
Evaluation of Automatic Power Reduction with
OSCAR Compiler on Intel Haswell and ARM

Cortex-A9 Multicores

Tomohiro Hirano1, Hideo Yamamoto1, Shuhei Iizuka1, Kohei Muto1, Takashi
Goto1, Tamami Wake1, Hiroki Mikami1, Moriyuki Takamura2, Keiji Kimura1,

and Hironori Kasahara1

1 Green Computing Systems Research Center
Waseda University - Tokyo, Japan - Tel./Fax. +81-3-3203- 4485/4523

{hirano,shuhei,kmuto,tgoto,waketama,mikami}@kasahara.cs.waseda.ac.jp,
magoroku15@gmail.com,

{keiji,kasahara}@waseda.jp,
http://www.kasahara.cs.waseda.ac.jp/

2 FUJITSU LABORATORIES LTD.
takamura moriyuki@v06.itscom.net

Abstract. Reducing power dissipation is one of the most important
issues that need to be addressed to improve the performance of all com-
puting systems, such as supercomputers, cloud servers, desktop PCs,
medical systems, and wearable devices. Exploiting parallelism and de-
creasing redundant power dissipation by fine grain power control for
multicore/manycore systems are promising approaches, which can en-
sure continuous performance improvements and reduce power dissipa-
tion. However, the manual development of parallelized applications and
the embedding of power control code are both time-consuming and error-
prone. The OSCAR automatic parallelization compiler has been devel-
oped to overcome these problems, which facilitates automatic low-power
optimization in addition to parallelization. Though the OSCAR com-
piler allows these optimization, the suitability of the power optimization
method for various platforms is unclear because each architecture has
its own power control functionality interface. Therefore, we investigated
low-power optimization with the OSCAR compiler on Intel Haswell and
ARM multicore platforms to determine the efficiency of the compiler in
exploiting the power control functionality of these platforms. The evalu-
ations showed that the power consumption was reduced by 44.2% on the
Intel Haswell platform having three-cores with the H.264 decoder and
by 68.4% with Optical Flow on three-cores with power control compared
with three-cores without power control. On the ARM cortex-A9, hav-
ing three-cores with power control obtained a power reduction of 57.9%
with the H.264 decoder and 67.2% with Optical Flow. These results show
that the OSCAR multi-platform API resolves differences between archi-
tectures and reduces the power consumption on multiple platforms.

Key words: automatic parallelization, power control, power reduction,
multicore processor, multiple platforms

2 Tomohiro Hirano et al.

1 Introduction

Multicore processors have been implemented in various computing systems,
which range from large servers to small smart-phones and tablets[1]. These pro-
cessors have been used to obtain higher performance for over a decade. However,
the issue of power consumption by computing systems is an increasingly serious
problem that affects the overall affordability of computing, because the use of
more processor cores yields higher performance but it also increases power usage.

To reduce the power consumption by multicore in smart devices, recent mul-
ticore processors such as the Samsung Exynos 5 Octa use the big.LITTLE archi-
tecture[2], while NVIDIA introduced variable symmetrical multi-processing in
Tegra 3. Both approaches use low-power cores in addition to the standard pro-
cessor cores when performance is less important. In addition, Intel implemented
an integrated voltage regulator in Haswell generation processors to facilitate
more fine-grained power control[3].

Recent software development environments for multicores support paral-
lelization by parallel application program interface (API) as in OpenMP[4] and
CUDA[5] while they still require manual parallelization for application devel-
opers. Furthermore, these development environments do not provide interfaces
for power control mechanisms implemented in current multicores. This means
fine-grained power controls considering synchronization, deadlines, and so on in
a parallelized program can not be applied on current multicores.

