
Parallelizable C and Its Performance on Low
Power High Performance Multicore Processors

Masayoshi Mase, Yuto Onozaki, Keiji Kimura, and Hironori Kasahara

Department of Computer Science and Engineering, Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

{mase,yonozaki,kimura,kasahara}@kasahara.cs.waseda.ac.jp

Abstract. As multicore processors are getting popular, demands for au-
tomatic parallelization achieving high performance, low power, and short
software development period are increasing. However, automatic paral-
lelization of C programs has been difficult due to the pointer analysis.
This paper proposes Parallelizable C, which is a kind of programming
methods for sequential C programs that allows a parallelizing compiler
to analyze pointers precisely, and its compilation framework. Coding
with Parallelizable C mitigates application programmers from compli-
cated parallel tuning. Parallelizable C allows ordinary programmers to
leverage full benefits of exploiting multi level parallelism and data local-
ity optimization for effective use of cache or local memory without hard
programming efforts. Application programs written in Parallelizable C
can be automatically parallelized by OSCAR (Optimally Scheduled Ad-
vanced Multiprocessor) parallelizing compiler. The OSCAR compiler au-
tomatically generates parallel C source code with OSCAR API opened in
http://www.kasahara.cs.waseda.ac.jp/ which is a parallel processing API
designed for real-time embedded low-power multicores and shared mem-
ory multiprocessor servers from different vendors. The generated parallel
programs with OSCAR API are compiled into executable binary for the
target architecture using a sequential compiler with an API analyzer or
an OpenMP compiler. In our experience, sequential C programs such as
AAC encoder and MPEG2 encoder from the multimedia application do-
main and SPEC2000 “art”, “equake”, SPEC2006 “hmmer” and “lbm”
from the numerical application domain require modifying only a few per-
centages of the program code to achieve automatic parallelization. The
evaluation on an 8 cores server IBM p5 550Q with Power5+ processors
shows that the compiler automatic parallelization gives us 5.43 speedup
in average against sequential execution. Also, on a 4 cores PC with Intel
Core i7, automatic parallelization gives us 2.34x speedup, and on an em-
bedded multicore Renesas/Hitachi/Waseda RP2 with SH-4A processor
cores in 4 cores SMP execution mode, automatic parallelization gives us
2.80x speedup in average against sequential execution, respectively.

1 Introduction

Multicore processors have been widely used in various computer systems such
as PCs, workstations, and high-performance computers as well as embedded

systems including consumer electronics. Though parallel software is necessary
to leverage full potential of these multicore processors, parallel programming is
still a challenging issue that requires long development period to obtain expected
performance even of expert parallel programmers. While current multicores have
several architectural features responsible for achieving high performance with
low power, the cost for application development is increasing since programmers
must deal with the machine specific tuning such as memory management, syn-
chronization, and power management. Therefore, automatic parallelization of
conventional sequential programming languages is desired to improve software
productivity through achieving both of high performance and low power in a
short software development period on various multicore platforms by a com-
piler.

The programming language C is one of the most popular programming lau-
guages often adopted for various kinds of applications including numerical com-
putation and media processing. Especially in embedded domain, C language is
the de fact standard programming language because of capability of generating
fast executables in straight forward compilation process as well as its flexibile
pointer usage capable of accessing arbitrary memory address space convinient
for manipulating hardware devices.

Automatic parallelizing compiler such as Polaris compiler[1], SUIF com-
piler [2], and OSCAR compiler[3] have been developed and its performance was
demonstrated on various parallel machines for FORTRAN programs in scientific
computation. However, automatic parallelization of C programs has been diffi-
cult due to the difficulty of pointer analysis. The specification of C language al-
lows flexible descriptions with extensive use of pointers while such flexible pointer
usages prevent the compiler to analyze where a pointer variable points to. Spu-
rious pointer alias information interferes dependence analysis, which hampers
automatic parallelization by a compiler. There are no perfect pointer analysis
which can statically determine all the objects pointed-to by all the pointers for
all coding patterns allowed in the specification of C language, while extensive
studies on pointer analysis[4] have shown potential to optimize C programs at
some degree of precision if we combine with other program analyses for paral-
lelism extraction[5].

Coding guidelines for C programs are widely used in industry such as MISRA-
C[6], which is a guideline for critical systems that requires high reliability, de-
pendability and portability. They limit the flexibility of C language specification
to utilize software tools including compilers while improving software quality and
visibility for programmers. Although guidelines for multicore processors such as
Clean C[7] by IMEC and implicitly parallel programming model which encour-
ages hint information from user assertions by Hwu et.al[8] are proposed, auto-
matic parallelization performance and amounts of user effort were not evaluated.

