

†1 Department of Computer Science and Engineering, Waseda University

3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

{yasir, kimura}@kasahara.cs.waseda.ac.jp, {kasahara, narita}@waseda.jp

http://www.kasahara.cs.waseda.ac.jp/

Enhancing the Performance of a Multiplayer Game by

Using a Parallelizing Compiler

Yasir I. M. Al-Dosary
†1

 Yuki Furuyama
†1

 Dominic Hillenbrand
†1

 Keiji Kimura
†1

 Hironori Kasahara
†1

Seinosuke Narita
†1

Abstract—this paper investigates performance enhancement and the reduction of power consumption in Video Games when using parallelizing

compilers and the difficulties involved in achieving that. This experiment conducts several stages in attempting to parallelize a well-renowned

sequentially written Video Game called ioquake3. First, the Game is profiled for discovering bottlenecks, then examined by hand on how much

parallelism could be extracted from those bottlenecks, and what sort of hazards exist in delivering a parallel-friendly version of ioquake3. Then,

the Game code is rewritten into a hazard-free version while also modified to comply with the Parallelizable-C rules, which crucially aid

parallelizing compilers in extracting parallelism. Next, the program is compiled using a parallelizing compiler called OSCAR (Optimally

Scheduled Advanced Multiprocessor) to produce a parallel version and low power version of ioquake3. Finally, the performance of the newly

produced parallel and lower power versions of ioquake3 on a Multi-core platform are analyzed. The following is found: (1) the parallelized

game by the compiler from the revised sequential program of the game is found to achieve a better performance than the original one on various

machines, (2) the low power version of ioquake3 consumes at %27 less power than the original, (3) hazards are caused by thread contentions

over globally shared data, and as well as thread private data, and (4) AI driven players are represented very similarly to Human players inside

ioquake3 engine, (5) 70% of the costs of the experiment is spent in analyzing ioquake3 code, 30% in implementing the changes in the code.

Keywords: Video Games; Quake; ioquake3; parallel Computing; parallelizing compilers, OSCAR

1. INTRODUCTION

 Video Games have been a very popular form of digital

entertainment, which are presented nowadays on many different

platforms. Video Gaming platforms vary from fully dedicated

systems such as large Arcade machines and home entertainment

systems, personal computers, and to even handheld mobile

phones. As computer developers sought to achieve high

performance by dramatically shifting to multi-core processors,

so did Video Gaming companies. However, because of

difficulties such as resource contentions and pointer analysis

parallel programming is still a very challenging technology to

implement [7].

To minimize the cost of implementing parallel

programming while still achieving higher performance

parallelizing compilers have been researched and developed.

The main objective for parallelizing compilers [2] is to mask

the complexities of parallelism from the programmer and

produce high performance from an originally sequential

program.

To our knowledge, no research has yet been conducted that

studies parallelism in Video Games by using parallelizing

compilers. As Video Games are available on a wide array of

platforms that includes handheld machines, power consumption

too becomes crucial in keeping the battery life favorably longer.

No paper has evaluated power consumption of a Video Game

using an automatic compiler either.

An important feature in Video Games is the AI, which is an

integral part in the total Gaming experience Offline and Online.

For example, in highly popular Games such as the Halo [8],

Call Of Duty [9] FPS series, players can join forces together in

Gaming sessions and complete missions against AI driven

players. For ease of reading Game sessions shall be referred to

as sessions, and AI driven players as bots.

Enhancing the performance of Game servers could allow

for many benefits for developers, host and users alike. With

enhanced performance, programmers could have more

computing freedom to develop more advanced AI driven

players, more intriguing Game mechanisms, larger and different

Game styles with far more participants and complex objectives.

Moreover, these enhancements should also lower server

requirements which should lead to cheaper hardware costs on

the hosts.

In this paper the potential performance enhancement and

power consumption reduction of a sequentially written Video

Game by the use of a parallelizing compiler while investigating

the difficulties in achieving that goal shall be examined. The

target application shall be a well-renowned first-person shooter

Video Game called ioquake3 [3][4] which presents many of the

important elements found in Video Games such as intelligent

bots. First Person Shooters are Video Games that simulate

human-like movement in a 3D world where players combat

each other using artillery weapons, Shooters, while viewing the

virtual world from the eyes of the controlled character, First

Person.

The main contributions of this paper are (1) examining the

source code of a popular multiplayer Game, ioquake3, from a

view of a parallelizing compiler, then showing the

modifications of several code fragments so that the compiler

can exploit parallelism from the source code, (2) showing that

the performance of the Game enhances with the increasing

numbers of processor cores exploited by the compiler, and (3)

investigating the difficulties in parallelizing sessions that are

populated particularly by large numbers of bots, and (4)

showing that the power consumption of the machine when

executing the Game could be reduced by the compiler.