The combination of the Optimally SCheduled Advanced multiprocessoR (OS-
CAR) automatic parallelizable compiler and the OSCAR API allows the par-
allelization of an application program automatically on various platforms[6–8].
In addition to parallelization, the OSCAR compiler also reduces power con-
sumption by inserting power control codes for dynamic voltage and frequency
scaling (DVFS), clock gating, and power gating, into the parallelized program.
Especially for the case of power control, each architecture has its own control in-
terface. In order to utilize these architecture dependent power control interfaces,
the OSCAR compiler generates a parallelized and power optimized program an-
notated with the OSCAR API directives, which work as interfaces between the
OSCAR compiler and various multicores. Then, these directives are translated
into runtime library calls for a target architecture. Thus, the OSCAR compiler
can provide applicability for various architectures.

In this paper, we show the evaluation of power reduction control using the
OSCAR compiler on an Intel Haswell processor for server and desktop com-
puters, and with an ARM Cortex-A9 multicore for smartphones using real-time
applications. We also show the OSCAR compiler and the OSCAR API can fully
utilize the different power control mechanisms in both processors.

The remainder of this paper is organized as follows. Section 2 provides an
overview of the OSCAR compiler and API. Section 3 explains the runtime plat-
form in a current Linux system and the interface used to call clock gating from
applications. Section 4 presents the results of the performance evaluation using
two different platforms. Finally, our conclusions are given in Section 5.

Evaluation of Automatic Power Reduction with OSCAR Compiler 3

2 OSCAR Compiler and OSCAR API

In this section, we present an overview of the power reduction scheme provided
by the OSCAR automatic parallelization compiler and the OSCAR API.

2.1 Multigrain Parallel Processing with the OSCAR Compiler

The OSCAR compiler exploits multigrain parallelism, which comprises coarse
grain task parallelism, loop iteration level parallelism, and statement level near-
fine grain parallelism.

To exploit multigrain parallelism, the OSCAR compiler decomposes a sequen-
tial C or Fortran program into coarse-grained tasks called macro-tasks(MTs),
such as basic blocks, loops, and subroutine calls. The OSCAR compiler analyzes
the control flow and the data dependencies among MTs, thereby generating a
macro-flow-graph (MFG). Next, the compiler analyzes the earliest executable
condition[9] by exploiting the parallelism among MTs by analyzing both the
control dependencies and the data dependencies together. The results of the
analysis are represented as a macro-task-graph (MTG) for an MFG.

If an MT is a subroutine call or a loop that includes coarse grain task par-
allelism, the OSCAR compiler hierarchically generates MTs inside the MT. In
addition, loop iteration level parallelism is translated into coarse-grained task
parallelism by decomposing a loop into multiple loops.

These MTs are assigned to the processor cores using static scheduling or
dynamic scheduling, where a dynamic scheduling routine is generated for each
source program by the OSCAR compiler[10].

2.2 Low-Power Optimization by the OSCAR Compiler

When the OSCAR compiler applies static scheduling to real-time application
programs with deadlines, such as those considered in this work, the compiler
tries to apply frequency reduction with voltage scaling to the critical path of
the schedule generated to satisfy the deadline[11]. Next, the compiler applies
frequency reduction, clock gating, or power gating to the MTs, as well as to
the busy wait loops used for synchronization that are not present on the critical
path, while considering the overhead of the power state transitions[12].

2.3 OSCAR API

The OSCAR API comprises a set of directives that support power control, DMA
transfer, group barriers, and local and distributed shared memory management
on various shared memory multiprocessor and multicores for servers, desktop
computers, and embedded systems[8].

The OSCAR API uses section, flush and threadprivate directives in
OpenMP. In addition to these directives, distributedshared and onchipshared
are added to utilize distributed shared memory and on-chip shared memory while

4 Tomohiro Hirano et al.

threadprivate is used for local data memory. Furthermore, the OSCAR API
employs user-level power control in addition to thread control and memory al-
location. The OSCAR compiler generates a parallelized program by inserting
these compiler directives.

The API translator translates the directives of the OSCAR API into runtime
library calls. The translator was developed specifically for embedded systems
that lack OpenMP compilers. In this case, an ordinary sequential compiler such
as gcc finally generates the parallelized executable binary.

The OSCAR API provides the fvcontrol and get fv status directives for
power control. These fvcontrol directives set the power status of a hardware
module in a target system to a specified value. get fv status acquires the cur-
rent power status from a specified hardware module.