This paper proposes Parallelizable C, which enables programmers to lever-
age the full benefits of an automatic parallelizing compiler such as exploiting
multi level parallelism and data locality optimization for effective use of cache
or local memory. Parallelizable C is a subset of C language so that application

programmers need not to learn a new programming language. Coding with Par-
allelizable C mitigates application programmers from complicated parallelliza-
tion techniques, thus programmers can concentrate on algorithm tuning itself.
Furthermore, even if a programmer is not familiar with parallel processing, the
Parallelizable C enables scalable performance improvement on multiprocessor or
multicore systems.

In this paper, we clarify the effectiveness of Parallelizable C by insights on
code rewriting process and speedup by automatic parallelization on real multi-
core platforms for several application programs. For scientific and multimedia
applications, the amount of rewriting sufficient for automatic parallelization by
the OSCAR compiler is small. The main contribution of this paper are the evalu-
ation of the parallel processing performance on existing multicore platforms with
an automatic parallelizing compiler, on top of the code rewriting according to
coding rules, and defining the coding guideline considering the compiler analysis
precision.

The rest of the paper is organized as follows. First, Section 2 describes the
OSCAR parallelizing compiler and OSCAR API to explain the target parallel
processing model. Second, section 3 describes pointer analysis essential for au-
tomatic parallelization of C programs. Then, section 4 shows the concept and
specification of Parallelizable C. Finally, section 5 demonstrates the rewriting of
programs to Parallelizable C and section 6 gives the parallel processing results
on multicore systems.

2 OSCAR Parallelizing Compiler and OSCAR API

In this section, we briefly explain how the multigrain parallelism and data local-
ity are extracted through the compilation process in the OSCAR parallelizing
compiler[3].

2.1 Overview of Multigrain Parallelization

Multigrain parallel processing exploits multiple grains of parallelism such as
coarse grain task parallel processing, loop iteration level parallel processing, and
statement level near fine grain parallel processing. In this study, loops, function
calls, and basic blocks are defined as coarse grain tasks.

Macro Task Generation: In order to apply multigrain parallel processing
to an ordinary sequential program, the OSCAR compiler firstly decomposes
a source C or Fortran program into coarse grain tasks, namely macro-tasks
(MTs), such as basic block (BPA), loop (RB), and function call or subroutine
call (SB).

Coarse Grain Task Parallel Processing: Then, the compiler analyzes both
the control flow and the data dependencies among MTs and represents them
as a macro-flow-graph (MFG). Next, the compiler applies the earliest ex-
ecutable condition analysis[9], which can exploit parallelism among MTs

associated with both the control dependencies and the data dependencies.
The analysis result is represented as a macro-task-graph (MTG). If an MT
is a subroutine call or a loop that has coarse grain task parallelism, the com-
piler hierarchically generates inner MTs inside that MT. Also, loops that
has loop-level parallelism is translated to coarse grain task parallelism by
loop decomposition. Then, the compiler groups processor cores into proces-
sor groups (PG) logically and hierarchically considering the parallelism in
each layer of hierarchical MTG. These MTs are assigned to processor cores
by the compiler. If the MTG has conditional branches or runtime fluctu-
ations, dynamic scheduling is applied to it. Otherwise, static scheduling is
applied[10].

Data Locality Optimization: Data locality optimization over the whole pro-
gram and data transfer optimization using DMA controller are applied to
MTGs. If multiple MTs share same data, whose size is greater than that of
the cache memory or the local memory, the OSCAR compiler decomposes
these MTs into smaller MTs in order to fit the shared data accessed by each
MT into the cache or the local memory by loop aligned decomposition[11].
Then, these decomposed MTs are scheduled onto processor cores in order
to assign MTs, which access same smaller data, successively as much as
possible[12].

2.2 OSCAR API and Its Compilation Framework

The OSCAR API[13] is a parallel processing API which consists of annotations
to C and FORTRAN programs. The API is designed on a subset of OpenMP for
preserving portability over a wide range of multicore architectures, while original
features are added to support emerging low power real-time multicore processors
such as power management, data assignment to various memories, and explicit
data transfer among memories. Technical details of OSCAR API is shown in
[14] and its specification (ver 1.0) for heterogeneous multicore has been open in
http://www.kasahara.cs.waseda.ac.jp/.

