
OSCAR Compiler Controlled Multicore Power
Reduction on Android Platform

Hideo Yamamoto1, Tomohiro Hirano1, Kohei Muto1, Hiroki Mikami1, Takashi
Goto1, Dominic Hillenbrand1, Moriyuki Takamura2, Keiji Kimura1, and

Hironori Kasahara1

1 Green Computing Systems Research and Department Center
Waseda University Tokyo, Japan

{hideo,hirano,kmuto,mikami,tgoto,dominic}@kasahara.cs.waseda.ac.jp,
{kimura,Kasahara}@kasahara.cs.waseda.ac.jp,

http://www.kasahara.elec.waseda.ac.jp/
2 Fujitsu Laboratories Ltd.

takamura.moriyu@jp.fujitsu.com

Abstract. In recent years, smart devices are transitioning from single
core processors to multicore processors to satisfy the growing demands of
higher performance and lower power consumption. However, power con-
sumption of multicore processors is increasing, as usage of smart devices
become more intense. This situation is one of the most fundamental and
important obstacle that the mobile device industries face, to extend the
battery life of smart devices. This paper evaluates the power reduction
control by the OSCAR Automatic Parallelizing Compiler on an Android
platform with the newly developed precise power measurement environ-
ment on the ODROID-X2, a development platform with the Samsung
Exynos4412 Prime, which consists of 4 ARM Cortex-A9 cores. The OS-
CAR Compiler enables automatic exploitation of multigrain parallelism
within a sequential program, and automatically generates a parallelized
code with the OSCAR Multi-Platform API power reduction directives for
the purpose of DVFS (Dynamic Voltage and Frequency Scaling), clock
gating, and power gating. The paper also introduces a newly developed
micro second order pseudo clock gating method to reduce power con-
sumption using WFI (Wait For Interrupt). By inserting GPIO (General
Purpose Input Output) control functions into programs, signals appear
on the power waveform indicating the point of where the GPIO control
was inserted and provides a precise power measurement of the specified
program area. The results of the power evaluation for real-time Mpeg2
Decoder show 86.7% power reduction, namely from 2.79[W] to 0.37[W]
and for real-time Optical Flow show 86.5% power reduction, namely from
2.23[W] to 0.36[W] on 3 core execution.

Key words: smart device, automatic parallelization, API, power con-
trol, power reduction, multicore processor, Android, WFI

2 H. Yamamoto et al.

1 Introduction

Multicore processors have been attracting much attention and applied into a
wide variety of systems, such as personal computers, high performance comput-
ers, cloud servers and even embedded systems including smartphones, tablets
and automobiles[1–3]. In recent years, smart devices such as smartphones and
tablets have already been transitioning from single core processors to multi-
core processors to satisfy the growing demands of higher performance and lower
power consumption. However, power consumption of multicore processors on the
smart devices is increasing, as usage of these devices become more intense. This
situation is one of the most fundamental and important obstacle that the mobile
device industries face. Extending the battery life is a crucial problem for current
smart devices. To avoid the increasing power consumption, low power architec-
tures like big.LITTLE[4] from ARM[5] have been introduced in the mobile device
industries. Some of the multicore processors that apply these architectures are
the NVIDIA Tegra3[6] and the Samsung Exynos 5 Octa[7].

Although recent smart devices apply multicore processors in an attempt to
gain higher performance and lower power consumption, the anticipated results
require further advancement of cooperative hardware-software environment. To
realize such an environment, parallelization of software is crucial to fully utilize
the capability and potential of multicore processors. Current methods of paral-
lelization include OpenMP and MPI; however, manual optimization of software
lowers productivity and become extremely difficult when complexity of soft-
ware heightens. In order to ease software optimizations for multicore processors,
automatic parallelization compilers are needed. Previous and current works of
compilers include the SUIF Compiler[8], Polaris Compiler[9], PLUTO[10], and
the OSCAR Automatic Parallelizing Compiler[11, 12]. Especially in the works
of the OSCAR Compiler, it has realized an automatic power reduction scheme
using DVFS, clock gating, and power gating[13, 14]. The significance of this com-
piler lies in the fact that it can both automatically parallelize an application and
control power at the same time. As for power reduction, other works propose a
compile-time static approach using detailed information of the program behav-
ior from compiler analysis[15–18]. Moreover, dynamic compiler approaches using
the information obtained at runtime and compile-time, have also been proposed
on a single processor execution[18, 19].

