in the parallelizing
group.

The next point of the proposed compilation flow is how
the compilation units can be categorized into the above two
groups. We prepare two approaches as the following:

• Manual Grouping
The manual grouping is the simplest approach to employ
the proposed method. In this approach, the application
developers have a responsibility of appropriately catego-
rizing the compilation units into either group based on
the knowledge of the program design in terms of the
parallelism in it.
If the developers have enough knowledge both of the
program design and parallel processing, this approach

4



can introduce the efficient parallel processing with small
recompilation cost.

• Automatic Grouping
Contrary to the manual grouping, the automatic group-
ing categorizes the compilation units into two groups
automatically by the compiler. In this approach, first,
all of the compilation units are integrated into a single
file. Then, the compiler analyses the integrated program
and detects the parallelism for each part of the program.
According to the detected parallelism, the compiler cat-
egorizes the original compilation units into either group.
For the case of the OSCAR compiler, Para for each
MTG calculated by Equation (1) is used in this approach;
the compilation units having low para (usually less than
2) are put in the sequential group, and other units are
put in the parallelizing group. Note that the threshold
of Para distinguishing these groups can be decided by
the developers depending on the characteristics of the
application and the computational resource in the target
hardware.
This approach does not require the developers to have the
exact program design in terms of the parallel processing
because the compiler fully has a responsibility of the
grouping. On the other hand, this requires parallelism
detection phase. However, all of the compilation units
must be compiled at the first time of the program build
time anyway. In addition, this parallelism detection and
grouping are not required again at the recompilation
time if the drastic modification, which results in the
exploitation of more parallelism from a compilation unit
in the sequential group, is not employed.
There is another consideration in this approach when a
compilation unit has two types of functions: the one is
functions having high Para and the another is those hav-
ing little Para. When this compilation unit is involved
in the parallelizing group, at least the file reading cost
for the little Para functions must be paid even if the
compiler can stop the analysis on them by providing the
analysis information. On the other hand, when the unit is
involved in the sequential group, the parallelism of high
Para functions in this unit cannot be utilized at all. In
this paper, because of the expected parallel processing
performance of the compiled programs, we took the first
approach such that the compilation units having high
Para functions are involved into the parallelizing group
and the compiler stops the analysis on the little Para
functions by providing the analysis information of them.

B. Automatic Parallelizing Compilation by Proposed Flow

The proposed separate compilation flow deals with the pre-
viously explained parallelizing group and sequential group in
different ways. Firstly, the compilation units of the sequential
group are compiled and their analysis information files are
exploited. Then, the compilation units of the parallelized group
are compiled with the analysis information and parallelized
with interprocedural analysis passes and restructuring passes.

Figure 3 and Figure 4 show the compilation flow for the
sequential group and the parallelizing group, respectively. The
compilation flow for each group consists of the front-end, the
middle-end, and the back-end, as described in Section III-A.
The front-end generates an IR from the compilation units for
both cases.

For the compilation units of the sequential group, the
middle-end generates an analysis information file from the
compilation unit along with its IR file. Then, the back-end
and the platform compiler generate the object file to be linked
together with the parallelizing group from the IR file. Note
that a compiler does not parallelize the compilation units of
this group.

The current version of an analysis information file contains
the following information for each function in a compilation
unit as discussed in Section III-B:

• Defined variable list
• Used variable list
• Execution cost
• “sequential” flag described

The access range information for arrays will be added at the
next version.

On the other hand, for the compilation units of the paral-
lelizing group, the middle-end integrates analysis information
files from the sequential group, and then performs paralleliza-
tion on a compilation unit by utilizing integrated information.
Finally, the back-end and the platform compiler generate the
parallelized executable object file.

Compilation unit
in the sequential group

Front end

IR IR

Middle end

IR IRAnalysis 
information

Analysis
information

Back end
+

Platform compiler
Object Object

Compilation unit
in the sequential group

Fig. 3. Overview of the compile flow for the sequential group. The middle-
end generates the analysis information file and IR for each compilation unit.

Note that an analysis information file includes the informa-
tion discussed in Section III-B for each function defined in a
compilation unit.

C. Recompilation with Proposed Compilation Flow

Recompilation is occurred when one or some of compilation
units in a source program are modified. If a compilation unit in
the parallelizing group is modified, as expected, the compiler
performs parallelizing compilation on it again. On the other
hand, if a compilation unit in the sequential group is modified,
the compiler performs compilation on it again, and generates
the updated analysis information file and IR file; then, the

5



IR

Middle end

Parallelized Object

Analysis
information

Parallelized IR

Front end

Compilation unit
in the parallelizing group

Back end
+

Platform compiler

Fig. 4. Overview of the compile flow for the parallelizing group. The middle-
end analyzes the parallelizing group by using IR from the parallelizing group
and analysis information from the sequential group.

compilation units of the parallelizing group calling functions
in the modified compilation unit are also compiled again.
Furthermore, if a function called by a compilation unit in the
parallelizing group is added, it is inserted in a compilation
units of the sequential group and compiled; then, a compilation
unit of the parallelizing group calling the added unit is also
compiled.