The compile flow of the OSCAR compiler with the OSCAR API is described
in Fig. 1. First, a sequential C (or Fortran) program are parallelized by the OS-
CAR compiler. The OSCAR compiler generates a C (or Fortran) code with the
OSCAR API. This parallelized code is then compiled by an OpenMP compiler
for a server platform, or it is translated into C (or Fortran) program with run-
time library calls generated by the API analyzer in front of the backend compiler
of the target multicore. Finally, the backend compiler generates an executable
object for the target multicore.

3 Pointer Analysis for Automatic Parallelization of C
Programs

Pointer analysis is an essential program analysis in C compiler, which statically
determines where a pointer variable points to. The precision of pointer analy-
sis influences succeeding analyses such as loop dependence analysis, data flow

Parallelizable C

(Sequential C

Program)

OSCAR Multigrain Parallelizing Compiler

Parallel C Program with OSCAR API

(parallel execution, synchronization, memory,

data transfer, time, and power management)

…

OpenMP Compiler

Executable

Object

ecuta

API Analyzer +

Sequential Compiler

Executable

Object

API Analyzer +

Sequential Compiler

Executable

Object

ecutab

Pointer Analysis

Dependence Analysis

Memory Access Analysis

Code Generation

Multigrain Parallelization

Data Locality Optimization

Coarse Grain Task Scheduling

Low Power Control

am w

…

SMP Server/PC Multicore A Multicore Z

Backend Compilers

Fig. 1. Compile flow using OSCAR compiler and OSCAR API

analysis, and data access region analysis which are necessary for automatic par-
allelization.

This section summarizes the current status of pointer analysis to provide base
knowledge for deciding the specification of the Parallelizable C. Pointer analysis
is discussed from viewpoints of various sensitivities correspond to control flow
as well as data structure. The trade off between precision and efficiency on these
sensitivities are often discussed considering the feature of target optimization[4].

For automatic parallelization, highly precise pointer analysis is necessary
to achieve high performance. Putting precise pointer analysis techniques into
altogether has potential to construct powerful pointer analysis framework helpful
for automatic parallelization.

3.1 Sensitivity for Control Flow

Flow-sensitivity and context-sensitivity are major categories that are concerned
about control flow. Flow-sensitive analysis generates information for each state-
ment and propagate it along the control flow throughout the program. Context-
sensitive analysis generates information for each function call site for a function.

Classically, flow-sensitive context-sensitive pointer analysis algorithm is for-
mulated in dataflow framework [15]. In flow-sensitive and context-sensitive pointer
analysis, huge amount of memory and analysis time are often required. Various
schemes[16–19] are proposed to realize practical analysis time for flow-sensitive
and context-sensitive pointer analysis.

3.2 Sensitivity for Data Structure

Pointer information for data structure is also an essential factor for pointer
analysis, so that field-sensitivity and heap-modeling are often discussed.

Field-sensitive pointer analysis[20] handles each structure member as an inde-
pendent object and is necessary to analyze aplications whose data are composed
in structures.

Regarding to heap modeling, resent pointer analysis distinguishes heap name
by each function call statement corresponds to its memory allocation function
like malloc(). However, heap is often obtained via user defined wrapper functions
like xmalloc(), therefore heap cloning[21] is adopted to improve precision by
distinguishing call sites of wrapper functions.

Furthermore, there are another problems caused by the limitation of the prop-
erty of flow-sensitive dataflow analysis. In the fixpoint calculation of dataflow
analysis, the heap object allocated in the current loop iteration and heap ob-
jects allocated in previous iterations are aggregated into an amortized object.
A technique called aging[22] can cope with this problem by naming heap with
age that indicates whether a heap object is allocated in the current iteration or
previous iterations.

Another important sensitivity on data structure is elements in array of point-
ers. Element-wise points-to set[23] maps the iteration information of heap alloca-
tion on elements in an array of pointer object. This kind of sensitivity for array
elements is important to distinguish array-like data structures on heap in or-
der to apply automatic parallelization and data locality optimization techniques
targetting arrays and loops.

4 Parallelizable C

The main contribution of the Parallelizable C is clarifying what kind of descrip-
tion can be analyzed and parallelized by a compiler.

Implementing pointer analysis described in section 3 can increase the op-
timization level of automatic parallelization by a compiler. However, it is im-
possible to implement the perfect pointer analysis which covers all patterns of
descriptions allowed in the C language specification. Thus, writing sequential
programs in the capability of pointer analysis is the essential point for the prac-
tical use of an automatic parallelizing compiler.

4.1 Target Optimization

We are assuming extracting full potential of conventional framework for paral-
lelization and data locality optimization mainly targeting arrays and loops [11,
24]. Thus, parallelization of recursive data structure such as lists and trees are
out of scope for the Parallelizable C guideline proposed in this paper.