The API translater translates the fvcontrol and get fv status directives
into oscar fvcontrol() and oscar get fv status() functions, respectively.
These functions wrap the operations for the power control interface of the target
system.

3 Runtime Support for Power Control

Power consumption of applications can be optimized by the OSCAR compiler
in a specific environment by power control mechanisms like DVFS, clock gating,
and power gating through the oscar fvcontrol() function.

To fully utilize the power control by the OSCAR compiler, oscar fvcontrol()

must be appropriately implemented to support power control mechanisms pro-
vided in each target multicore with low overhead. This section provides an
overview of the target architectures, the power control frameworks that are avail-
able for these architectures, and the interfaces implemented for DVFS and clock
gating.

3.1 Power Control Frameworks Available in Linux

We describe the power control frameworks that are currently available in Linux
platforms. P-state controls the processor frequency, which corresponds to the
workload. The processor frequency is controlled by the P-state driver: cpufreq[14].
The power of the target device is reduced by controlling the frequency and its
corresponding voltage.

In an ordinary Linux system, dynamic frequency scaling is achieved using an
on-demand governor, which monitors the utilization rate of each core and the
upper or lower frequencies are set dynamically when the load exceeds or falls
below the thresholds. In addition, the userspace governor described in this paper
allows the frequency to be specified by the user’s program via cpufreq.

3.2 Intel-Specific Power Control Interface

This section describes the MWAIT interface which is implemented in OSCAR
runtime. MWAIT is an instruction to transit to the C-states[13], where the C-

Evaluation of Automatic Power Reduction with OSCAR Compiler 5

states are low-power idle states that save power. For example, the C1 state is an
auto-halt mode and the C3 state is a deep sleep mode, where numerically higher
C-states comprise greater power saving actions, but with higher latency.

In the current Linux implementation for Haswell, the MWAIT instructions
change the processor power state into a C-state as well as returning to the P-
state when there is a change in content of a specific address checked by MONITOR.

MONITOR and MWAIT are available at “Ring 0” and applications cannot use
these instructions. Thus, the kernel module is developed to access MWAIT and
MONITOR from user applications via “ioctl” system call.

Figure 1 shows the method for realizing clock gating, or a transition to a
C-state, as well as a transition to the P-state from a C-state using the OSCAR
API fvcontrol directive. If the processor core-0 is clock gated by a directive
fvcontrol(0,CPU,0), fvcontrol calls a function slave to master(*flag).
The slave to master(*flag) function calls a MWAIT instruction in the kernel
module via “ioctl”. The MWAIT instruction makes the MONITOR to watch a specific
address pointed by “flag”. Next, MWAIT changes the state of the core-0 into a C-
state.

When the core-1 changes the state of the core-0 from a C-state into the P-
state via a directive fvcontrol(0,CPU,100), the core-1 calls the master to slave(flag)

function. The master to slave(flag) function changes the content of flag.
Next, the MONITOR on the core-0 detects that the content pointed by flag has
changed and it changes the power state of the core-0 from the C-state to the
previous P-state. Next, the core-1 sets the frequency of the core-0 into 100%, or
3.5[GHz], in the driver cpufreq. Thus, cpufreq can change the frequency of the
core-0 into 3.5[GHz].

Fig. 1. Procedure for calling the MWAIT flow

6 Tomohiro Hirano et al.

Figure 2 shows the effect of clock gating using the MWAIT instruction. Figure
2-(a) shows the power for a busy wait loop at 3.5[GHz] in the P-state without
clock gating. The average power consumption was 40[W]. Figure 2-(b) shows
the same busy wait loop applying clock gating, or the C-state using MWAIT,
at 3.5[GHz] in the P-state during about 10,000 clocks. In this case, the average
power consumption was reduced to 28[W].

This result confirmed that the OSCAR API fvcontrol implemented using
MWAIT successfully reduced the power with low overheads.

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1!!345678&9#!

:4;%<!

$$4;%<!

=4;%<!

>4;%<!

34;%<!

?4;%<!

