
OSCAR API v2.1: Extensions for an Advanced

Accelerator Control Scheme to a Low-Power

Multicore API

Keiji Kimura, Cecilia González-Álvarez, Akihiro Hayashi, Hiroki Mikami,
Mamoru Shimaoka, Jun Shirako, and Hironori Kasahara

Department of Computer Science and Engineering, Waseda University,
27 Waseda-machi, Shinjuku-ku, Tokyo, Japan,

kimura@apal.cs.waseda.ac.jp,

{cecilia,ahayashi,hiroki,shimaoka,shirako}@kasahara.cs.waseda.ac.jp,
kasahara@waseda.jp

http://www.kasahara.cs.waseda.ac.jp/

Abstract. The number of cores in smartphones and tablet-PCs are
rapidly increasing along with their required high computational power.
However, almost all applications on those devices have not used multi-
ple cores for their high speed and low power execution since the ap-
plication development environments, which allow the application de-
velopers easy and prompt development of parallelized application, are
not available. In addition to the development of parallelized applica-
tions, low-power consumption techniques and efficiently use of accel-
erators such as GPUs are required to application developers. In or-
der to provide more productive application development environment
for multicores, an automatic parallelizing compiler, OSCAR compiler,
which parallelizes C and Fortran programs automatically by applying
multi-grain parallelization, local-memory and cache optimization and
low-power optimization, has been developed. Furthermore, the OSCAR
API has been also developed as an interface between the OSCAR Com-
piler and various kinds of shared memory multicores including homoge-
neous and heterogeneous manycores with SMP, cc-NUMA and PGAS
architectures from various vendors, such as ARM, Intel, IBM, AMD,
Tilera, Fujitsu, Renesas Electronics, and so on. The OSCAR API v1.0
and v2.0 have been opened and their specifications are available from
http://www.kasahara.cs.waseda.ac.jp/. In the OSCAR API v1.0, funda-
mental thread control, memory control, DMA-control, power control and
flexible group barrier are supported. In the OSCAR API v2.0, various
kinds of heterogeneous multicores are supported. In this paper, the API
extensions in OSCAR API v2.1, which includes control schemes for asyn-
chronously executable accelerators, and hint directives for low-power op-
timizations, are described in addition to brief review of the OSCAR API
v1.0 and v2.0. A flexible and low-overhead accelerator control scheme
that allows us overlapped execution of CPUs, accelerators and DMA
controllers can be realized by newly added accelerator control APIs.

Key words: Multicore API, Parallelizing Compiler, Heterogeneous Computing

2 K. Kimura et al.

1 Introduction

Today’s many computer systems are organized as multicores and accelerators to
provide much computational power within limited power budget.

There are two popular approaches to add accelerators. The one is adding
SIMD functional units inside a pipeline of the host CPU like Intel SSE, Intel
AVX and ARM NEON[1–3]. The other is attaching accelerator modules, like
NVIDIA GPUs[4, 5] and Intel Xeon Phi[6], to, or sometimes inside, the host
CPU chip. Both approaches are used not only for desktop and server computers,
but also for embedded computers.

The first approach is especially suitable for short vector computations since
embedded SIMD functional units are driven by extended SIMD instructions in
the host CPU. However, extension for the pipeline and the instruction set ar-
chitecture is required to the host CPU. This extension requires expensive design
cost both for hardware and system software including compilers.

The second approach is suitable for long vector computations since the ac-
celerator module is separated from the pipeline of the host CPU. However, this
approach has been suffered from expensive control and data transfer overhead
between the host CPU and an accelerator module especially when they are con-
nected by an external bus like PCI-express. In other words, the host CPU and
the accelerator module are difficult to share the workload because of their large
communication overhead.

Regarding to the software development environment, there have been sev-
eral APIs and compiler frameworks especially for GPU, which is one of the
most popular accelerator modules. For example, CUDA developed by NVIDIA
has been widely used for GPGPU programing[7]. OpenCL and OpenACC try
to support various accelerators in addition to GPUs[8, 9]. In order to mitigate
expensive control and data transfer overhead between the host CPU and accel-
erators, these programing environments provide asynchronous accelerator exe-
cution model. Application programmers have been able to develop applications
with more general programing style than before since those programing envi-
ronments are extended from ordinarily C and Fortran specifications. However,
there have been still difficulties to develop parallelized programs that can fully
use of multiple cores and accelerators on a target computer system. Developers
must still parallelize there own applications very carefully by their hands.

