Automatic Cache and Local Memory
Optimization for Multicores

Hironori Kasahara
Professor, Dept. of Computer Science & Engineering
Director, Advanced Multicore Processor Research Institute
Waseda University, Tokyo, Japan
IEEE Computer Society

President Elect 2017, President 2018
URL.: http://www.kasahara.cs.waseda.ac.jp/

Waseda Univ. GCSC

Multicores for Performance and Low Power

Power consumption is one of the biggest problems for performance
scaling from smartphones to cloud servers and supercomputers

(“K” more than 10MW) .

f ﬂ 55 |
v

i

5
n

IEEE ISSCCO08: Paper No. 4.5,
M.ITO, ... and H. Kasahara,
“An 8640 MIPS SoC with
Independent Power-off Control of 8
CPUs and 8 RAMs by an Automatic
Parallelizing Compiler”

Power o Frequency * Voltage?
(Voltage o< Freguency)

mm) Power o< Frequency?

If Frequency is reduced to 1/4
(Ex. 4GHz->1GHz2),

Power iIs reduced to 1/64 and

Performance falls down to 1/4 .

<Multicores>

If Scores are integrated on a chip,

Power is still 1/8 and

Performance becomes 2 times.

8 Core RP2 Chip Block Diagram

Cluster #0 Barrier Cluster #1
Core #3 Sync|. LLines Core #]
Core #2 Core #6|
Core #1 o\ Core #5
Core #0 Core #4
CCPGO CPU FPU ‘ o - FPU CPU LCPGT
PCRJ 4T T 4+—b PCR7]
PCRY]!gK 1%& ES\N le > g g —t>1 %(E\\IFL 1%$K fll.%K PCRY
Local memor — S S Local memor
PCRI 1:8K, D:32Ky o o 1:8K, D:32 PCRY
——— - o o o ———
URAM 64K i 2 2 _ URAM 64K ||| PCRZ
p) p)
i I TITt 1 111 T TIft
On-chip system bus (SuperHyway)
v v v LCPG: Local clock pulse generator
DDR2|| SRAM | DMA | PCR: Power Control Register
control| [control||control] ccN/BAR:Cache controller/Barrier Register

URAM: User RAM (Distributed Shared Memory)

Sparc CC-NUMA Server

M proposed method

M original (sun studio)

Il
LA
o

211.0

2

[
L1
o

2

LA
o

Speed-up ratio against
original sequential execution
L

1lpe 32pe bdpe 12E8pe
With 128 cores, OSCAR compiler gave us 100 times

speedup against 1 core execution and 211 times speedup
against 1 core using Sun (Oracle) Studio compiler.

OSCAR Parallelizing Compiler

To improve effective performance, cost-performance

and software productivity and reduce power

Multigrain Parallelization

coarse-grain parallelism among loops
and subroutines, near fine grain
parallelism among statements in
addition to loop parallelism

Data Localization

Automatic data management for
distributed shared memory, cache
and local memory

Data Transfer Overlapping

Data transfer overlapping using Data
Transfer Controllers (DMAS)

Power Reduction

Reduction of consumed power by
compiler control DVFS and Power
gating with hardware supports.

88.3% Powér Reduction

T —

Generation of Coarse Grain Tasks

sMacro-tasks (MTs)
> Block of Pseudo Assignments (BPA): Basic Block (BB)
> Repetition Block (RB) : natural loop
> Subroutine Block (SB): subroutine

' — BPA + Near fine grain parallelization : :EEA

: : .

! , Loop level parallelization BPAI | LBPA
Program-—— RB < Near fine grain of loop body ’:RB : Z§E

| . Coarse _gra_ln SB +— _BPA

! . parallelization __BPA ' [-RB

I I _ ! B

, L SB 4 Coarse grain RB —— SPA

! | parallelization SB —, [RB

: : SR
Total | : I

19 st 1 nd ! rd
System ' Layer 2" Layer S baver

1 l .

Earliest Executable Condition Analysis for Coarse
Grain Tasks (Macro-tasks)

Data Dependency
""""""" Control flow
) Conditional branch

BPA Block of Psuedo
Assignment Statements ? O

RB Repetition Block
7 ---------- ’ RB
’ Glie
’ BPA:“ RB
15 BPA 7 RB | s ’
- : RB #
o, 15 i
""""" ~ Datadependency 12
""""" Extended control dependency .
O conditional branch 3
= N OR e
13 RB -~~~ AND 14
‘‘‘‘‘ 1 e A Macro Elow Graph > Original control flow
N A Macro Task
Graph

PRIORITY DETERMINATION IN DYNAMIC CP
METHOD

Condltlonal branch

L 80% NS 20%4—— Estlmated branch probablllty

A e e L Longest path Iength from
20 | 10 20 40 70.' _ the exit to each macrotask

+3? | "+5P L +5? o '+5?' - +3? *—-—~Task processing time -

max(50 60)=60 max(0 %0 100)_100

Crltlcal path Iength 0 80*60+0 20%100= 68

Earliest Executable Conditions

Macrotask No.