This paper evaluates the power reduction control by the OSCAR Automatic
Parallelizing Compiler on ODROID-X2[20], an Android[21] development plat-
form using real-time applications. Furthermore, by using WFI (Wait For Inter-
rupt) instructions, a pseudo clock gating method was developed, which enables
clock gating at an 500[us] interval. Compared to the power control of current
Android platforms, this method proves higher power reduction. To attain precise
power measurements, a new power measurement method was developed utilizing
the GPIO. This proposed method allows synchronization between the program
and the waveforms in the power measurements, which no other work has done
before to the best of the author’s knowledge.

OSCAR Compiler Controlled Multicore Power Reduction 3

This paper gives an overview of the current power control on Android plat-
forms in Section 2, the methodology in Section 3, an overview of the evaluation
environment Section 4, evaluation results in Section 5, and the conclusion of this
paper in Section 6.

2 Power Control on Current Android Platforms

This section provides an overview of the current power control on Android plat-
forms. The base of Android is made of Linux, and power control on Android is
realized through cpufreq, cpuidle, and hotplug[22].

CPUFreq. The cpufreq architecture allows frequency scaling of a target CPU
and is a basic driver installed in the Linux kernel. Controlling of frequency and
its corresponding voltage results in lower power of the target device. On the
Android device, dynamic frequency scaling is realized by using the ondemand
governor. This governor monitors the current usage on each core at certain time
intervals. When the load exceeds or falls below the threshold, frequencies are
made higher or lower dynamically.

CPUIdle. Many CPUs on Android devices support multiple idle levels, which
are differentiated by power consumption and the exit latencies from that idle
level. The cpuidle manages the level of idle on each core of the CPU and
realizes low power on the device. Linux determines to go idle when no processes
are there to execute. The levels of idle state is determined by the number of
function units that go to sleep on the CPU. Power consumption is very low
when many function units go to sleep, but returning from sleep takes much
time. On the other hand, when small amounts of function units go to sleep,
power consumption is not lessened much, but returning from sleep is very quick.
When the idle state continues for a certain time period, the depth of the idle
state goes deeper by default.

HotPlug. The hotplug is an extended function of cpufreq, which was devel-
oped specifically for the power control of multicore processors. When cpufreq
sets a core to the maximum frequency that runs for a certain period of time,
the hotplug adds another core to distribute the load. Similarly, when cpufreq
sets a core to the minimum frequency and the load stays low, the hotplug shuts
down excess cores to reduce power consumption.

However, utilizing these assets as power control inside applications takes
some to some tens of milliseconds, which is not suited for fine power control by
a compiler.

4 H. Yamamoto et al.

3 Power Reduction Control by the OSCAR Compiler

This section provides an overview of the power reduction scheme realized in the
OSCAR Automatic Parallelizing Compiler and the OSCAR API. Furthermore,
an explanation of the pseudo clock gating method controlled by the OSCAR
Compiler and the precise power measurement method will be given.

3.1 Multigrain Parallel Processing and Low Power Optimization by
the OSCAR Compiler

The OSCAR (Optimally Scheduled Advanced multiprocessor) Compiler exploits
multigrain parallelism, which consists of coarse grain task parallelism, loop iter-
ation level parallelism, and statement level near-fine grain parallelism. In order
to exploit multigrain parallelism, OSCAR compiler first decomposes a sequen-
tial C or Fortran program into coarse grain tasks named macro tasks(MTs),
such as basic block(BB), loop(RB), and subroutine call(SB). Using these MTs,
the OSCAR compiler would then analyze both the control flow and the data
dependencies among them, creating a macro-flow-graph (MFG). After creating
the MFG, the compiler applies the earliest executable condition analysis[23],
which can exploit parallelism among MTs associated with both the control de-
pendencies and the data dependencies. The analysis result is represented as a
macro-task-graph (MTG).

If a MT is a subroutine call or a loop that has coarse grain task parallelism,
the OSCAR compiler hierarchically generates inner MTs inside that MT. Also,
loop iteration level parallelism is translated into coarse grain task parallelism by
loop decomposition.

These MTs are assigned to the processor cores, which is grouped into proces-
sor groups (PG) logically and hierarchically considering the parallelism in each
layer of the hierarchical MTG. If the MTG fluctuates at runtime or has condi-
tional branches, dynamic scheduling is applied. Otherwise, static scheduling is
applied to the MTG[24].