Finally, a hazard-free version of ioquake3 was successfully

implemented, then, was compiled using the OSCAR [2,6]

compiler to produce a parallel version of ioquake3. Then, the

performance on a multi-core platform was analyzed, IBM

POWER5+ [18], and RPX. The parallelized Game by the

compiler from the revised sequential program of the Game was

found to achieve a 5.1 and 2 faster performance at 8-threads and

4-threads on two different machines than the original ioquake3.

Moreover, the power consumption was reduced to %73 of the

original. Finally, the experience during this work is summarized.

The rest of the paper is as follows. Section 2 mentions some of

the main researches in this field that relate to this work. Section

3 presents a brief overview of the OSCAR compiler and

Parallelizable-C [5]. Section 4 presents the methodology that

was taken to achieve a parallelized ioquake3. Section 5 presents

the performance results and analysis of this experiment. Finally,

in Section 6 the conclusions are drawn.

2. RELATED WORKS

The methodology and requirements in benchmarking Video

Game servers were thoroughly examined using a Video Game

called Quake [11]. The behavior and requirements resembled

benchmarking Online Transaction Processing Systems.

Furthermore, increasing the number of players from 16 to 100

without overloading the CPU was possible. Consequently, the

bottlenecks created by the additional users were both Game-

related as well as network-related processing in about a 1:1

ratio.

The parallelism and scalability of interactive, multiplayer

game servers was investigated by designing and implementing a

parallel version of Quake by hand.[12] The pioneering

investigation of parallelism in Gaming engines found that

scaling interactive multiplayer Games such as Quake to large

number of players by using parallelism is a challenging task.

Moreover, the main bottlenecks were lock synchronization and

high wait times where significant future improvements are

possible by taking advantage of Game-specific knowledge.

The difficulties in porting a parallel version of Quake to

implement Transactional Memory and the eventual

performance were examined [13]. Another parallel version of

Quake was designed by hand that uses Transactional Memory

completely from the original Quake. The difficulties involved

in achieving that and how much performance improvement

could be achieved from this technology were investigated. [14]

3. OSCAR COMPILER AND PARALLELIZABLE-C

OSCAR compiler [2,6] is a parallelizing compiler developed
in Waseda University; it excels at enhancing the performance of
a sequentially written C Program by extracting parallelism at the
multigrain level and exploiting data locality. In this section, the
process in which OSCAR is able to achieve performance
enhancement with those techniques will be explained.

Here, multigrain parallelism is the technique of extracting
parallelism at different grains such as coarse grain task
parallelism, loop iteration parallelism, and statement level near
fine grain parallelism. In the following text, loops, function calls,
and basic blocks are defined as coarse grain tasks.

The OSCAR compiler begins by analyzing the sequential
program and decomposes it into three types of Macro-Tasks
(MTs); Basic Block (BB); Repetition Block (RB); Subroutine
Block (SB). If there are parallelizable Loops they are
decomposed into loops of smaller iterations as MTs- the number
of iterations are determined by the original number of iterations
and the number of Processor Cluster and Processor Elements.

Data dependencies and control flow amongst macro-tasks
are hierarchically analyzed. Then, Earliest Executable Condition
analysis that is based on those Data Dependencies and Control
Flow is made to determine parallelism amongst those macro-
tasks. The analysis result is represented as a Macro Task Graph
(MTG). If an MT is a subroutine call or a loop that has coarse
grain task parallelism, the compiler generates inner MTs inside
that MT hierarchically- figure1 shows an example on an MT G.

Finally, the OSCAR compiler assigns MTs to the targeted
processor groups or processor cores by using either static or
dynamic scheduling.

If several MTs share the same piece of data that is larger
than the available cache size or the local memory, the OSCAR
compiler will decompose the MTs into smaller ones so that it
will be able to fit the data accessed by those sharing MTs into
the cache or memory space by loop aligned decomposition. Then,
these decomposed MTs are scheduled onto Processor elements,
which access the same data successively as much as possible.

One of the main difficulties in determining potential
parallelism in a program is pointer analysis [7]. Parallelizable-C
is a programming guideline to help automatic compilers perform
pointer analysis precisely, and extract the most possible amount
of parallelism from a sequential program. Parallelizable-C [5] is
an accumulation of rules that guide the programmer while
sheltering the programmer from the complexities of parallel
tuning. Further details on OSCAR program optimizations. [6, 19,
10]

Some of the recently developed multicore platforms equipped
with DFVS (Dynamic Voltage and Frequency Scaling) and
power gating that can be controlled by the OS that is limited
beyond the inner power status of a running application. However,
the OSCAR compiler has achieved automatic power control
schemes using DVFS and Power Gating for multicores that
allow power control of an application from within by
implementing two approaches; minimum time execution;
satisfaction of real-time deadline.