V. EXPERIMENTAL EVALUATION

The proposed separate compilation flow is implemented in
the OSCAR automatic parallelizing compiler. We evaluate it
by using four real control programs from industry.

A. Evaluation Environment and Programs

We use a dual CPU socket server machine with Intel Xeon
E5-2637 v4 driven at 3.5 GHz(4 cores per one socket, no
hyper-threading) and 755.8 GB memory for the evaluation of
compilation. Ubuntu 14.04 LTS 64bit is installed on it.

Four huge sized real control programs from industry are
used for the evaluation; they are labeled from “Program1”
to “Program4”. They constitute a large real-time system hav-
ing several deadlines. The purpose of parallelizing them is
reducing their execution time as much as possible to enable
the system developers to implement more functions within the
predefined deadlines. One of their important characteristics is
the little loop iteration level parallelism in them. Therefore,
ordinary parallelizing compilers cannot exploit parallelism
from them. On the other hand, there is sufficient coarse grain
task parallelism that the OSCAR compiler can exploit [14].

Table I shows the summary of the evaluation programs in
terms of their scale. The “operation” in this table stands for the
IR-level primitive operations like the LLVM-instructions [18].
The compiler traverses them repeatedly at the analysis and
restructuring time, thus the number of them affects the total
compilation time. According to the table, those programs take
64.24 seconds, 71.16 seconds, 6,973.45 seconds, and 3,755.35
seconds, respectively for the compilation by the OSCAR com-
piler when all the compilation units are integrated in a single
file. Each program is reorganized into the parallelizing group
and the sequential group through the proposed compilation

flow. This table also shows the ratio of operations in the
parallelizing group for each program. “(manual)” and “(auto)”
stand for the manual and the automatic grouping, respectively.
Before the parallelizing compilation, the task execution cost
for the programs is measured on the target multicore controller,
and the compiler employs it to ensure accurate task scheduling.

B. Results

Under the assumption of the recompilation scenario, we
first evaluate the compilation time of the parallelizing group
of the proposed compilation flow (with code separation) as
well as the time taken by a single file integrating all the
compilation units of a program (without code separation). For
the proposed compilation flow, the manual grouping (manual)
and the automatic grouping (auto) are also evaluated. Note
that the cases of “without code separation” correspond to the
IR-based LTO described in Section II-A.

Figure 5 shows the result of the evaluation. For all the pro-
grams, the compilation time can be reduced by the proposed
compilation flow. Compared with the compilation without the
proposed flow, which employs parallelizing compilation to
the single file combining all compilation units, the proposed
technique with manual grouping reduces the compilation time
to 44%, 53%, 4%, and 22%, respectively. Similarly, the
proposed technique with automatic grouping reduces it to
51%, 65%, 10%, and 53%, respectively. The reduction in the
compilation time for each program corresponds to the ratio of
operations in the parallelizing group, as shown in Table I. The
compilation time for the automatic grouping includes the file
reading time for the non-parallelized program part compared
with the manual grouping. Hence, the compilation time for the
automatic grouping is longer than the manual grouping. This
can be reduced, for example, by removing the non-parallelized
program part from the parallelizing group.

Figure 6 shows the estimated performance of the paral-
lelized programs on an infinite number of processor cores. The
compiler calculates them by dividing the sequential program
execution cost by the critical path length of its MTG with its
task execution cost obtained by profiling as same as Para
in Section III-A. The four bars for each program are the
results of the compilation on the single file combining all
the compilation units (without code separation), the separate
compilation with the proposed flow and manual grouping (with
code separation (manual)), the separate compilation with the
proposed flow and automatic grouping (with code separation
(auto)), and the separate compilation without the analysis
information file (separation compilation without analysis in-
formation file), respectively. They are normalized so that the
estimated performance without the code separation becomes
100%. The reason for showing the estimated performance
instead of the performance on the target multicore is to clarify
the compiler’s ability to exploit parallelism.

This figure shows that the proposed flow obtains better
performance for all the programs in the cases of both the
manual and the automatic grouping than the cases of the
separate compilation without the analysis information file.