4.2 Assumed Compiler Analysis Precision

The Parallelizable C coding guidelines assumes the automatic parallelizing com-
piler have pointer analysis and field-sensitivity for structures in data dependence
analysis as described in following:

– The pointer analysis is along control flow and generates points-to information
for each statement. (flow-sensitive)

– The pointer analysis processes for each invocation site of function call. (context-
sensitive)

– The pointer analysis distinguishes members of a structure. (field-sensitive)
– The pointer analysis distinguishes heap objects by the call path to the allo-

cation sites. (heap-cloning)
– The pointer analysis distinguishes an iteration of memory allocation site for

heap object. (cycle-sensitive)
– The pointer analysis distinguishes whether each element in an array of point-

ers points-to different memory region. (element-sensitive)
– The pointer analysis distinguishes whether a poiter variable points-to the

head of the pointed object.

Furthermore, succeeding data dependence analysis also requires these kinds
of sensitivities. Especially, nested relationships between arrays and structures are
complicated for array-based optimizations. The Parallelizable C also assumes the
sensitivity of the analysis on structure and array as follows.

– The data dependence analysis distinguishes members of a scalar structure.
– The data dependence analysis does not distinguish members of an array of

structures.

4.3 Coding Rules

In the Parallelizable C, programmers are encouraged to write code complying
with the rules described in this section. This specification consists of coding
rules and hint information for external function call. Deviation from the coding
rules is allowed because the Parallelizable C accepts an ordinary C program
to be compiled though some program parts may be difficult to parallelize. The
Parallelizable C coding rules are as follows. These limitations are due to the
program analysis precision described in the Sec. 3.

4.4 Coding Rules Related to Pointer Usage

Following pointer usages are not recommended:

– Accessing out of declared boundary on members of structure or each dimen-
sion of multi-dimensional array.

– Pointer casts except for heap allocation site.
– Pointer arithmetic. (When we access the region pointed to by a pointer,

use dereference operator (*) or index operator ([]) on the pointer variable
without updating pointer value.)

– Updating pointer value in a conditional branch or a loop except for heap
allocation site.

– Passing arguments of function as pointer to different offset of same dimension
of an array. (Thus, regions pointed to by function arguments in callee never
overlapped.)

– Reusing a heap object as a temporal buffer. (Reuse of heap can be an obstacle
of parallelism extraction since it is more difficult to analyze the reuse of a
heap object than reuse of an ordinaly variable.)

– Index accesses to an array member of an array of structures. (If an array of
structures has an array member, pass one element of the array of structures
as an argument of a function and access the member in the callee function.)

4.5 Coding Rules Related to Function Call

Following function calls are not recommended:
– Recursive function calls. (A function does not call itself neither directly nor

indirectly.)
– Function pointers. (Use switch-case statements instead of function pointers.)

4.6 Hint for External Functions

The OSCAR compiler assumes whole program analysis on Parallelizable C.
When library functions are required, a hint annotation on the behavior of the
external function is used to give an assumption to the pointer analyses in the
compiler. The assumptions are as follows.

– Assuming all pointer values do not update in all external functions.
– Assuming the pointer return value points to a new heap object for all external

functions.

5 Code Modifications to Parallelizable C

This section shows examples of code modification to the Parallelizable C. SPEC2000
“art”, “equake”, SPEC2006 “lbm”, “hmmer”, and MediaBench “mpeg2encode”
are used as benchmark application programs.

5.1 Amount of Code Modifications

The amount of modifications is measured in the metric of how many lines of
code (LOC) are modified from the original source code. The original code of the
program is rewritten into the Parallelizable C, then they are simply compared
with the original C code by diff command ignoring white spaces and indents. The
amount of modifications is the greater one when the amount of deleted lines and
added lines are compared. The amout of code modification for each application
program is shown in Table 1.

SPEC2000 “art” and “equake” are compliant to the Parallelizable C code in
original version so that code modification is not necessary. SPEC2006 “lbm” and
“hmmer” requires code modification related to Parallelizable C. Regarding to
“mpeg2encode”, code modification is applied from the standpoint of algorithm,
in order to extract parallelism and data locality among macroblocks that is not
available in the original program structure in MediaBench[25]. Thus, the amount
of rewritten code is more than previous examples due to the modification of data
structures and control structures.