Earliest Executable Condition

1

2 12

3 (1) 3 |

4 24 OR (13

5 (4) 5 AND[24 OR (1) 3]
6 | 3 0OR (2) 4

7 5 OR 4 ¢

8 (2)4 OR (1) 3

9 8 9

10 . (8) 10

11 89 OR 810
12 1112 AND [9 OR (8) 10]
13 1113 OR11 12

14 (8) 9 OR (8) 10

15 215

Automatic processor assignment in 103.su2cor

» Using 14 processors
Coarse grain parallelization within DO400

SWEEP
s |, LOOPS
Mai HER R]
-l I A _INT4V
: H '/ ""' [1,14] :. s |4 | B ,-"' ' :
ALY T AR A 7 - P
T U e : f : v
| RB| R ¢+ CORR & : 1 [sB -
. A . " - ','l'l : /‘l', RB [} @
RBI| |LRBIY j’ A i oo|| ||rB|| |RB| [RB| | |RB | E
: 1|LsB '{' ! 900 po || |po| [po —_
: ‘i‘ RB : !] [|400|| [400| |400| |LRE :
L Y N L
NI [0 el (R o
) S PPl s | (114 (140,148
[1,14] % - \ : | U bt H
\[[SB \ . [2,7]
.14] y k Tripl dl
T""'-.,_.‘.' \\ [1 ,14] riply nested loop
[1,14] "--..,___:\‘

Nra, Nre = [PG,PE]

10

MTG of Su2cor-LOOPS-D0O400
Coarse grain parallelism PARA _ALD = 4.3

mm DOALL pmm Sequential LOOP —SB g BB

11

Data-Localization: Loop Aligned Decomposition
 Decompose multiple loop (Doall and Seq) into CARs and LRs
considering inter-loop data dependence.
— Most data in LR can be passed through LM.
— LR: Localizable Region, CAR: Commonly Accessed Region

W LR [CAR)[LR |

N

LR

C RB1(Doall) é

DO I=1,101

CAR

A(l)=2
ENDDO

C RB2(Doseq)
DO 1=1,100
B(1)=B(I-1)
+A(1)+A(I+1)
ENDDO

RB3(Doall)
DO 1=2,100
C()=B(I)+B(I-1)
ENDDO
C

DO I=1,33

DO 1=34,35

DO 1=36,66

DO |1=67,68

DO 1=69,101

DO I=1,33

DO |1=34,34

e

DO [=35,66

Z\

N

DO [=2,34

N\

DO I=67,67

DO 1=68,100

— |

DO 1=35,67

4

DO 1=68,100

o

4

- 4

o

N\~

S

A schedule for

digl

R EEEEREEERE
1 I
O
I — -
< /T -
) — "
CO -I'qf‘vu N
kR -
| | b
a ™ N~ —
|| N
e
g0’ 3
o)) o
S 2 G
O -
NImTiniEn Uiy
R
8
S
&
®
()

two processors

13

MTG after Division

MTG

Inter-loop data dependence analysis in TLG

e Define exit-RB iIn TLG

_ C RB1(Doall)
as Standard-Loop DO 11 101
 Find iterations on which Eﬁ(gsil
a Iteration of Standard-Loop is
data dependent C RB2(Doseq)
. DO I1=1,100
- e.0. K, of RB3 is data-dep B()=B{I-1 ? .
on K-1,,Ky, of RB2, +HA)+A(I+1)
ENDDO
on K-1, K, ,K+1, of RB1
C RB3(Doall)
DO 1=2,100 . L
C(I)=B(1)+B(l-1) > ’
ENDDO

14

Target Loop Group Creation and
Inter-Loop Dependence Analysis

O Target Loop Groups

= grouped loops that access
the same array

= baseline loop chosen for
each group

o the largest estimated time
loop

O Inter-Loop Dependency
Analysis

= data dependencies
between loops within the
TLGs

m detects relevant iterations
of those loops that have
dependence with the
iterations of the baseline
loop

[N
:.
Y

DO 1=1,101

}
} .
}

A(l)=2*
ENDDO

(]
N

DO 1=1,100

N

B(I)=B(l-1)
+A(1)+A(1+1)
ENDDO

»(D
4N

|
DO 1=2,100

C(1)=B()*B(I-1)
ENDDO

Inter-Loop dependence

Decomposition of RBs in TLG

e Decompose GCIR into DGCIRP(1=p=n)

— n: (multiple) num of PCs, DGCIR: Decomposed GCIR
o Generate CAR on which DGCIRP&DGCIRP* are data-dep.
» Generate LR on which DGCIRP is data-dep.