6



TABLE I
SUMMARY OF THE EVALUATED PROGRAMS

Number of Number of Number of Number of Compilation % of operations in
operations variables modules files time[s] parallelizing group

(manual) (auto)
Program1 62,821 4,051 988 212 64.24 30.91 30.91
Program2 35,411 2,953 912 235 71.16 41.54 41.54
Program3 326,612 15,780 6,751 1,226 6,973.45 12.87 12.06
Program4 534,933 21,284 8299 1,520 3,755.35 19.72 27.28

Specifically, it has 26% better performance for Program4 (74%
→ 100%) with both grouping approaches. The compiler can
exploit more parallelism among tasks including function calls
by employing interprocedural analysis information. Interest-
ingly, the automatic grouping can obtain better performance
than the manual grouping for Program3 (92% → 99%). The
compiler can find more parallelizable part from the program
than the program developer for this case.

Compared with the performance of the cases without sep-
arate compilation, the proposed flow obtains comparable per-
formance for Program1, 3, and 4. However, for Program2, the
proposed flow shows 86% of performance. This performance
degradation is due to the insufficient representation of pointer
variables and structure members in the current version of
the analysis information file. The current version does not
support the information of pointer initialization statements.
It also does not deal with structure members inside deeply
nested structures. Thus, the compiler cannot handle them in
other compilation units, even with the analysis information
file. These points can be fixed at the next version.

It is usual that only a small part of the program is modified
in program debugging and performance tuning phases. When
all the IR are combined or read at the recompilation time,
as in the case with the IR-based LTO, the compilation time
is gradually increased because reading the IR requires costly
parsing and program analysis passes at the link phase, in
addition to recompilation time for the modified compilation
units. Instead, the proposed compilation flow takes analysis
information files for the compilation units of the sequential
groups; consequently, it requires small reading cost and no
analysis cost in addition to the compilation time for the par-
allelizing group. To clarify the additional recompilation cost
for the compilation units of the sequential group, we measure
their compilation time, as shown in Table II. According to the
table, the compilation time is 0.6 seconds to 1.7 seconds on
average, and this is paid at the recompilation of the modified
compilation unit. Thus, the proposed compilation flow can
reduce the recompilation time.

VI. CONCLUSION

While there is no doubt about the importance of preoccu-
pation in the performance of a program, its maintainability
and compilation time are also important factors of software
development, especially for large scale practical programs.
Separate compilation has been widely used to ensure the
later factors. On the other hand, the scope of a compiler

100%
(64.24s)

100%
(71.16s)

100%
(6973.45s)

100%
(3755.35s)

43.6%
(25.15s) 53.2%

(21.04s)

4.2%
(207.64s)

22.4%
(843.02s)

51.4 %
(33.01s)

64.8 %
(46.08s)

9.9 %
(688.81s )

53.1%
(1996.18s)

0

20

40

60

80

100

120

Program1 Program2 Program3 Program4

No
rm

ar
ize

d 
co

m
pi

la
tio

n 
tim

e[
%

]

Evaluation programs
Without code separation
With code separation(manual)
With code separation(auto)

Fig. 5. Compilation time measurement result. Each bar shows the normalized
compilation time against the case for combining all compilation units into a
single file. “manual” and “automatic” stand for the manual grouping and the
automatic grouping, respectively.

100 100 100 10099 
86 92 100 100 

86 
99 100 93 

68 70 74 

0

50

100

150

Program1 Program2 Program3 Program4

N
or

m
ar

ize
d 

pe
rfo

rm
an

ce
[%

]

Evaluation programs

Without code separation

With code separation(manual)

With code separation(auto)

Separation compilation without analysis information file

Fig. 6. Estimated performance for the programs. Each bar shows the
normalized performance against the case for combining all compilation units
into a single file.

optimization is usually restricted by the compilation unit; thus,
the opportunity for the performance improvement is reduced.
Link Time Optimization (LTO) has been used to overcome
this problem. However, previously proposed LTO techniques
are difficult to directly employ for automatic parallelization,
or they introduce longer compilation time.

In this paper, we proposed a separation compilation tech-
nique for automatic parallelization. In this flow, the compila-

7



TABLE II
COMPILATION TIME FOR THE SEQUENTIAL GROUP

Number of
compilation units

Average compilation time for
sequential units[s]

Standard Deviation of
compilation time for sequential units [s]

Program1 95 0.6 1.7
Program2 28 0.8 0.9
Program3 471 1.7 12.2
Program4 883 0.8 2.1

tion units of a source program are categorized into the paral-
lelizing group and the sequential group. This grouping can be
employed either manually by the developers or automatically
by the compiler. Then, the analysis information is exploited
from each compilation unit of the sequential group. The
compiler performs parallelization on the parallelizing group by
integrating the analysis information from the sequential group.
Thus, the compilation flow achieves both full parallelization
of a program and shorter compilation time.