Table 1. Amount of code modifications to the Parallelizable C

application program
total

(LOC) subject
deleted
(LOC)

added
(LOC)

modified
portion(%)

SPEC2000 art 1270 N/A 0 0 0%
SPEC2000 equake 1513 N/A 0 0 0%
SPEC2006 lbm 1155 pointer to middle of object -7 +7 1.8%

pointer swap in a loop -10 + 14
SPEC2006 hmmer 35992 reuse of heap -9 +8 0.03%
Mediabench mpeg2encode 3750 algorithm improvement -640 +864 23.5%

for(t = 1; t <= param.nTimeSteps; t++) {
...
LBM_performStreamCollide(*srcGrid, *dstGrid); /* main computation */
LBM_swapGrids(&srcGrid, &dstGrid); /* swap pointer value of srcGrid and dstGrid */
...

}
(a) Original C

flg = 0;
for(t = 1; t <= param.nTimeSteps; t++) {

...
if (flg % 2)

LBM_performStreamCollide(*dstGrid, *srcGrid); /* main computation */
else

LBM_performStreamCollide(*srcGrid, *dstGrid); /* main computation */
flg++;
...

}

(b) Parallelizable C

Fig. 2. Removing pointer update inside a Loop in “lbm”

5.2 Parallelizable C Code Example

Here, the code examples of the Parallelizable C are shown using application
programs rewritten in this evaluation.

SPEC2006 lbm: “lbm” has a pointer variables which points to the middle
of an array and a pointer is updated in a loop. They are removed in the
Parallelizable C version of the program. Pointer update in a loop like Fig. 2
(a) is rewritten with a flag variable and conditional branch as in Fig. 2 (b).

SPEC2006 hmmer: “hmmer” has a buffer reuse codes among several loop
iterations as shown in Fig. 3 (a). This is modified by freeing and allocating
heap for each iteration as shown in Fig. 3 (b).

6 Performance Evaluation on Multicore Processors

This section gives performance evaluation results of automatic parallelization by
the OSCAR compiler on server, PC, and embedded multicores for the Paralleliz-
able C programs.

static void main_serial_loop() {
/* malloc the data structure used in P7Viterbi() */
mx = CreatePlan7Matrix(1, hmm->M, 25, 0);
for (idx = 0; idx < nsample; idx++)
{

...
score = P7Viterbi(..., mx); /* main computation */
...

}
...

}
static float P7Viterbi(char *dsq, int L, struct plan7_s *hmm, struct dpmatrix_s *mx) {

ResizePlan7Matrix(mx, ...); /* reuse the data structure by realloc */
... /* scoring */
return score;

}
(a) Original C

static void main_serial_loop() {
for (idx = 0; idx < nsample; idx++)
{

...
score = P7Viterbi(...); /* main computation */
...

}
}
static float P7Viterbi(char *dsq, int L, struct plan7_s *hmm) {

struct dpmatrix_s *mx;
mx = AllocPlan7Matrix(...); /* malloc the data structure for each iteration*/
... /* score computation */
FreePlan7Matrix(mx); /* free the data structure for each iteration*/
return score;

}

(b) Parallelizable C

Fig. 3. Removing buffer reuse in “hmmer”

6.1 Evaluation Environment

Application programs rewritten in Parallelizable C are automatically parallelized
by OSCAR parallelizing compiler. The OSCAR compiler generates parallel C
source code with OSCAR API. The generated parallel programs with OSCAR
API are compiled into executable binaries for the target architecture using a
sequential compiler with an API analyzer or an OpenMP compiler.

In this evaluation, multicore systems such as IBM p5 550Q server having 8
cores, Intel Core i7 PC having 4 cores, and Renesas, Hitachi, Waseda University
RP2 having 4 cores in SMP mode, are selected. Parameters in each environment
is shown in Table 2.

6.2 Target Application Programs

As described in section 5, SPEC2000 “art”, “equake”, SPEC2006 “lbm”, “hm-
mer”, and MediaBench “mpeg2encode” are translated into Parallelizable C and
automatically parallelized by the OSCAR compiler. The parallel processing per-
formance by automatic parallelization for their original versions and Paralleliz-

Table 2. Evaluation environment

System

IBM p5 550Q

(Server)
Intel Core i7 920

(PC)

Renesas/Hitachi/Waseda

RP2 (Embedded)

CPU

Power5+

(1.5GHz × 2 × 4)
Nehalem

(2.66GHz × 4)
SH-4A

(600MHz × 4)
L1 D-Cache 32KB for 1 core 32KB for 1 core 16KB for 1 core
L1 I-Cache 64KB for 1 core 32KB for 1 core 16KB for 1 core
L2 cache 1.9MB for 2 cores 256KB for 1 core
L3 cache 36MB for 2 cores 8MB for 4 cores