Automatic Parallelization of Still Image Encoding Using JPEG-XR
for the Next Generation Cameras and Drinkable Inner Camera

O LILEErobd

g

B
-
Ei|) sy

EHEHEHEHEHEH =R

Ly EIEEEEHED S EEEEEEE, ol

BEEEEIEEEEERE, o

i =HE e = e s Il [l
~ - <11
By i S

E

B

3y EEEEEE R R,

g BiqleieH e = HeH el = ez E) §

60.00

50.00

40.00

Q.
=]

. €0.00

(%)
20.00

Speed-ups on TILEPro64 Manycore

0.18[s]
55.11
30.79
137 15.82
10.0[s]
7.86
1 00 1. 96 3 95 I
1 2 32 64
7%51

55 times speedup with 64 cores
against 1 core

Waseda U. & Olympus

Speedups of MATLAB/Simulink Image Processing on
Various 4core Multicores
(Intel Xeon, ARM Cortex A15 and Renesas SH4A)

3.56 343
3.50 320 312
2.92
2.50 2.29 2.25 2.33 & 15248
2.0 2.06 o4
- 1.97 1.85 20
1.50
1.00
0.50
0.00
Road Tracking Buoy Image Color Edge Optical Flow Vessel
Detection Compression Detection Detection

M Intel Xeon E3-1240v3 m ARM Cortex A15 m Renesas SH-4a

Road Tracking, Image Compression : http://www.mathworks.co.jp/jp/help/vision/examples
Buoy Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/44706-buoy-detection-using-simulink
Color Edge Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/28114-fast-edges-of-a-color-image--actual-color--not-converting-

to-grayscale-/

Vessel Detection : http://www.mathworks.co.jp/matlabcentral/fileexchange/24990-retinal-blood-vessel-extraction/

18

Parallel Processing of Face Detection
on Manycore, Highend and PC Server

H tilepro64 gcc

| mSR16k(Power7 8core*4cpu*4node) xlc

1 rs440(Intel Xeon 8core*4cpu) icc

6.46 6.46
5.74

1721.931.93

1.001.001.00

- 8

0 OSCAR compiler gives us 11.55 times speedup for 16
cores against 1 core on SR16000 Power?/ highend server.

6

Automatic Parallelization of Face Detection

Data Localization: Loop Aligned Decomposition

 Decomposed loop into LRs and CARs
— LR (Localizable Region): Data can be passed through LDM

— CAR (Commonly Accessed Region): Data transfers are

required among processors o _ N
Multi-dimension Decomposition

Single dimension Decomposition /
o | o6l | o /g// : §

(\ () Y 4
DO I=1.101 LR CAR LR CAR | LR /

B(1)=B(-1) DO1=34 34 .

00 1=67,67
| . : A A /

00|:|2l18u|3).8|1 / \ / | DO =68, 100 | 2 } 4 //

il v et o e VA) g

0 2 3 5 6 B 9

Allj=21 00113 || DOIM35 [I| DOI=3666 || DOI6T8 ||| DOI=69,101

ENDDO b — D ; ﬂ_ ; 7
DOI=1,33 .

tA(PFA(1) ‘

ENDDO - D0k2Y DOI=35,67 il DOI=68,100

DO 121,100 5 ;
| § 8/ \ /
ENDDO | 5s/ /LS / // /
\ | y\),

20

Adjustable Blocks

0 Handling a suitable block size for each

application

m different from a fixed block size in cache
m each block can be divided into smaller blocks

with intege
and scalar

Level 0
Level 1
Level 2
Level 3

Blocky,mpe

«—— 1 Block on Local Memory ——

Level
"

Block,”

Block,'

Block

Bbchf

BIock12

Block,’

Blocks’

B,

B

B,’ | B’

B.’ | B’

B¢’

B,

small arrays

Multi-dimensional Template Arrays
for Improving Readability

TEMPLATE ARRAY ~ TEMPLATE ARRAY ~ TEMPLATE ARRAY
* a mapplng teChanue for arrays Wlth FOR 1-DIMENSIONAL ~ FOR 2-DIMENSIONAL FOR 3-DIMENSIONAL
varying dimensions ARRAY ARRAY ARRAY
— each block on LDM corresponds to ~ A
multiple empty arrays with varying // = =§ﬁf
dimensions I
.. |
— these arrays have an additional

dimension to store the corresponding RS
block number BOR2
« TA[Block#][] for single dimension
» TAJ[Block#][][] for double dimension
o TA[Block#][][][] for triple dimension

R

i

 LDM are represented as a one Bodk?
dimensional array
— without Template Arrays, multi- LDM
dimensional arrays have complex index
calculations

o A[][jI[K] -> TA[offset + i’ * L +j’ * M + K’]
— Template Arrays provide readability , ,
o A[il[1IK] -> TA[Block#][i'1[i’1[K’] 22

Block Replacement Policy

0 Compiler Control Memory block
Replacement
= using live, dead and reuse information of each

variable from the scheduled result

m different from LRU in cache that does not use

data dependence information

O Block Eviction Priority Policy

1.