If there are idle or busy-waiting periods between MTs in a statically scheduled
MTG, the compiler tries to minimize total power dissipation by prolonging the
execution time of MTs with DVFS or applying clock gating and power gating
during the idle periods. This execution mode is named as the fastest execution
mode[14]. Note that the OSCAR compiler carefully controls DVFS, clock gating
and power gating not to prolong the program execution time in the case of the
fastest execution mode.

Similarly, if the deadline of an MTG is given and there are sufficient idle
periods until the deadline, the compiler also applies DVFS over MTs on the
critical path and applies its clock gating and power gating over idle periods not
on the critical path, so that total energy consumption can become as little as
possible. This execution mode is named as the realtime execution mode[14].

For example, a power-optimized MTG with a deadline is processed iteratively
as in the case of a movie player, this execution mode is called as real-time

OSCAR Compiler Controlled Multicore Power Reduction 5

execution mode. The experimental evaluations in this paper use the real-time
execution mode.

3.2 OSCAR Application Programming Interface

The OSCAR API (Application Programming Interface) is a parallel API for
executing the optimized code generated by the OSCAR compiler on various
shared memory multiprocessor and multicore systems, including server, desktop
computers and embedded systems[13].

The OSCAR API consists of a set of compiler directives based on a sub-
set of OpenMP. The OSCAR API employs user-level power control in addition
to thread creation and memory allocation considering local memory and dis-
tributed shared memory. The OSCAR compiler generates a parallelized program
by inserting these compiler directives. Then, an OpenMP compiler compile this
parallelized program into executable binary in the case of server platforms.

The standard API translator, which translates directives of OSCAR API
into runtime library calls, has been also developed especially for embedded sys-
tems. In this case, an ordinary sequential compiler like gcc finally generates the
parallelized executable binary for the target system.

For power control, the OSCAR API provides fvcontrol and get fv status
directives. The fvcontrol directive sets the power status of a hardware module
in a target system to a specified value. The get fv status acquires the current
power status from a specified hardware module.

The power status notation used in these directives is an integer value ranging
from -1 to 100. The value from 0 to 100 represents the percentage of clock
frequency of the specified hardware module. For example, 0 represents clock
gating, 100 is the maximum clock frequency, and 50 is half of the maximum
clock frequency. In addition, -1 denotes power gating.

The standard API translator translates fvcontrol and get fv status di-
rectives into oscar fvcontrol() and oscar get fv status() functions, respec-
tively. These functions wrap the runtime library calls for the target system.

3.3 Pseudo Clock Gating Method Using WFI

This section explains the newly developed pseudo clock gating method that has
been implemented in oscar fvcontrol for the OSCAR API.

The current power control method that can be utilized on consumer Android
devices is the cpufreq. However, this method require millisecond level latency,
which prevents high power reduction using the OSCAR compiler. In order to
reduce as much power consumption as possible on the Android platform, a new
clock gating method was developed. This method utilizes the WFI (Wait For
Interrupt) instruction, which is supported by the ARM architecture. The WFI
instruction gives a signal to the processor as a hint that there is no process to
be executed. This instruction suspends the execution on the processor core and
stops the clock. Specifically, the WFI instruction shuts down any instruction

6 H. Yamamoto et al.

issue of a new process until an interrupt or a debug event occurs[5]. To utilize
the characteristics of WFI as a low power optimization, additional functions were
inserted in the Linux Kernel to enable the WFI instruction to be issued directly
from the applications. Furthermore, this clock gating method is able to stop the
clock at a 500[us] interval.

Figure 1-(a) shows the measurements of the electric current on each number
of cores without the implementation of the pseudo clock gating method. The
graph shows that as number of cores in usage increase, the electric current con-
sumed on the board increases from 500[mA] for 1 core to 2000[mA] for 4 cores.
However, by implementing the pseudo clock gating method, as shown in Figure
1-(b), the electric current stays just below 500[mA] even if the number of cores in
usage increase. Figure 1-(b) also shows that the proposed method stops the clock
at an interval of 500[us]. Compared to the power gating method using cpufreq,
which requires over 10[ms], the new pseudo clock gating method is higher in
precision and speed. By implementing this new method into the runtime library,
higher power reduction can be obtained on an Android platform by the OSCAR
Compiler.