Fig. 2. Performance of clock gating using MWAIT at 3.5 GHz

Figure 3 shows the result of the same experiment when the frequency was
800[MHz]. Figure 3-(a) shows that the average power consumption was 7[W]
when the frequency was lowest (800[MHz]) without clock gating. Figure 3-(b)
shows the power when the C-state and P-state were applied for approximately
10,000 clock periods. The average power consumption was reduced to 6[W].

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1!

3456%7!

5486%7!

9456%7!

:8486%7!

:9456%7!

Fig. 3. Performance of clock gating using MWAIT at 800 MHz

This result shows that clock gating was still effective even at the lowest
frequency and the lowest voltage.

Evaluation of Automatic Power Reduction with OSCAR Compiler 7

3.3 ARM-Specific Power Control Interface

This section describes the wait-for-interrupt (WFI) instruction in ARM cores
for clock-gating used in an optimized program by the OSCAR compiler.

The WFI instruction sends a signal to the processor, which indicates that a
timing does not need to be executed. This instruction suspends the execution
on the processor core and stops the clock. Specifically, the WFI instruction
shuts down any process until an interrupt or a debug event occurs[15]. To utilize
the characteristics of WFI as a low power optimization in the runtime library,
modifications were made in the Android[16] Linux kernel to allow WFI to stop
the clock at an interval of 500[µs][17].

3.4 Examples of Target Architectures

Intel and ARM platforms were prepared to investigate the differences in power
consumption between a server and an embedded system. Table 1 shows the
detailed configurations of the both platforms, where the power reduction control
parameters comprised transitions in the frequency time, the power consumption
of each frequency, and the other elements that need to be set in the OSCAR
compiler.

Intel(Haswell) The H81M-A ASUS motherboard with an Intel processor Core
i7 4770k was used as an example of a server environment, where the DVFS could
be controlled independently for each core.

On the Intel platform, three frequency levels were tested in this experiment:
full (3500[MHz]), medium (1800[MHz]), and low (800[MHz]), respectively. The
frequency transition overheads were about 10,000 cycles. Moreover, each core
of the cpufreq governor was set to ondemand when the power control was not
applied. When the power control was applied, the core 0 was set to ondemand
and the core 1-3 were set to the userspace for benchmark applications.

ARM(ODROID-X2) The ODROID-X2 is an evaluation board[18] for the
Samsung Exynos4412 Prime chip[19, 20], which comprises the 4-core ARMCortex-
A9. Frequency and voltage scaling could not be used independently in this chip.
Thus, the frequencies of all cores were changed together. In this evaluation, the
frequencies were tested at three levels: full (1700[MHz]), medium (900[MHz]),
and low (400[MHz]), respectively. As same as in the Intel platform, each core
of the cpufreq governor was set to ondemand when the power control was not
applied whereas the userspace was set when the power control was applied.

4 Performance Evaluation with Intel 4-cores and ARM
Cortex-A9 4-cores

This section describes the analysis of the power consumption by the Intel 4-cores
and the ARM cortex-A9 4-cores. In this evaluation, the benchmark applications

8 Tomohiro Hirano et al.

Table 1. Evaluation Environment

Platform Intel platform ARM platform

Platform board H81M-A ODROID-X2

CPU Intel Core i7 4770k Samsung Exynos4412 Prime

Number of cores 4 4

Maximum clock frequency 3.5 [GHz] 1.7 [GHz]

L1 Cache I/D cache 32/32[KB/core] I/D cache 32/32[KB/core]

L2 Cache unified 256[KB/core] 1[MB/chip]

L3 Cache 8 [MB/chip] N/A

DDR 16[GB] 2[GB]

described in Section 4.2 were parallelized and the power was controlled by the
OSCAR compiler and the OSCAR API.

4.1 Modification of the Evaluation Boards to Measure the Chip
Power Consumption

In this evaluation, the boards were modified to measure the power of the proces-
sor chips directly. In particular, a 5[mΩ] shunt resistor was attached between the
power source circuit of the cores and the Power Management IC[21] on H81M-
A, and a 40[mΩ] shunt resistor on ODROID-X2. Moreover, general purpose IO
pins[17, 22] were used to measure the power consumption of a specific program
section.