After the MT scheduling phase, the power reduction

algorithm determines the suitable voltage and frequency for

each MT [reference]. The OSCAR compiler determines the

execution time for each MT to minimize the program’s overall

energy consumption. Next, it chooses a critical path, the longest

execution time needed for the MTG. The newly parallelized

code must be produced while satisfying the designated deadline.

When determining the MT voltage and frequency phase is

concluded, the OSCAR compiler applies the dynamic frequency

scaling to reduce energy consumption while considering MTs

idle times and their overheads.
In this experiment, the Power Control API is developed to

control power through the modified version of the Linux kernel
[1] that includes the fvcontrol directive. The fvcontrol directive
sets the power status of a module to the specified value-
get_time function from the Time API is used to retrieve the
current time from the system for inter-core synchronization. The
power status notation used in the Power Control API is an
integer value ranging from 12.5 to 100. The values from 100 to
12.5 represent the percentages of clock frequency of the
specified module where 100 is the maximum clock frequency of
648 MHz.

4. METHODOLOGY

In this section, the techniques implemented in creating a
parallelized version of ioquake3 shall be explained.

4.1. Profiling

The first step in enhancing the performance of a computer
application, such as ioquake3 is knowing which area of the
program is critical to the overall performance. Those critical
areas shall be referred to as bottlenecks throughout this paper. To
learn what bottlenecks are created in bot sessions, a free-for-all
(no teams) bots ioquake3 match in a medium to small sized map
was profiled using Visual Studio Performance Profiler [17].
Smaller map should force more bot interactions, which should
yield to a more intense processing situation. Furthermore, larger
scale session was targeted in anticipation for its growing
popularity in the industry; hence, ioquake3’s engine limit was
increased from the original Engine limit of 32 to 112 bots, which
is the limit of our targeted machine. The Bots were a mixture of
8 types [15] that are of different personalities- different

while(!quit)

{

 foreach(client = clients)

 {

 BotAI(client);

 ClientThink(client);

 SendClientMessages(client);

 }

}

Listing1: An abstract view of bottleneck execution

aggression levels, different weapon preferences and so forth.
The bots were set to be at the highest level of difficulty that
required more complex decision making computations; thus,
more CPU intense. Therefore, this varying setup should cover
many different computation patterns, which should yield a richer
profiling result.

4.2. Profiling Results

The profiler showed the existence of 3 post-initialization
bottlenecks inside the main Game loop that comprise of over
90% of the total CPU time with an almost equal distribution
amongst them. The bottlenecks are BotAI(), ClientThink(), and
SendClientMessages() that shall be explained later on in this
section. In this paper, for ease of reading all functions() shall be
written with brackets as such.

4.3. Program Code Analysis

a) Bottlenecks

In this section an overview of the general role each

bottleneck has within the engine will be shown.

BotAI()

The BotAI() function takes on the role of the brains in bots

where decisions are made. First, the BotAI() function, the

brains, views other players and entities (such as items and

weapons) around it using the Messages that were built for it by

the SendClientMessages(). Then, the bot makes a logical

decision of what action to take (pursue enemy and such) based

on a combination of both; bot's surroundings (such as enemies),

and personal conditions (such as health, ammo).

 For a bot to recognize which path [15] to move and carry

out its chosen action, it relies on the Area Awareness System

(AAS)[15]. The AAS system contains the World Map, and all

the routing costs for moving from one area in a map to another.

Finally, it inputs the desired commands exactly like a

Human player (such as left_key, aim_nozzle) into its local

command input data area. For ease of reading, a Human player

shall be referred to with a first upper case letter.

From this point on, Humans and bots become transparent to

the engine. They are simply client will be interpreted in exactly

the same manner.

ClientThink()

ClientThink()’s main responsibility is to carry out client

commands into the Virtual World while handling all the

interactions that may occur between it and everything else in

the Virtual World. The interactions fall under three categories:

client-client; client-entity; client-world. Then, most importantly

is that ClientThink() has the responsiblity of updating both the

data of “Acting” client and the “Acted upon” object-

client/entity/world.

SendClientMessages()

The SendClientMessages() function is responsible for

sending all the updates that happened to the surroundings of

each client from the previous computations to it. The process

flow is as follows: First, a snapshot of the surroundings of the

designated client in a 360 degree horizontal view is taken.

Second, the taken snapshot of the surroundings is built into a

message. Third, the newly composed message is conveyed to

the designated client.