Native
Compiler

IBM XL C/C++

for AIX Compiler V10.1

Intel C/C++

Compiler verion 11.0

SH C Compiler

+ OSCAR API Parser
Compile

Option

OSCAR: -O5 -qsmp=noauto

Native: -O5 -qsmp=auto

OSCAR: -fast -openmp

Native: -fast -parallel

other features SMT: disabled

Hyper-Threading: disabled

Turbo Boost: disabled

able C versions are evaluated. Although it is not rewritten in this paper, AAC
encoder originallly written in the Parallelizable C is also evaluated. This AAC
encoder program is developed by Renesas Electronics Corporation which is writ-
ten without pointers and structures except for pointer arguments of functions.

6.3 Processing Performance by Automatic Parallelization

This section shows the processing performance of automatic parallelization by
the OSCAR compiler for both original code and Parallelizable C code. Perfor-
mance on IBM p5 550Q is shown in Fig. 4, Intel Core i7 is shown in Fig. 5, and
Renesas/Hitachi/Waseda RP2 is shown in Fig. 6, respectively. In these figures,
vertical axis represents application and code version, and horizontal axis repre-
sents speedup compared with sequential execution of original code using 1 core.
Bars in each entry in vertical axis correspond to the number of processor cores
used, 1PE, 2PEs, 4PEs, and 8PEs, from left to right, respectively.

IBM p5 550Q server with 8 cores: As shown in Fig. 4, automatic paral-
lelization of original code by the OSCAR compiler achieves 4.96x speedup
for “art”, 5.61x speedup for “equake”, respectively. By rewriting code into
Parallelizable C, it achieves 5.35x speedup for “lbm”, 6.06x speedup for
“hmmer”, and 5.12x speedup for “mpeg2encode”, respectively, though in
“lbm” and “hmmer” are no speedup. For “AACencode”, it also achieves
6.16x speedup. To summarize these results, automatic parallelization of the
Parallelizable C programs on 8 cores IBM p5 550Q by OSCAR compiler
achieves 5.54x speedup against sequential execution in average.

Intel Core i7 PC with 4 cores: As shown in Fig. 5, automatic paralleliza-
tion of original code by the OSCAR compiler achieves 1.51x speedup for
“art”, 1.45x speedup for “equake”, 1.81x speedup against sequential execu-
tion, respectively. By rewriting code into Parallelizable C, it achieves 1.45x
speedup for “equake”, 1.28x speedup for “lbm”, 3.34x speedup for “hmmer”,
3.60x speedup for “mpeg2encode”, respectively. For “AACencode”, it also

!"

#"

$"

%"

&"

'"

("

)"

*+,-$!!!" *+,-$!!!" *+,-$!!(" +./.001023.401"

-"

*+,-$!!(" +./.001023.401"

-"

5162.7189:" +./.001023.401"

-"

+./.001023.401"

-"

#);<./=" #>%<1?@.A1"""

BCD&E"

&)!<04F" &'(<:FF1/" FG1H$189I61" JJ-189I61"

!
"
#
#
$
%
"
&'
(
)
*
&(
+
(
,-
./
&

&!
#
0
%
#
-
)
(
1&
2
3
#
4%
)
*
-
&

#+,"

$+,"

&+,"

>+,"

Fig. 4. Automatic parallelization results by OSCAR Compiler on IBM p5 550Q

!"

#"

$"

%"

&"

'()*$!!!" '()*$!!!" '()*$!!+" (,-,../.01,2./"

*"

'()*$!!+" (,-,../.01,2./"

*"

3/40,5/678" (,-,../.01,2./"

*"

(,-,../.01,2./"

*"

#9:;,-<" #=%;/>?,@/" &9!;.2A" &B+;8AA/-" AC/D$/67E4/" FF*/67E4/"

!
"
#
#
$
%
"
&'
(
)
*
&(
+
(
,-
./
&

!
#
0
%
#
-
)
(
1&
2
3
#
4%
)
*
-
&

#()"

$()"

&()"

Fig. 5. Automatic parallelization results by OSCAR Compiler on Intel Core i7 920

achieves 3.48x speedup. To summarize these results, automatic paralleliza-
tion of Parallelizable C programs by the OSCAR compiler achievs 2.34x
speedup against sequential execution in average.