4.2 Application Programs used in the Evaluation

This section describes the specifications of the two real-time applications used
in the power evaluations.

H.264 H.264 is a video compression format. The JM version module was origi-
nally developed as ISO/IEC 14496-10 for reference purposes[23, 24]. On the Intel
platform, the deadline for H.264 was set to 30[fps] (33[ms] per frame) and the
input file was HD720p (1280 × 720 pixels). On the ARM platform, the deadline
for H.264 was set to 30[fps] (33[ms] per frame) and the input size was 256 × 128
pixels.

Optical Flow The Optical Flow is a benchmark application, which is used as a
reference in OpenCV[25]. This real-time application tracks 16x16 blocks between
two images by calculating the velocity fields. On the Intel platform, the deadline
for Optical Flow was set to 15[fps] (66[ms] per frame) and the Input file was
HD720p. On the ARM platform, the deadline for Optical Flow was set to 30[fps]
(33[ms] per frame) and input frame size was 256 × 128 pixels.

Evaluation of Automatic Power Reduction with OSCAR Compiler 9

4.3 Power Consumption on the Intel Platform

This section describes the power consumption by the Intel platform when Optical
Flow and H.264 were executed on the Intel platform.

Figure 4 shows the power consumption of Optical Flow and H.264 with dif-
ferent numbers of processor cores. In Figure4, when the power control by the
OSCAR compiler was applied, the power consumption was decreased along with
the increasing number of cores for both applications.

For example, in the case of H.264, the power was 17.37[W] for one-core,
16.15[W] for two-cores, and 12.50[W] for three-cores, respectively. Comparing
three-cores with one-core, 28.04% was reduced by the power optimization and
the parallelization by the OSCAR compiler. On the other hand, the power con-
sumption was increased along with the increasing number of cores without power
control. For example, also in the case of H.264, the power was 29.67[W] for one-
core, 37.11[W] for two-cores, and 41.81[W] for three-cores, respectively. Thus,
the power consumption by three-cores became 40.92% higher than the case for
one-core.

Similarly, in the case of Optical Flow, when the power optimization by the
compiler is applied, the power for three-cores became 60.28% lower than the case
of one-core, such as 9.6[W] for three-cores and 24.17[W] for one-core, respectively.
By contrast, the power for three-cores became 41.96% higher than the case for
one-core, such as 41.58[W] for three-cores and 29.29[W] for the case of one-core,
respectively.

!"#$%

#"&'%

#"'(%
#")$%

!")!%

#"*$%

!"(#%

#"+&%

$"(*%

#"('%

$"$+%

#"+#%

#"##%

#"(#%

!"##%

!"(#%

$"##%

$"(#%

+"##%

,-./01.%20,34%506.407% ,-./%20,34%506.407% ,-./01.%20,34%506.407% ,-./%20,34%506.407%

8"$&9% :2;5<7%=0,%

!
"
#
$%
&
#
'(
)
*
#
$'
+
)
,
-.
/
0
1
)
,
23

4!

!%5043% $%5043>% +%5043>%

Fig. 4. The power consumption on the Intel CPU platform

Then, comparing the case of power control on three-cores with that of not
using power control, 70.10% power reduction for H.264 and 76.91% power reduc-
tion for Optical Flow were achieved, respectively. Similarly, comparing with the
case of three-cores with power control and that of one-core without power con-
trol, 57.87% power reduction for H.264 and 67.22% power reduction for Optical
flow were achieved, respectively.

10 Tomohiro Hirano et al.

Figure 5-(a) and Figure 5-(b) show the power wave for H.264 using one-core
on the Intel platform with and without power control, respectively. Similarly,
Figure 6-(a) and Figure 6-(b) show those for Optical Flow.

!"#!

$%&'()*+,-*'",./0'1,2*0,3! $4&'()*+'",./0'1,2*0,3! $56789:);&!$56789:);&!