Bots communicate through messages so that they would be

subject to the same limitations as a Human, and respond

accordingly.

4.4. Could these Bottlenecks achieve reasonable

parallelism?
As shown in listing1, the engine was implemented with

major For Loops that iterate through each connected client and

execute those three bottlenecks; AI, Thinking, and Message

Sending. It is a common understanding that for loops which

require relatively large CPU computations are potential for

performance enhancing parallelism; thus potential parallelism.

4.5. First Parallelizing Attempt
As a preliminary experiment, the program in its original

structure was compiled using the OSCAR compiler. Eventually,

the Game performed at the same original speed.

After the OSCAR compiled code of ioquake3 was

examined, it was discovered that the previous loop (listing1) of

the newly compiled code has the same sequential structure as

the original code; thus, resulting in a sequential execution,

which executes at the same speed as the original sequential

code. The results of the examination showed that because of the

existence of data dependencies within the previous major loop,

the compiler was unable to salvage any extractable parallelism

within it. Therefore, eliminating the hazards is highly essential

for OSCAR compiler's ability in extracting parallelism from

ioquake3.

4.6. Implementing Parallelism
This section is the core of this research where the main

difficulties faced towards transforming a sequentially written

ioquake3 into a parallelized state will be explained.

Furthermore, how those difficulties were resolved to achieve

parallelism shall be explained as well.

BotAI()
 Relocating Read/Write Operations Outside of the

Parallelized Area
Read and write operations that are made from and to

complex global data structures such as Linked-Lists can

become highly corrupted when multiple accesses are executed

concurrently, in parallel. An effective method to avoid data

corruption that could be implemented in this situation is

relocating those reads and writes operations to be outside of the

parallelized area, and then execute them as a batch. This is most

applicable when the costs of the read and write operations are

cheap relative to that parallelizable area, where there is no

feasible performance speedup gain from those read and write

operations.

Figure2: The Move()-Area Tree relationship

//Parallelized For Loop

foreach(client = clients)

{

 BotAI(client);

}

//Batch write operations moved here.

foreach(client = clients)

{

 WriteChatMessages(client);

}

BotAI(client_t *client)

{

 ...

 //WriteChatMessages(client);

 ...

}

Listing2: Hazard prevention in pseudo code

For example, one common feature in networked Games is

the chat feature. In ioquake3, the bots are designed to have the

ability to chat with other players, Humans and other bots. All

chats are conveyed using chat messages (not to be mistaken

with Messages used for updating player surroundings). These

chat messages are read/written from/to a global Linked-List. To

protect the consistency of that Linked-List when the

encapsulating loop is parallelized, the read/write operations

were moved, re-implemented, outside of that parallelized loop,

and structured to be executed as a batch. This technique avoids

any potential corruptions.

The example in listing2 shows the write operation which

was relocated outside the parallel loop to avoid data race. The

write was originally located after the execution of the critical

path; therefore it was relocated to be after the parallelizable

loop -for the sake of space only the write operation was

displayed.

 Parallelizable-C: Local Static Variables
Parallelizing compilers have difficulty analyzing static

variables that are defined inside function scope. Therefore, such

static variables were rewritten into automatic variables, while

asserting the integrity of the program.

 Parallelizable-C: Localize read-only global variables
Similarly, read only global variables were rewritten to

become local since they confuse the compiler as being a race

condition.

ClientThink()
 Implementing Locks to Prevent Data Hazards
i. Locking the Access to Complex Data Structures

To prevent hazardous situations in contended, globally

shared, complex data structures such as Trees, an OpenMP[16]

critical directives can be implemented to lock the read and

write operations, and allow only one thread access at any time;

thus avoiding any race conditions potentially caused by

concurrent thread access to the same data piece. Those locks

should be implemented in areas of low access frequency where

they should not place any additional thread access wait times.

For ease of reading the implementation of an OpenMP critical

directive to prevent data contentions amongst threads shall be

refered to as a lock throughout the remainder of this paper.

An example of a contended, globally shared, complex

data structure is the World Map Area Tree, which represents the

map that the players populate. During the Initialization Stage,

this World Map is loaded, then based on a specific division

algorithm it is split into area nodes then are composed into the

tree leavs. Next, the Game engine maps clients into this Area

Tree representation based on their current locations within the

map. When a client executes a Move() operation, and leaves an

area, a leaf they resided into another, the engine remaps the

client into their new area. This remapping operation requires a

dual set of Link() and Unlink() operations, as shown in Figure2.