2.

3.

(Dead) Variables that will not be accessed later
in the program

Variables that are accessed only by other
processor cores

Variables that will be later accessed by the
current processor core

Variables that will immediately be accessed by
the current processor core

Code Compaction by Strip Mining

0 Previous approach produces

duplicate code P e
m generates multiple copies of the afilj] =i+j
loop body which leads to code
bloat for (i = 0; < 15;i++)
0 Proposed method adopts code 0l a1
compaction i

m based on strip mining

= multi-dimensional loop can be or (1= 0 <15 11+=8)
for (jj = 0;jj < 63; jj+=32)
reStrUCtU red for (i = ii; i < min(15,ii4+8+1); i++)

Code for (j = jj; j < min(63,jj+32+1); j++)

Duplication — ¥ VU eee ¥ alilj] =1+j
=

v — for (i = i; | < min(15,ii+8); i++4)

| " for () = j; j < min(63j+32); j++)

Strip Mining | - b[i][j] = a[i][j] + a[i+1][j+1];

Evaluation Environment

O Implemented on the OSCAR
compiler

0 Tested on RP2

= SH4A with 600MHz processor
based

= 8 core homogeneous multicore
processor

N ng\tl] processor core has 16KB
with a 1 clock cycle latency

o eﬁ_uipped with 128MB DDR?2 off-
chip
CSM (Central Shared Memory)
with a 55 clock cycle latency

| snoop bus | | snoop bus
AAAA A A AL A
\
3 Y ‘ Core 7
¥ ’ S m—1 J — Y
snoop
"l Core 2 controller | Core 6 controller
v | Core 1 ‘£SNC> | Core § (SNC)
L - [y
Core 0 — Core 4 —
CPU FPU | CPU FPU |14
1 0§ |H 1§ s |H
ok | N ek | [HL ok [OO e || ML
ILRAM [- T OLRAM | - IRAM | - T"OLRAM || |

8K 32K = 8K 32K
URAM 64K Fo URAM 64K -
I I \ 1

<

On-chip system bus (SHwy) «—» On-chip system bus (SHwy)

IIIIIIIIIII

Architecture of the RP2 Multicore Pro

Applications for Evaluation
O Sequential C Applications
= Example code in explanation of code compaction
= AACenc (provided by Renesas Technology)
o AAC encoder, input: a 30 second audio file

m Mpeg2enc (part of the MediaBench benchmark suite)

o MPEG2 encoder, input: a 30 frame video with a resolution of
352 by 256 pixels

m SPEC95 Tomcatv
o loop fusion and variable renaming were applied

m SPECS5 Swim

o loop distribution and loop peeling were performed

Speedups by the Proposed Local Memory Management
Compared with Utilizing Shared Memory on
Benchmarks Application using RP2

25.00
e 20.12
20.00 |
15.00 L
1261
1130
10.00 —
7.38 7.40
573 5079 = 5.50
3.18, | 3.76
5.00 2790 |

206 19

18

10 10 13
0.00 -
Sample Sample AACenc AACenc Mpeg2enc Mpeg2enc tomcatv tomcatv swim swim (Local
Program Program (Shared (Local (Shared (Local (Shared (Local (Shared Memory)
(Shared (Local Memory) Memory) Memory) Memory) Memory) Memory) Memory)
Memory) ~ Memory) M1PE MW2PE MA4PE WBPE

20.12 times speedup for 8cores execution using local memory against
sequential execution using off-chip shared memory of RP2 for the AACenc

Conclusions

> This talk introduced automatic cache and local memory management
method using data localization with hierarchical loop aligned
decomposition, adjustable block tailored for each application, and
block replace considering block reuse distance .

» The local memory management method was implemented on the
OSCAR parallelization compiler.

» The performance on the RP2 8 core multicore gave us
> for example,

> 20.12 times speedup on 8cores using local memory against
sequential execution using off-chip shared memory for the AAC
encoder though the 8 core execution using

> shared memory gave us 7.14 times speedup.

» 11.30 times speedup on 8cores execution using local memory
against sequential execution using off-chip shared memory for
the SPEC95 swim though the 8 core execution using shared
memory gave us 7.40 times speedup.