<6=(>!

''6=(>!

?6=(>!

56=(>!

!6=(>!

@6=(>!

Fig. 5. Power wave of H.264 with one-core on Intel

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1! !345678&9#!!345678&9#!

:4;%<!

$$4;%<!

=4;%<!

34;%<!

>4;%<!

?4;%<!

Fig. 6. Power wave of Optical Flow with one-core on Intel

Comparing these figures, the peak power of using power control and that
of not using power control were almost same, which indicates both cases were
driven at the highest frequency and voltage. However, the bottom power of
using power control was about 5[W] while that of not using power control was
30-33[W]. This shows the power control by the OSCAR compiler is appropriately
applied by using the MWAIT instruction.

Finally, Figure 7-(a) and Figure 7-(b) show the power wave for H.264 using
three-cores on the Intel platform with and without power control, and Figure
8-(a) and Figure 8-(b) show those for Optical Flow, respectively.

Figure 7-(b) and Figure 8-(b) show the compiler tried to set the lowest clock
frequency as long as possible at the calculation phase of the application, then
applied clock-gating until a deadline. On the other hand, as shown in Figure
7-(a) and Figure 8-(a), the clock frequency was always high even at the waiting
time for a deadline as shown at the flat line in the wave form.

Evaluation of Automatic Power Reduction with OSCAR Compiler 11

These results show, in addition to parallelization, DVFS and clock gating
realized by the MWAIT instruction, which are controlled by the OSCAR compiler,
can sufficiently reduced average power consumption.

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1! !345678&9#!!345678&9#!

:4;%<!

$$4;%<!

=4;%<!

34;%<!

>4;%<!

?4;%<!

Fig. 7. Power wave of H.264 with three-cores on Intel

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1! !345678&9#!!345678&9#!

:4;%<!

$$4;%<!

=4;%<!

34;%<!

>4;%<!

?4;%<!

Fig. 8. Power wave of Optical Flow with three-cores on Intel

4.4 Power Consumption on the ARM Cortex-A9 multicore

This section describes the power consumption when Optical Flow and H.264
were executed on the ARM platform.

Figure 9 shows the power consumption for Optical Flow and H.264 with
different numbers of cores. This Figure shows the almost same characteristics
as in the Intel platform: When the power control by the OSCAR compiler was
applied, the power consumption of three-cores was lower than that of one-core
for both applications. Also, without the power control, the power consumption
was increased along with the increasing number of cores.

For example, in the case of H.264, the power was 0.69[W] for one-core and
0.59[W] for three-cores, respectively. Comparing three-cores with one-core, 14.49%

12 Tomohiro Hirano et al.

!"#$%

#"&'%

#"'(%
#")$%

!")!%

#"*$%

!"(#%

#"+&%

$"(*%

#"('%

$"$+%

#"+#%

#"##%

#"(#%

!"##%

!"(#%

$"##%

$"(#%

+"##%

,-./01.%20,34%506.407% ,-./%20,34%506.407% ,-./01.%20,34%506.407% ,-./%20,34%506.407%

8"$&9% :2;5<7%=0,%

!
"
#
$%
&
#
'(
)
*
#
$'
+
)
,
-.
/
0
1
)
,
23

4!

!%5043% $%5043>% +%5043>%

Fig. 9. The power consumption on the ARM CPU platform

was reduced by the OSCAR compiler. On the other hand, the power consump-
tion by three-cores became 2.53 times higher than the case for one-core without
power control.

Similarly, in the case of Optical Flow, when the power optimization by the
compiler is applied, the power for three-cores became 58.33% lower than the case
of one-core. By contrast, the power for three-cores became 2.35 times higher than
the case for one-core.

For the cases of three-cores, the power control achieved 77.13% power reduc-
tion for H.264 and 86.55% power reduction for Optical Flow compared with the
no-power control, respectively. Similarly, comparing with the case of three-cores
with power control and that of one-core without power control, 42.16% power
reduction for H.264 and 68.42% power reduction for Optical flow were achieved,
respectively.