To prevent this Area Tree from becoming corrupted by

multiple concurrent remaps, links and unlinks, the Link() and

Unlink() functions were locked.

ii. Locking Illegal Private Data Access Amongst Threads

Another type of data hazards that can be remedied with

locks are functions where the executing thread has unmonitored

access to private data of another thread. Having the potential for

concurrent read/write situations this engine structure may lead

to race conditions for the same data area when parallelized.

An example of this engine structure is FireWeapon() that

executes the action of firing weapons of the iterating client and

applying the damage on the spot to the target. Therefore, if

more than one client Fires a weapon at the same target, both

clients could be applying the damage concurrently, which could

lead to a hazardous condition; thus a lock access to

FireWeapon() was implemented, as shown in figure3.

Because a variable called playerhealth must remain

unchaged through out the execution and only should be over

written at the end of the function Fireweapon(). Therefore, the

lock was required to be placed at the entry of the function, as

shown in listing3.

 Preventing Hazards by Transforming Memory

Allocation from Temporary to Permenant
Temporary allocation and dealloction of memory

resources are potential for hazardous conditions if mutliple

occurrances happen concurrently. Transforming temporary

memory allocations to one-time permenant allocations

eliminates the need for deallocations, and by locking the

resulting one time allocation processes such hazards could be

avoided.

An example of this is the action of dropping weapons

upon client death. A dying client requires temporary memory

allocation to drop the weapon they were holding last into the

world. The dropped weapon is temporarily assigned an

allocation from a shared memory pool, and then returned when

the pool becomes empty and the allocation is no longer in use

by the client, otherwise the memory allocation remains with the

client during the session duration.

To prevent any hazardous situations from occuring, first the

memory pool size was increased to the size that eliminates the

need for any deallocations; thus, all first time allocations

Figure3: A view of the task flow of FireWeapon()

void ClientEvents(client_t *client) {

int event;

foreach (event = client->events) {

switch (event) {

case EV_FIRE_WEAPON:

//Restricts access to one instance at a time

#pragma omp critical

{

FireWeapon(client);

}

break;

}

}

}

Listing3: Pseudo code hazard prevention by using Locks

become permenant. Then, to prevent concurrent allocations

those first-time allocations were locked. This technique

prevents hazards with the small cost of additional memory that

systems nowadays have abundance of.

SendClientMessages()
 Transforming Global Variables into Localized

Variables
One method implemented in this work to avoid race over

globally shared variables is to transform the shared global

variable into a localized thread data.

For example, gSnapshotEntities is a globally shared

variable that simulates a camera. gSnapshotEntities holds the

IDs of entities that will be built into a snapshot of the

surrounding entities' locations and movements. Therefore, if

two or more clients need their snapshots to be built

simultaneously, clients may race to use gSnapshotEntities,

single camera.

gSnapshotEntities was replaced with lSnapshotEntities,

which was implemented as a variable into the client’s local data

structure- a personal camera; thus, snapshots can be safely built

into the new local variable belonging to the designated client;

thus avoiding any potential race conditions. The new structure

of lSnapshotEntities was also implemented to be lighter weight,

to increase memory efficiency.

 Replicating Global Counters Jobs by the Use of Local

Variables
Global one-dimensional counters were originally

implemented to regulate tasks, such as preventing duplicates in

a list by acting as a unique tag for each newly created list, and

stamped on each item entering that list to indicate that this item

have been added to that list. This global counter is incremented

with each iteration where a new list is created. Therefore, this

action may cause race hazards when more than one list is being

created concurrently.

As shown in the right-hand-side of the first line in the

loop of listing4, a case of this was gSnapshotC that acted as a

unique id number for each built snapshot. gSnapshotC was

copied, stamped, into a snapshotted client snapshotID variable

space and then incremented. This unique gSnapshotC ID was

originally implemented to prevent the same client from being

included into the same snapshot more than once, to prevent list

duplicates.

The method of hazard prevention implemented here was

by replacing the global variable gSnapshotC with a local

variable that is unique in value amongst all clients such as

clientID. Next, the now obsolete gSnapshotC was deleted. Then,

the unique clientID number of the iterating client was copied

into the snapshotID instead of the deleted gSnapshotC; thus

eliminating any possibility of race, as shown in the bottom line

of that loop in listing4.

 Transforming Tag Containers from 1-Dimensional

Into Per-Thread Size
Complimentary to the task in the previous topic, list

duplicates prevention, a space for a unique listID, a stamp

space, is required. When an item enters into more than a single

list at a time, it must acquire a stamp per list; thus one stamp

space is insufficient. Adding more stamp spaces equal to the

size of the number of valid lists per-time is a proper solution.