!"""#$!
!%""#$!
&"""#$!

''%""#$!

!()*+! &()*+! ,()*+! -()*+!

!"""#$!
!%""#$!
&"""#$!

''%""#$!

!()*+! &()*+! ,()*+! -()*+!

!"#$%&'()*+,-$,.$/0,10"2$3+*4,)*$/5')6,$78,(9$:"*+-1$;

!<#$%&'()*+,-$,.$/0,10"2$3+*4$/5')6,$78,(9$:"*+-1$;

Fig. 1. Comparison of Power Waveform With/Without Pseudo Clock Gating

3.4 Precise Power Measurement Method Using GPIO

This section explains the development of the precise power measurement method
using the GPIO (General Purpose Input Output)[25] pins on the ODROID-X2.
GPIO pins on chips are usually used for debugging or testing on embedded

OSCAR Compiler Controlled Multicore Power Reduction 7

systems by inputting commands and triggering interrupts. The Linux kernel
driver can control these GPIO pins. A state of a GPIO pin can be seen as an
event rising up and down on the voltage measurements.

A GPIO control function is prepared to change the state of GPIO from user
applicatoins. The GPIO control function changes the state of the GPIO by set-
ting 1 or 0 as a parameter. Figure 2 shows how the GPIO is utilized on the power
measurements. Fig. 2-(a) shows a program example of inserting GPIO control
functions inside the MPEG2 Decoder program. Function gpio value changes
the state of GPIO from the application. Variable gpio specifies the GPIO pin
number and the second argument specifies the value to write into the GPIO
register. Fig. 2-(b) shows the waveforms of the GPIO and the MPEG2 Decoder
in execution. The top voltage waveform shows the output state of the GPIO.
Similarly, the bottom power waveform shows the power consumption of MPEG2
Decoder. This figure shows how precise and efficient the usage of GPIO is in
power measurements. The marks on the voltage waveform, (i) and (ii), corre-
sponds to the exact location of where the GPIO control functions were processed.
On the other hand, the precise power consumption can be measure by expliciting
the waveform for MPEG2 Decoder between GPIO signals rising up and down.
This precise measurement method using GPIO allows a causal relationship and
synchronization between the program and the power measurements.

!"#$$%&"'()*+,-!,./"%.-0$%&"'1$2#34
!5#$67-8'0".%$-9-8,:"'.$;'<$'.-$;<*=->$4
!""#$%&"'()*+,-!,./"%.-0$%&"'1$?#34
!@#6A*":".%$;'<$.-9:$;<*=-$-9-8,:"'.>$4

7-8'0".%$8B8+-4

!"#$! !""#$! !"#$! !""#$!

!%#$! !&#$! !%#$! !&#$!!&#$!

2?=/C7")4
(a) Example of GPIO Control Instruction in Use! (b) Power Measurement of GPIO Event and MPEG2 Decoder !

Fig. 2. Example of GPIO Control Functions

4 Evaluation Environment

This section provides an overview of the environment used for power measure-
ments. Although there are many different kinds of smart devices with different
chips, a platform which enables power measurements are very rare, or do not

8 H. Yamamoto et al.

exist in the consumer market. Therefore, to take power measurements on an
Android platform, the evaluation environment itself had to be developed.

4.1 The Development of the Evaluation Environment

The ODROID-X2[20] is a development board, which has the Samsung Exynos4412
Prime chip. Within the Exynos4412 Prime[26], there are 4 ARM Cortex-A9 cores
each with a maximum clock frequency of 1.7GHz with 1MB shared L2 cache
memory, 2GB of dual channel LPDDR2 RAM is equipped on the board. The
frequency and voltage scaling cannot be controlled differently on individual cores
of this chip, but on all cores at the same time.

The ODROID-X2 development board is originally not designed for measur-
ing power consumption of any parts of the board. In order to measure the power
consumption of the cores on a chip some modifications are applied around the
PMIC (Power Management IC)[27], which acts as the controller of power source
of the CPU. PMIC on ODROID-X2 controls each power supply of the following
function units on the CPU: battery, cores, memory, interrupt controller, accelera-
tors, and so on. The modification of the circuit connected to the PMIC is shown
in the dotted line of Figure 3. The modifications applied to the development
board are the following: altering the power source circuit of cores connected to
the PMIC, adding a 40[mΩ] shunt resistor, and placing a 10x gain instrumenta-
tion amplifier. By placing an amplifier with 10x gain, the measurement of voltage
difference between both ends of the shunt resistor become precise. This newly
developed environment enables measurements of electrical current on cores from
tens of milliampere to thousands of milliampere.