Figure 10-(a) and Figure 10-(b) show the power wave for H.264 using one-core
on the ARM platform with and without power control, respectively. Similarly,
Figure 11-(a) and Figure 11-(b) show those for Optical Flow. Also, Figure 12-
(a) and Figure 12-(b) show the power wave for H.264 using three-cores with and
without power control, and Figure 13-(a) and Figure 13-(b) show those for Op-
tical Flow, respectively. These figures also show the almost same characteristics
as in the Intel platform.

For example, comparing Figure 10-(a) and Figure 10-(b), the peak power of
using power control and that of not using power control are still almost same.
However, the bottom power of using power control is almost 0.0[W] while that
of not using power control is 0.8[W]. The WFI instruction in the ARM core
efficiently reduces the power consumption. Figure 12-(b) and Figure 13-(b) also
show the compiler tried to set the lowest clock frequency as long as possible and
applied clock-gating until a deadline. By contrast, the clock frequency is still
high at the waiting time for a deadline.

In summary, the automatic parallelization and power optimization can ef-
ficiently reduce the power consumption on both of the Intel platform and the
ARM platform in a uniform manner. The appropriately implemented runtime
systems using MWAIT for the Intel platform and WFI for the ARM platform col-

Evaluation of Automatic Power Reduction with OSCAR Compiler 13

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1! !345678&9#!!345678&9#!

4:4;%<!

=:4;%<!

3:4;%<!

>:4;%<!

?:4;%<!

Fig. 10. Power wave of H.264 with one-core on ARM

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1! !345678&9#!!345678&9#!

4:4;%<!

=:4;%<!

3:4;%<!

>:4;%<!

?:4;%<!

Fig. 11. Power wave of Optical Flow with one-core on ARM

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1! !345678&9#!!345678&9#!

4:4;%<!

=:4;%<!

3:4;%<!

>:4;%<!

?:4;%<!

Fig. 12. Power wave of H.264 with three-cores on ARM

!"#$%&'()*'$+),-.$/)0'.)1! !2#$%&'($+),-.$/)0'.)1! !345678&9#!!345678&9#!
4:4;%<!

=:4;%<!

3:4;%<!

>:4;%<!

?:4;%<!

Fig. 13. Power wave of Optical Flow with three-cores on ARM

14 Tomohiro Hirano et al.

laborated with the OSCAR compiler and the OSCAR API realize these power
efficient computer systems.

5 Conclusion

This paper shows the power reduction on the Intel Haswell platform using the
MONITOR and MWAIT instructions, as well as on the ARM Cortex-A9 platform
with WFI using the OSCAR compiler. The power consumption increased grad-
ually without using power reduction control as the number of processor cores
increased. By contrast, the power consumption decreased gradually with power
reduction control by the OSCAR compiler as the number of cores increased.

The evaluation result shows the power used by Optical Flow without power
control increased to 29.3[W] with one-core, 36.6[W] with two-cores and 41.6[W]
with three-cores on the Haswell platform. By contrast, with power control, the
power decreased to 24.2[W] with one-core, 12.2[W] with two-cores and 9.6[W]
with three-cores. In particular, the decrease to 9.6[W] using three-cores with
power control represented a reduction of 67.2% compared with 29.3[W] using
ordinary one-core execution without power control.

In addition, on the ARM Cortex-A9 four-core, the power used by Optical
Flow without power control increased to 1.0[W] with one-core, 1.5[W] with two-
cores and 2.2[W] with three-cores. By contrast, with power control, the power
decreased to 0.7[W] with one-core, 0.4[W] with two-cores and 0.3[W] with three-
cores. In particular, the decrease to 0.3[W] using three-cores with power control
represented a reduction of 68.4% compared with one-core without power control,
that is 1.0[W].

The results of this performance evaluation show clearly that the OSCAR
compiler significantly reduced the power consumption of real-time applications
such as H.264 and Optical Flow both on Intel Haswell and ARM Cortex-A9
multicores with a uniform manner.