Again as shown in the left-side of the top line in the loop

of listing4, a client that is built into a snapshot uses the local

snapshotID to hold the unique snapshotID tag that was

gSnapshotC in the sequential state, and later clientID. If that

client is to be built into more than one snapshot concurrently, it

requires a snapshotID container per concurrent snapshot built.

Therefore, the client’s snapshotID was re-implemented

from a 1-dimentional integer variable to an array of integers

with size equal to the number of simultaneously running threads,

while making the proper modifications to preserve the integrity

of the program as shown on the left-side of the bottom line of

that loop in listing4. In listing4, omp_get_thread_num() is a

function from the OpenMP[16] library that returns the thread

number that is currently executing.

Note: Player health

must remain consistent

throughout the entire

flow of the function.

Note: Player health

must remain consistent

throughout the entire

flow of the function.

Figure4:Performance results of Spawning Order-A inQ3dm1

Figure5:Performance results of Spawning Order-B inQ3dm1

Figure6:Performance results of Spawning Order-A inQ3dm3

//Parallelized For Loop
foreach(client = clients)

{

//snapshotClient->snapshotID = gSnapshotC++;

snapshotClient->snapshotIDArr[omp_get_thread_num()]

 = client->ID;

}

Listing4: Hazard prevention in pseudo code

 Parallelizable-C: Array[Array[struct_t]]
Based on the Parallelizable-C rules, Array[Array[struct_t]]

is a data structure that is difficult to analyze when attempting to

extract parallelism. Therefore, all such structures were re-

implemented to be compliant to the Parallelizable-C rules, such

as the format of Array[struct_t], while maintaining that the

integrity of the program is not be broken.

4.7. Power Reduction
Multicore parallelism opens the opportunity for power

reduction. In the case of reducing power by using the OSCAR

compiler the target application must be examined to see which

of the two power reduction schemes is most suitable, and

measure the computational cost in CPU clocks. Video Games

are implemented using a fundamental mechanism of “Game

Frames”, Game Loop, as a rule of thumb where the basic

concept is similar to animating frames such as in movies. To

give the appearance of motion for still pictures, frames are

displayed at a certain rate per second; in ioquake3 it is 30

frames per second. Furthermore, the logic that happens within a

single frame of 33 milliseconds must be calculated before the

next frame is displayed. Therefore, this 33 millisecond is in

other terms a deadline for the CPU to finish the processing

load; thus, deadline power consumption scheme is most fitting

for this experiment. Furthermore, the accumulative

computational cost for the bottlenecks in ioquake3 is

approximately 15000 CPU clocks per frame.

5. PERFORMANCE RESULTS

5.1 Speedup
To measure the impact of the modifications made in this

experiment, the performance of the parallelized ioquake3 was

compared with the original, sequential version on a multi-core

platform. The measurements covered all three bottlenecks.

Because the three bottlenecks comprise of over 90% of the total

CPU load in a single Game session, the results will be taken as

an indicator of the overall performance change.

 IBM POWER5+

All Game matches were executed using 112 Bots and score

limited where a bot earns a point for every kill it makes, and

immediate respawn settings. Spawn, is the act of the engine

placing a player into the virtual world in a session. Respawning

is the act of spawning a player after death. With immediate

respawning the map should be occupied with 112 bots almost

all of the session length, which should mean that the CPU load

will always be at its highest. The measurements were made for

5 seconds, which should be enough to cover all processing

scenarios. To examine what influences performance, several

session variations were created, which will be explained next.

The engine has total control over spawning locations.

However, the order in which players are spawned can be

controlled by the host user. Different spawning orders should

yield different initial spawning locations, which should result in

bots encountering a relatively different type of enemies in each

order. To examine whether or not different enemies yield

different bot computations two spawning orders were created,

Spawning Order-A, and Spawning Order-B.

Another aspect that was taken into consideration was map

structure. To examine if different map structures yield different

bot computations two maps were included into the performance

examination, map Q1dm3 that is a single layered map, and

Q3dm3 that is a multi-layered map.

Three different setups were readied: 1) Spawning Order-A

in Q1dm3, a single-layered map, this shall be the performance

baseline. 2) Spawning Order-B in Q1dm3 map, this setup is to

investigate if different enemies influence bot computations. 3)

Spawning Order-A in Q3dm3, a multi-layered map, to

investigate if map structure influences performance.

Similarly, to avoid the OS influencing the measurements,

each setup using the sequential and parallel implementations

was executed 100 times, and then the fastest execution was

chosen as the first experimental result. The experiment was

conducted on an IBM POWER5+ platform, which is equipped

with 8-cores at clock-rate 1.5 GHz, 16 GB of RAM. Each

processor core has access to 32+32 KB/core of L1, 1.9MB of

L2 and 36MB of L3 dedicated cache. The gettimeofday

function from the time Linux C-library was implemented as the

measuring instrument.