!"#$%&'(!)!%*'+
,-.&*".+

Fig. 3. Modified Circuit Diagram of ODROID-X2

OSCAR Compiler Controlled Multicore Power Reduction 9

4.2 Evaluated Applications on ODROID-X2

This section explains two real-time applications used for the power evaluations
on the ODROID-X2.

MPEG2 Decoder. MPEG2 Decoder is a standard video coding application
from MediaBench[28].

The OSCAR compiler exploits slice level parallelism from the program. The
deadline set for the MPEG2 Decoder is set to 60[fps] (16.6[ms] per frame).

Optical Flow. The Optical Flow is a benchmark application referenced from
OpenCV[29]. This real-time application tracks 16x16 blocks between two images
by calculating the velocity fields.

OSCAR compiler exploits parallelism among calculations of velocity fields
from each block in two images. The deadline for Optical Flow is set to 30[fps]
(33[ms] per frame).

5 Evaluation of Power Reduction on ODROID-X2

This section presents the results of power evaluations on the modified ODROID-
X2. Power consumption for each evaluation is exploited by the proposed power
measurement method using GPIO mentioned in Section 3.4. The power re-
duction control parameters set in the OSCAR Compiler for frequencies are
FULL(1700[MHz]), MID(900[MHz]), and LOW(400[MHz]). Moreover, the cpufreq
governor on Android is set to ondemand for benchmark applications without
power control and userspace for benchmark applications with power control.

5.1 Power Consumption of MPEG2 Decoder on ODROID-X2

Fig. 4 shows the power consumption results of MPEG2 Decoder for each number
of processor element (PE). The power consumption of 1PE with power reduction
controls consumed 0.63[W] (power reduced to 75.7%) compared to 0.97[W] on
1PE without power reduction controls. The power consumption of 2PE with
power reduction controls consumed 0.46[W] (power reduced to 24.5%) compared
to 1.88[W] on 2PE without power reduction controls. The power consumption of
3PE with power reduction controls consumed 0.37[W] (power reduced to 13.3%)
compared to 2.79[W] on 3PE without power reduction controls. The 0.37[W] for
3PE with power control resulted in 86.7% power reduction against the ordinary
1PE execution without power control.

Fig. 5-(a) shows the power waveform of 1PE without power reduction control.
MPEG2 Decoder in this figure is running at maximum frequency (1700[MHz])
and the ondemand governor seems to automatically lower the frequency when
waiting for the deadline. Fig. 5-(b) shows the power waveform of 1PE with
power reduction control. This figure shows that the OSCAR Compiler had an-
alyzed 1PE of MPEG2 Decoder to run at FULL to meet the deadline time.

10 H. Yamamoto et al.

!"#$%

&"''%

("$#%

!")*%
!"+)% !"*$%

!"!!%

!",!%

&"!!%

&",!%

("!!%

(",!%

*"!!%

&% (% *%

!"
#
$%

&'
"
(
)*

+
!,

-"
(
&.#

/!

(*+0$%&"1&!$!

-./012/%31456%75829:1;%<1;/61=% -./0%31456%75829:1;%<1;/61=%

Fig. 4. Power Consumption of MPEG2 Decoder on ODROID-X2

Furthermore, by implementing the proposed pseudo clock gating method men-
tioned in section 3.3, power consumption decreases to approximately 0[W] when
waiting for the deadline. Similarly, Fig. 6-(a) shows the power waveform of 3PE
without power reduction control. In this figure, MPEG2 Decoder is running at
maximum frequency using 3PE. However, Fig. 6-(b) shows that the OSCAR
Compiler had analyzed 3PE of MPEG2 Decoder is fast enough to run at LOW
and meet the deadline time. This figure exibits the significance of having power
reduction controls at an application level on Android platforms. Furthermore, as
explained in Fig. 5-(b), the pseudo clock gating lowers the power consumption
to approximately 0[W] when waiting for the deadline time.