References

1. NVIDIA Corporation: White paper NVIDIA Tegra: Multi-processor Architecture.
(2010)

2. ARM:Jeff, B.: Advances in big.LITTLE Technology for Power and Energy Savings.
write paper, 1–11 (2012)

3. Kurd, N., Chowdhury, M., Burton, E., Thomas, T.P., Mozak, C., Boswell, B., Lal,
M., Deval, A., Douglas, J., Elassal, M., Nalamalpu, A., Wilson, T.M., Merten, M.,
Chennupaty, S., Gomes, W., Kumar, R.: Haswell: A family of IA 22nm processors.
Solid-State Circuits Conference Digest of Technical Papers, 112–113 (2014)

4. OpenMP, http://openmp.org/

5. Cuda, http://www.nvidia.com/object/cuda home new.html

6. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel pro-
cessing on smp using openmp. Workship on Languages and Compilers for Parallel
Computing, pp. 1–15 (2001)

Evaluation of Automatic Power Reduction with OSCAR Compiler 15

7. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical Par-
allelism Control for Multigrain Parallel Processing. Lecture Notes in Computer Sci-
ence, vol. 2481, pp. 31–44 (2005)

8. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.: OS-
CAR API for Real-time Low-Power Multicores and Its Performance on Multicores
and SMP Servers. Lecture Notes in Computer Science, vol. 5898, pp. 188–202. (2010)

9. Honda, H., Kasahara, H.: Coarse Grain Parallelism Detection Scheme of a Fortran
Program. Systems and Computers in Japan, vol. 22, pp. 24–36. (1991)

10. Obata, M., Shirako, J., Kaminaga, H.: Hierarchical parallelism control for multi-
grain parallel processing. Lecture Notes in Computer Science, vol. 2481, pp. 31–44.
(2005)

11. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.:
Compiler Control Power Saving Scheme for Multi Core Processors. Lecture Notes
in Computer Science, vol. 4339, pp. 362–376. (2007)

12. Shirako, J., Yoshida, M., Oshiyama, N., Wada, Y., Nakano, H., Shikano, H.,
Kimura, K., Kasahara, H.: Performance Evaluation of Compiler Controlled Power
Saving Scheme. Lecture Notes in Computer Science, vol. 4759, pp. 480–493. (2007)

13. Intel: Mobile 4th Generation Intel Core Processor Family, Mobile Intel Pentium
Processor Family, and Mobile Intel Celeron Processor Family. Datasheet - Volume
1 of 2 (2014)

14. CPU hotplug Support in Linux(tm) Kernel, https://www.kernel.org/doc/

Documentation/cpu-hotplug.txt

15. ARM Corporation: Cortex-A9 Technical Reference Manual, http://infocenter.
arm.com/help/topic/com.arm.doc.ddi0388i/DDI0388I\ cortex\ a9\ r4p1\ trm.

pdf

16. Google: Android Developers, http://developer.android.com/index.html
17. Yamamoto, H., Hirano, T., Muto, k., Muto, k., Goto, T., Mikami, H., Takamura,

M., Kimura, K., Kasahara, H.: OSCAR Compiler Controlled Multicore Power Re-
duction on Android Platform. LCPC (2013)

18. ODROID-X2, http://www.hardkernel.com/renewal\ 2011/products/prdt\
info.php?g\ code=G135235611947

19. Samsung Electronics: White Paper of Exynos 5. (2011)
20. Samsung Electronics: Samsung Exynos 4 Quad (Exynos 4412) RISC Microproces-

sor User’s Manual. (2012)
21. Samsung Semiconductors Global Site, https://www.samsung.com/global/

business/semiconductor/product/poweric/overview

22. GPIO Interfaces, https://www.kernel.org/doc/Documentation/gpio.txt
23. H.264, http://iphome.hhi.de/suehring/tml/
24. Lee, C., Potkonjak, M., Mangione-Smith, W.: MediaBench : A Tool for Evaluating

and Synthesizing Multimedia and Communications Systems. Proceedings of the
30th annual ACM/IEEE international symposium on Microarchitecture, pp. 330–
335. (1997)

25. Opencv http://www.opencv.org