Figure7: Speedup results obtained on RPX

Figure8: Power consumption on RPX without power

optimization

Figure9: Power consumption on RPX using power

optimization

As shown in figure 4, 5 and 6, the speedup measurements

shows that the program scales fairly well with all three setups

displaying an almost identical grades of speedup. The

performance displayed a great amount of speedup at all number

of cores, where the 1st, 2nd and 3rd setups at 8-cores achieved 4.3,

4.43 and 5.1 respectively.

Reasoning for the added performance in the third setup can

be attributed to the change in map structure from single-layer,

1st & 2nd setup, to multi-layered, 3rd setup. In a multi-layered

map the frequency of client interactions is less than the first two

maps; thus, execution of clients interaction computing functions

such as fireweapon() (locked area) becomes less than in the first

two setups. Therefore, the 3rd setup has less lock induced

waiting time in ClientThink(). This also can be seen in figure6

where ClientThink() in the 3rd setup outperforms the first two

setups.

Furthermore, SendClientMessages() displayed a linear

speedup, as shown in Fig 4, 5 and 6. The lack for an access to a

cache analyzer made it difficult to examine the definite

reasoning for this behavior. However, it can be assumed that

because SendClientMessages() abides by the Parallelizable-C

rules more than ClientThink() and BotAI(), it exhibited a better

performance. Furthermore, a frequently accessed global

variable called level.gEntities that holds important entity data

was called and accessed by all three bottlenecks. Therefore,

there is a high possibility that level.gEntities was already in the

cache when SendClientMessages() needed to access it; thus, no

time was spent in retrieving it.

Further analysis of the results shows that the speedup does

not step up from 6-cores to 7-cores in all three setups. This lack

of added speedup at 7-cores can be associated with

ClientThink() slightly underperforming at 7-cores, shown in the

previous figure. Due to the lack of proper analytical tools it was

difficult to identify the exact cause of this behavior. However,

since different structures and different enemies did not

influence this behavior, it might be related with a parallel aspect

such as unfair load balancing.

 RPX
Now the second experimental results will be shown, which

were conducted on an RPX. The RPX machine is equipped with

4-cores at clock-rate 648 MHz, 2 GB RAM. Each processor

core has access to 32+32 KB/core of dedicated cache Therefore,

because of the inherited difference between the two machine’s

specifications a slightly more general approach was made into

evaluating the speedup on RPX. On RPX, ioquake3’s overall

performance and the power consumption optimization of the

base-line map were evaluated. Last, a Game session of 32 bots

of the baseline setup was the most suitable for RPX that gives

the optimum amount of computing load.

As shown in figure 7, the speedup measurements show that

ioquake3 scaled relatively well with the base-line setup,

displaying a 2 times speedup at 4-cores.

5.2 Power Reduction on RPX
On the one hand, figure 8 shows the power consumption of

a 32 bot Game session of the sequential version on RPX. As the

figure shows, RPX consumed in between 1.6 and 1.8 watts. On

the other hand, figure 9 shows the power consumption of a 32

bot Game session of the compiled version of ioquake3 that is

parallelized for 4-core and optimized for low power

consumption. As the figure shows, RPX consumed in between

1.1 to 1.4 watts.

The results of the optimized low power consumption by

OSCAR compiler for ioquake3 show a %73 reduction in power

consumption on average.

6. CONCLUSIONS

This paper has described the experience of achieving

enhanced performance and power reduction in ioquake3 by the

use of the OSCAR parallelizing compiler. The autmatically

parallelized Game by the compiler from the revised sequential

program of the Game was found to achieve a 5.1 faster

performance at 8-threads on an 8-core IBM POWER 5+

platform, and 2 times speedup using 4-threads on an 4-core

RPX machine than the original. And consequently, It was also

found that the OSCAR compiler could help reduce the power

consumption by %27. The areas of the program that were

majorly modified to follow the Parallelizable-C rules and

avoided lockage and SendClientMessages() exhibited the

highest level of performance speedup. Moreover, this speedup

in performance proves that taking advantage of Game-specific

knowledge can greatly help reduce data contentions, and

hazardous conditions, and with reduced lockage higher

performance could be produced[13].

From this experiment, it has been understood that Video

Games as applications are written to be highly resource

efficient where implementing programming shortcuts is almost

a “rule of thumb”. However, such programming techniques

eventually resulted in contentions over global resources, which

came to be the main cause for the hazards when parallelism is

taken into consideration in ioquake3. Another cause of hazards

was the result of illegal access to private data amongst threads.