!"#$%&'()

!*+,#-)

!"#$%&'()

!*+,#-)

./01'234567-+48-9:;2'6<4=6<2+6>).,01'236:24567-+48-9:;2'6<4=6<2+6>)

!"#$%&

Fig. 5. Power Waveform of MPEG2 Decoder for 1PE

OSCAR Compiler Controlled Multicore Power Reduction 11

!"#$%&'()!"#$%&'()
+,-'./012345064789.'2:0;2:.52<)=,-'./28.012345064789.'2:0;2:.52<)

!>5=#4) !>5=#4)

!"#$%&

!"#$%&

Fig. 6. Power Waveform of MPEG2 Decoder for 3PE

5.2 Power Consumption of Optical Flow on ODROID-X2

Fig. 7 shows the power consumption results of Optical Flow for each number of
processor element (PE). The power consumption of 1PE with power reduction
controls consumed 0.72[W] (power reduced to 75.8%) compared to 0.95[W] on
1PE without power reduction controls. The power consumption of 2PE with
power reduction controls consumed 0.36[W] (power reduced to 24.0%) compared
to 1.50[W] on 2PE without power reduction controls. The power consumption of
3PE with power reduction controls consumed 0.30[W] (power reduced to 13.5%)
compared to 2.23[W] on 3PE without power reduction controls. The 0.30[W] for
3PE with power control resulted in 86.5% power reduction against the ordinary
1PE exeution without power control.

!"#$%

&"$!%

'"'(%

!")'%

!"(*% !"(!%

!"!!%

!"$!%

&"!!%

&"$!%

'"!!%

'"$!%

&% '% (%

!"
#
$%

&'
"
(
)*

+
!,

-"
(
&.#

/!

(*+0$%&"1&!$!

+,-./0-%1/234%536078/9%:/9-4/;% +,-.%1/234%536078/9%:/9-4/;%

Fig. 7. Power Consumption of Optical Flow on ODROID-X2

12 H. Yamamoto et al.

Fig. 8-(a) shows the power waveform of 1PE without power reduction control.
Optical Flow in this figure is running at maximum frequency (1700[MHz]) and
the ondemand governor seems to lower the frequency when waiting for the dead-
line similar to Fig. 5. Fig. 8-(b) shows the power waveform of 1PE with power
reduction control. This figure shows that the OSCAR Compiler had analyzed
1PE of Optical Flow to run at FULL to meet the deadline time. Power consump-
tion decreases to approximately 0[W] when waiting for the deadline using the
pseudo clock gating. Fig. 9-(a) shows the power waveform of 3PE without power
reduction control. In this figure, Optical Flow is running at maximum frequency
using 3PE. However, Fig. 9-(b) shows that the OSCAR Compiler had analyzed
3PE of Optical Flow is fast enough to run at LOW and meet the deadline time.
This figure exibits the significance of having power reduction controls at an ap-
plication level on Android platforms. Furthermore, as explained in Fig. 8-(b),
the pseudo clock gating lowers the power consumption to approximately 0[W]
when waiting for the deadline time.

!"#$%&' !"#$%&'

!"#$%&

!(%)*+,-'!(%)*+,-'
./01,2345670&9:;2,6<4=6<2#6>'.$01,236:245670&9:;2,6<4=6<2#6>'

Fig. 8. Power Waveform of Optical Flow for 1PE

!"#$%&'!"#$%&'

!"#$%&'

!"#$%&'

!(%)*+,-'!(%)*+,-'
./01,2345670&9:;2,6<4=6<2#6>'.$01,236:245670&9:;2,6<4=6<2#6>'

Fig. 9. Power Waveform of Optical Flow for 3PE

OSCAR Compiler Controlled Multicore Power Reduction 13

6 Conclusion

This paper evaluated the power reduction controls by the OSCAR Compiler
on an Android platform, ODROID-X2. A pseudo clock gating method was de-
veloped using WFI to realize a low-overhead, or 100[us] transition time, power
control by the compiler. All measurements in the evaluation were taken with
the precise power measurement environment using the GPIO. For the evalua-
tion, MPEG2 Decoder showed 86.7% power reduction on 3PE from 2.79[W] on
ordinary execution to 0.37[W] on execution with power control by the OSCAR
compiler. Similarly, Optical Flow showed 86.5% power reduction on 3PE from
2.23[W] on ordinary exection to 0.30[W] on execution with power control. The
results exibit that the proposed pseudo clock gating method and the low power
optimizations by the OSCAR Compiler enables significant power reduction on
the Android platform.