Renesas/Hitachi/Waseda RP2 in 4 cores SMP mode As shown in Fig. 6,
automatic parallelization of original code by the OSCAR compiler achieves
2.54x speedup for “art” and 1.95x speedup for “equake” against sequential
execution, respectively. By rewriting code into Parallelizable C, automatic
parallelization achieves 2.19x speedup for “lbm”, 3.47x speedup for “hm-
mer”, and 3.27x speedup for “mpeg2encode”, respectively. For “AACencode”
it also achieved 3.35x speedup. To summarize results, automatic paralleliza-
tion of Parallelizable C programs by the OSCAR compiler achieves 2.80x
speedup against sequential execution in average.

6.4 Automatic Parallelization Results by OSCAR Compiler

This section shows the summary of automatic parallelization by the OSCAR
compiler for translated application programs such as “art”, “equake”, “lbm”,
“hmmer”, and “mpeg2encode”.

SPEC2000 art: Automatic parallelization by the OSCAR compiler achieves
4.96x speedup on IBM p5 550Q using 8 cores. 95% of execution time is

!"

#"

$"

%"

&"

'()*$!!!" '()*$!!!" '()*$!!+" (,-,../.01,2./"

*"

'()*$!!+" (,-,../.01,2./"

*"

3/40,5/678" (,-,../.01,2./"

*"

(,-,../.01,2./"

*"

#9:;,-<" #=%;/>?,@/" &9!;.2A" &B+;8AA/-" AC/D$/67E4/" FF*/67E4/"

!
"
#
#
$
%
"
&'
(
)
*
+
&(
,
(
-+
./
&

!
#
0
%
#
+
)
(
1&
2
3
#
4%
)
*
+
&

#()"

$()"

&()"

Fig. 6. Automatic parallelization results by OSCAR Compiler on Rene-
sas/Hitachi/Waseda RP2

consumed in two functions, namely train match() and match(). Each of them
are consists of 7 parallelizable loops in major portion. The OSCAR compiler
parallelized these loops to achieve speedup.

SPEC2000 equake: Automatic parallelization achieves 5.61x speedup on IBM
p5 550Q using 8 cores. The original code of “equake” is compliant to Paral-
lelizable C and can be parallelized by the compiler. Major computation part
in a function smvp() consists of a reduction loop for whole array. That leads
the speedup according to the number of cores.

SPEC2006 lbm: Code modification into the Parallelizable C achieves 5.36x
speedup using 8 cores on IBM p5 550Q by automatic parallelization of the
OSCAR compiler, while speedup for the original code is not obtained. “lbm”
consists of 90% of execution time in a function LBM performStreamCollide
which has one parallelizable loop. In original code, a loop having the call
statement for this function contains pointer updates (Fig. 2), that causes
spurious points-to information for the arguments of the function. This am-
biguity interferes the parallelism extraction. Thus, removing this pointer
updates leads to the automatic parallelization to achieve speedup.

SPEC2006 hmmer: Code modification into the Parallelizable C achieved
6.06x speedup using 8 cores on IBM p5 550Q by automatic paralleliza-
tion of OSCAR compiler, while speedup for the original code is not ob-
tained. “hmmer” consists of 90% of execution time in a sequential loop in
main loop serial(). On the loop body, there are some part which has depen-
dency among loop iterations and some part which does not have dependency.
A few kinds of loop restructuring, such as loop distribution and stripmin-
ing, is leveraged for automatic parallelization. After that, data localization
in coarse grain task parallelization is applied to obtain speedup. In original
code, the reuse of a heap buffer throughout iterations in a loop interferences
the parallelism extraction.

MediaBench mpeg2encode: Code rewriting in Parallelizable C achieves
5.13x speedup using 8 cores on IBM p5 550Q by the OSCAR compiler,
while speedup for original code is limited to 1.53x. In the Parallelizable C
code, the OSCAR compiler extracted parallelism among macroblock data
structures and applied data localization to improve performance.

7 Conclusion

This paper proposes the Parallelizable C, a coding gudeline for automatic par-
allelization of C programs by the OSCAR compiler. Automatic parallelization
of numerical and multimedia application programs written in Parallelizable C
is evaluated on multicore systems. The evaluation results show that automatic
parallelization of Parallelizable C achieves, 5.54x sppedup on average using 8
cores on IBM p5 550Q server, 2.43x speedup on average using 4 cores on Intel
Core i7, and 2.80x speedup on average using 4 cores on Renesas/Hitachi/Waseda
RP2, against sequential execution, respectively.

The collabolation of Parallelizable C and an automatic parallelizing compiler
with OSCAR API such as the OSCAR compiler improves software productivity
and code portability for multicore processors, that also encourages the future
research and development on multicore and manycore technology.