The proposed compilation flow is implemented on the
OSCAR automatic parallelizing compiler. The experimental
evaluation result using large real control programs from in-
dustry shows the proposed method can achieve 29% better
performance than the separate compilation without the pro-
posed method, and the compilation time can be reduced by
90% with only 1% of performance degradation, compared with
the compilation of the fully unified source code into a single
compilation unit when the automatic grouping is employed.

REFERENCES

[1] Cilio, A.G.M., Corporaal, H.: Link-time effective whole-program opti-
mizations. Future Generation Computer Systems(FCGS), 2000, 16(5),
pp. 503-511, March 2000.

[2] Johnson, T., Amini, M., Li, X.D.: ThinLTO: Scalable and Incremental
LTO. 2017 IEEE/ACM International Symposium on Code Generation
and Optimization(CGO), February 2017.

[3] Kasahara, H., Honda, H., Aida, K., Okamoto, M., Yoshida, A., Ogata.,
W.: OSCAR Fortran Multigrain Compiler. In Parallel Language and
Compiler Research in Japan, Springer, pp271-301, 1995.

[4] Wilson, R.P., French, R.S., Wilson, C.S., Amarasinghe, S.P., Anderson,
J.M., Tjiang, S.W.K., Liao, S., Tseng, C., Hall, M.W., Lam, M.S.,
Hennessy, J.L.: SUIF: An Infrastructure for Research on Parallelizing
and Optimizing Compilers. ACM SIGPLAN Notices, 1994, 29(12), pp.
31-37, Dec 1994.

[5] GNU Compiler Collection (GCC) Internals: LTO Overview,
https://gcc.gnu.org/onlinedocs/gccint/LTO-Overview.html#LTO-
Overview.

[6] Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. Proc. of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Mar.
2004.

[7] Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasa-
hara, H.: OSCAR API for Real-Time Low-Power Multicores and Its
Performance on Multicores and SMP Servers. International Workshop
on Languages and Compilers for Parallel Computing. (LCPC) 2009,
Springer, pp. 188-202, 2010.

[8] OpenMP. https://www.openmp.org/.
[9] OpenACC. https://www.openacc.org/.

[10] NVIDIA CUDA Programming Guide. https://docs.nvidia.com/cuda/.
[11] Grosser, T., Groesslinger, A., Lengauer, C.: Polly - Performing polyhe-

dral optimizations on a low-level intermediate representation. Parallel
Processing Letters. 22(4), 2012.

[12] Ayers, A., Jong, S.D., Peyton, J., Schooler, R.: Scalable cross-module
optimization. In Proceedings of the ACM SIGPLAN 1998 Conference
on Programming Language Design and Implementation(PLDI’98), pp.
301312, 1998.

[13] Moon, S., Li, X.D., Hundt, R., Chakrabarti, D.R., Lozano, L.A.,
Srinivasan, U., Liu, S.M.: Syzygy - a framework for scalable cross-
module ipo. In Proceedings of the International Symposium on Code
Generation and Optimization: Feedbackdirected and Runtime Optimiza-
tion(CGO04), 2004.

[14] Umeda, D., Suzuki, T., Mikami, H., Kimura, K., Kasahara, H.: Multi-
grain Parallelization for Model-Based Design Applications Using the
OSCAR Compiler. International Workshop on Languages and Compilers
for Parallel Computing(LCPC) 2015, Springer, pp. 125-139, 2015.

[15] Obata M., Shirako J., Kaminaga H., Ishizaka K., Kasahara H. (2005):
Hierarchical Parallelism Control for Multigrain Parallel Processing.
In: Pugh B., Tseng CW. (eds) Languages and Compilers for Parallel
Computing. LCPC 2002. Lecture Notes in Computer Science, vol 2481.
Springer, Berlin, Heidelberg.

[16] Han, J., Fujino, R., Tamura, R., Shimaoka, M., Mikami, M., Takamura,
M., Kamiya, S., Suzuki, K., Miyajima, T., Kimura, K. and Kasahara,
H. Reducing Parallelizing Compilation Time by Removing Redundant
Analysis. Proceedings of the 3rd International Workshop on Software
Engineering for Parallel Systems(SEPS2016), pp.1-9, 2016.

[17] Y. Yu, H. Dayani-Fard, J. Mylopoulos and P. Andritsos, ”Reducing
build time through precompilations for evolving large software,” 21st
IEEE International Conference on Software Maintenance (ICSM’05),
Budapest, Hungary, 2005, pp. 59-68.

[18] LLVM Language Reference Manual LLVM 9 documentation.
https://llvm.org/docs/LangRef.html.

8