References

1. Taylor, M., Kim, J., Miller, J., Wentzlaff, D.: The Raw microprocessor: a compu-
tational fabric for software circuits and general-purpose programs. Micro, IEEE
(2002) 25–35

2. Hammond, L., Hubbert, B., Siu, M.: The Stanford Hydra CMP. IEEE (2000)
71–84

3. Friedrich, J., McCredie, B.: Design of the Power6 microprocessor. (2007) 96–97
4. Jeff, B.: Advances in big . LITTLE Technology for Power and Energy Savings.

(September) (2012) 1–11
5. ARM Corporation: Cortex-A9 Technical Reference Manual http://infocenter.

arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I cortex a9 r4p1 trm.pdf
6. NVIDIA Corporation: Whitepaper NVIDIA Tegra Multi-processor Architecture.

1–12
7. Samsung Electronics Co., L.: White Paper of Exynos 5. 1(1) (April 2011) 1–8
8. Amarasinghe, S., Anderson, J.: An overview of the SUIF compiler for scalable

parallel machines. 667 (1995)
9. Blume, W., Doallo, R., Eigenmann, R.: Parallel Programming with Polaris. Com-

puter (1996)
10. Bondhugula, U., Ramanujam, J., Sadayappan, P.: Pluto: A practical and fully

automatic polyhedral parallelizer and locality optimizer. Technical Report OSU-
CISRC-10/07-TR70, The Ohio State University (October 2007)

11. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel pro-
cessing on smp using openmp. Workshop on Languages and Compilers for Parallel
Computing (2001) 1–15

12. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical
Parallelism Control for Multigrain Parallel Processing. Lecture Notes in Computer
Science 2481 (2005) 31–44

13. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.: OS-
CAR API for Real-time Low-Power Multicores and Its Performance on Multicores
and SMP Servers. Lecture Notes in Computer Science (2010) 188–202

14. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.:
Compiler Control Power Saving Scheme for Multi Core Processors. Lecture Notes
in Computer Science (2007) 362–376

14 H. Yamamoto et al.

15. Hsu, C.H., Kremer, U.: The design, implementation, and evaluation of a compiler
algorithm for CPU energy reduction. Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation - PLDI ’03 (2003)
38

16. Chen, G., Malkowski, K., Kandemir, M., Raghavan, P.: Reducing Power with Per-
formance Constraints for Parallel Sparse Applications http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=1420150

17. Xie, F., Martonosi, M., Malik, S.: Compile-time dynamic voltage scaling settings:
Opportunities and limits. ACM SIGPLAN Notices (2003)

18. Martonosi, M., Clark, D., Reddi, V., Connors, D., Brooks, D.: Dynamic-Compiler-
Driven Control for Microprocessor Energy and Performance (January 2006) http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1603505

19. Azevedo, A., Cornea, R., Issenin, I., Gupta, R., Dutt, N., Nicolau, A., Veiden-
baum, A.: Architectural and compiler strategies for dynamic power management
in the COPPER project. Innovative Architecture for Future Generation High-
Performance Processors and Systems IWIA-01 (2001) 25–34

20. Hardkernel: ODROID-X2 http://www.hardkernel.com/renewal 2011/products/
prdt info.php?g code=G135235611947

21. Google: Android Developers http://developer.android.com/index.html
22. Linux: CPU hotplug Support in Linux(tm) Kernel https://www.kernel.org/doc/

Documentation/cpu-hotplug.txt
23. Honda, H., Kasahara, H.: Coarse Grain Parallelism Detection Scheme of a Fortran

Program. Systems and computers in Japan (1991)
24. Obata, M., Shirako, J., Kaminaga, H.: Hierarchical parallelism control for multi-

grain parallel processing. (2005) 31–44
25. ARM Information Center: GPIO Interfaces https://www.kernel.org/doc/

Documentation/gpio.txt
26. SAMSUNG ELECTRONICS: Samsung Exynos 4 Quad (Exynos 4412) RISC Mi-

croprocessor User’s Manual. (October) (2012)
27. SAMSUNG ELECTRONICS: Samsung Semiconductors Global Site https://www.

samsung.com/global/business/semiconductor/product/poweric/overview
28. Lee, C., Potkonjak, M., Mangione-Smith, W.: MediaBench : A Tool for Evaluating

and Synthesizing Multimedia and Communications Systems. (1997) 330–335
29. : Opencv http://www.opencv.org