Acknowledgments

A part of this research was supported by METI/NEDO projects “Heteroge-
neous Multicore Technology for Realtime Consumer Electronics” and “Leading
Research on Low Power Manycore Processor Systems”. The authors specifically
thanks to the members of “Realtime Consumer Electronics Multicore Architec-
ture and API Comittee” in these projects, from Fujitsu Laboratory, Hitachi,
NEC, Panansonic, Renesas Electronics, and Toshiba. A part of this research was
supported by Waseda University global COE program “International Research
and Education Center for Ambient SoC”.

References

1. Eigenmann, R., Hoeflinger, J., Padua, D.: On the automatic parallelization of the
perfect benchmarks. IEEE Trans. on parallel and distributed systems 9(1) (Jan.
1998)

2. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S., Bugnion,
E., Lam, M.S.: Maximizing multiprocessor performance with the suif compiler.
IEEE Computer (1996)

3. Kasahara, H., et al.: A multi-grain parallelizing compilation scheme on oscar. Proc.
4th Workshop on Language and Compilers for Parallel Computing (1991)

4. Hind, M.: Pointer analysis: Haven’t we solved this problem yet? In Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering (2001) 54–61

5. Ryoo, S., Ueng, S.Z., Rodrigues, C.I., Kidd, R.E., Frank, M.I., Hwu, W.W.: Auto-
matic discovery of coarse-grained parallelism in media applications. Transactions
on High-Performance Embedded Architectures and Compilers (January 2007)

6. : MISRA-C:2004 - Guidelines for the use of the C language in critical systems.
(2004)

7. : Clean C. http://www.imec.be/CleanC/.
8. Hwu, W., et al.: Implicitly parallel programming models for thousand-core micro-

processors. DAC 2007 (2007)

9. Honda, H., Iwata, M., Kasahara, H.: Coarse grain parallelism detection scheme of
a fortran program. Trans. of IEICE J73-D-1(12) (Dec. 1990) 951–960

10. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical
parallelism control for multigrain parallel processing. In: Proc. of 15th International
Workshop on Languages and Compilers for Parallel Computing. (Aug. 2002)

11. Yoshida, A., Koshizuka, K., Kasahara, H.: Data-localization for fortran macro-
dataflow computation using partial static task assignment

12. Ishizaka, K., Obata, M., Kasahara, H.: Coarse grain task parallel processing with
cache optimization on shared memory multiprocessor. In: Proc. of 14th Inter-
national Workshop on Languages and Compilers for Parallel Computing. (Aug.
2001)

13. : Optimaly Scheduled Advanced Multiprocessor Application Program Interface
(OSCAR API) version 1.0. http://www.kasahara.cs.waseda.ac.jp/.

14. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.: Oscar
api for real-time low-power multicores and its performance on multicores and smp
servers. In: Proc. of The 22nd International Workshop on Languages and Compilers
for Parallel Computing (LCPC2009). (Oct. 2009)

15. Emami, M., Ghiya, R., Hendren, L.J.: Context-sensitive interprocedural points-to
analysis in the presence of function pointers. In: PLDI’94. (1994)

16. Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analyses using
binary decision diagrams. PLDI’04

17. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. PLDI’07 (2007)

18. Kahlon, V.: Bootstrapping: A technique for scalable flow and context-sensitive
pointer alias analysis. PLDI’08 (2008)

19. Hardekopf, B., Lin, C.: Semi-sparse flow-sensitive pointer analysis. POPL’09 (2009)
20. Pearce, D.J., Kelly, P.H.J., Hankin, C.: Efficient field sensitive pointer analysis for

c. PASTE ’04 (2004)
21. Nystrom, E.M., Kim, H.S., Hwu, W.M.W.: Importance of heap specialization in

pointer analysis. PASTE’04 (2004)
22. Ryoo, S., Rodrigues, C.I., Hwu, W.M.W.: Iteration disambiguation for parallelism

identification in time-sliced applications. LCPC’07 (October 2007)
23. Wu, P., Feautrier, P., Padua, D.A., Sura, Z.: Instance-wise points-to analysis for

loop-based dependence testing. ICS’02 (2002)
24. Lim, A.W., Liao, S., Lam, M.S.: Blocking and array contraction across arbitrarily

nested loops using affine partitioning. Proceedings of the ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming (June 2001)

25. Kodaka, T., Nakano, H., Kimura, K., Kasahara, H.: Parallel processing using
data localization for mpeg2 encoding on oscar chip multiprocessor. In: Proc. of
International Workshop on Innovative Architecture for Future Generation High-
Performance Processors and Systems. (Jan. 2004)