Several effective methods for avoiding hazards that were

caused by read/write operations from/to a shared complex data

structures that were hard to localize were found effective. For

example, batch excution of the read/write operations outside

the parallelized loop. Other hazardous areas required

restructuring and re-implementing of the engine to avoid the

hazardous contentions.

In ioquake3, the mechanisms of reperesenting both the bot,

and the Human player inside the engine highly resemble each

other. Therefore, this work should be highly beneficial to

understanding parallelism of Human driven sessions as well.

Expirementing with large numbers of Human players is beyond

the capabilities of this paper. However, since

SendClientMessages() should scale well with Human

players[12], a high level of speedup should be expected in the

view of the the results from this experiment.

Finally, results from this paper should encourage more

Gaming companies to open their Game code to the public

domain. This should aid researchers to investigate better ways

in achieving higher performance from parallelism and further

reduce power consumption, and investigate other crucial Video

Gaming aspects as well.

ACKNOWLEDGMENT

The authors would like to thank id Software for releasing the

source code for QuakeIII to the public domain. The authors

would also like to thank to the developers of ioquake3 for

making their Mod available to the public domain, and for their

support in answering many questions. The authors are also

thankful to the anonymous reviewers on their insightful

comments. Special thanks to Mr. Akihiro Hayashi his support

in this work.

REFERENCES

[1] Opportunities and Challenges of Application-Power

Control in the Age of Dark Silicon: IPSJ SIG Technical

Report

[2] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara,

S. Narita: A multi-grain parallelizing compilation scheme

on oscar (Optimally Scheduled Advanced

Multiprocessor). : Proc. 4th Workshop on Language and

Compilers for Parallel Computing, 1991

[3] id software: ioquake3. http://ioquake3.org, April 2012

[4] QuakeIII:http://www.idsoftware.com, April 2012

[5] Masayoshi Mase, Yuto Onozaki, Keiji Kimura, Hironori

Kasahara: parallelizable C and Its Performance on Low

Power High Performance Multicore Processors.: In: Proc.

of 15th Workshop on Compilers for Parallel Computing,

July 2010

[6] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, H.

Kasahara: Hierarchical Parallelism Control for Multigrain

Parallel Processing.: Prof. 15th Workshop on Language

and Compilers for Parallel Computing, 2002

[7] Hind M.: Pointer Analysis: Haven’t We Solved This

Problem Yet? In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software

Tools and Engineering, 2001, pp. 54-61

[8] Microsoft: Halo; http://halo.xbox.com:(Apr 2012)

[9] ACTIVISION: Call Of Duty http://www.callofduty.com,

Apr 2012

[10] Yasutaka Wada, Akihiro Hayashi, Takeshi Masuura, Jun

Shirako, Hirofumi Nakano, Hiroaki Shikano, Keiji

Kimura, and Hironori Kasahara: A Parallelizing Compiler

Cooperative Heterogeneous Multicore Processor

Architecture: Transactions on High-Performance

Embedded Architectures and Compilers IV,Lecture Note

in Computer Science, Springer, Vol. 6760, pp.215-233,

Nov. 2011.

[11] Ahmed Abdelkhalek, Angelos Bilas, and Andreas

Moshovos: Behavior and Performance of Interactive

Multi-player Game Servers.: ACM Cluster Computing

Journal Volume 6 Issue 4, October 2003

[12] Ahmed Abdelkhalek, Angelos Bilas: Parallelization and

Performance of Interactive Multiplayer Game Servers.:

Parallel and Distributed Processing Symposium 18th

International Proceedings, April 2004

[13] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal,

Adri´an Cristal: Atomic Quake: Using Transactional

Memory in an Interactive Multiplayer Game Server.:

Proceedings of the 14th ACM SIGPLAN symposium on

Principles and practice of parallel programming, February

2009.

[14] Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal,

Adrian Cristal: QuakeTM: parallelizing a Complex

Sequential Application Using Transactional Memory.:

Proceedings of the 23rd international conference on

Supercomputing, June 2009

[15] Waveren, J.M.P. van.: The Quake III Arena Bot,. 2001.

[16] The OpenMP® API specification for parallel

programming. http://openmp.org/wp, April 2012

[17] Analyzing Application Performance by Using Profiling

Tools http://www.microsoft.com, April 2012

[18] IBM eServer p5 550: http://www.ibm.com, Apr 2012

[19] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara,

S. Narita: OSCAR API for Real-time Low-Power

Multicores and Its Performance on Multicores and SMP

Servers : Lecture Notes in Computer Science, Springer,

Vol. 5898, pp. 188-202, 2010

http://ioquake3.org/
http://www.callofduty.com/
http://openmp.org/wp
http://www.microsoft.com/