In order to overcome the difficulty on the development of parallelized appli-
cations for heterogeneous multicore systems in addition to homogeneous mul-
ticores, the OSCAR multigrain parallelizing compiler has been developed. The
OSCAR compiler enables multigrain parallel processing[10–12], cache and local
memory optimizations[13, 14], power reduction optimizations[15], and automatic
parallelization considering accelerators[16]. The OSCAR API (Application Pro-
gram Interface) has been also developed to apply these optimizations by the
OSCAR compiler onto various multiprocessor and multicore systems, includ-
ing servers, desktop computers and embedded systems. The first version of the
OSCAR API (OSCAR API v1.0) supports thread creation, data allocation con-
sidering local data memory, distributed shared memory and on-chip/off-chip

OSCAR API Ver. 2.1 3

shared memory, and it employs a user-level power control API[17]. From the
second version, the OSCAR API (OSCAR API v2.0)[18] has supported acceler-
ator modules with blocking execution model, and also cache control directives
for future manycores.

This paper proposes a flag based accelerator control framework among CPUs,
accelerators and DMACs. New three directives are also added to OSCAR API
(OSCAR API v2.1) in order to realize that flag based accelerator control. This
paper also describes this extension of the OSCAR API.

The rest of this paper is organized as follows: Section 2 provides an overview
of the OSCAR compiler. Section 3 describes an overview of the OSCAR API
v1.0 and v2.0. Section 4 introduces the flag based accelerator control framework.
Section 5 describes the extension to the OSCAR API for the proposed flag based
acceleration control. Finally, Section 6 summarizes the main conclusion of this
paper.

2 OSCAR Compiler

This section provides an overview of the OSCAR multigrain parallelizing com-
piler.

Multigrain parallel processing exploits multiple grains of parallelism such as
coarse grain task parallel processing, loop iteration level parallel processing, and
statement level near fine grain parallel processing. In this study, loops, function
calls, and basic blocks are defined as coarse grain tasks.

In order to apply multigrain parallel processing to an ordinary sequential
program, the OSCAR compiler firstly decomposes a source C or Fortran program
into coarse grain tasks, namely macro-tasks (MTs), such as basic block (BPA),
loop (RB), and function call or subroutine call (SB). Then, the compiler analyzes
both the control flow and the data dependencies among MTs and represents them
as a macro-flow-graph (MFG). Next, the compiler applies the earliest executable
condition analysis, which can exploit parallelism among MTs associated with
both the control dependencies and the data dependencies. The analysis result is
represented as a macro-task-graph (MTG). If an MT is a subroutine call or a loop
that has coarse grain task parallelism, the compiler hierarchically generates inner
MTs inside that MT. Then, the compiler groups processor cores into processor
groups (PG) logically and hierarchically,

These MTs are assigned to processor cores by the compiler. If the MTG
has conditional branches or runtime fluctuations, dynamic scheduling is applied
to it. Otherwise, static scheduling is applied. In this scheduling time, if the
target architecture has accelerators, the OSCAR compiler assigns each MT on a
processor core or an accelerator core depending on the MT’s characteristics and
availability of the processor cores and accelerator cores[18, 16].

After generating MTGs, the compiler applies loop iteration level parallel
processing if an MT has loop iteration level parallelism. If an MT does not have
loop iteration parallelism but has statement level parallelism, such an MT is
processed by statement level near fine grain parallel processing[12].

4 K. Kimura et al.

Data locality optimization and data transfer optimization can be applied af-
ter generating MTGs. If multiple MTs share same data, whose size is greater
than that of the cache memory or the local memory, the OSCAR compiler de-
composes these MTs into smaller MTs in order to fit the shared data accessed by
each MT into the cache or the local memory by loop aligned decomposition[13].
Then, these decomposed MTs are scheduled onto processor cores in order to as-
sign MTs, which access same smaller data, successively as much as possible[14].
If the target architecture has a local memory, the compiler assigns processor
private data to the local memory and generates data transfer codes between the
main memory and the local memory. These data transfer codes are overlapped
MT execution as much as possible by data transfer optimization[19].

If there are idle or busy-waiting periods between MTs in a statically scheduled
MTG, the compiler tries to minimize total power dissipation by prolonging the
execution time of MTs with DVFS or applying clock gating and power gating
during the idle periods. This execution mode is named as the fastest execution
mode. Similarly, if the deadline of an MTG is given and there are sufficient
idle periods until the deadline, the compiler also applies DVFS, clock gating,
and power gating[15]. This execution mode is named as the deadline execution
mode. If a power-optimized MTG with deadline is processed iteratively as in
the case of a movie player, this execution mode is named as real-time execution
mode.

3 OSCAR API

This section briefly introduces the OSCAR API v1.0 and v2.0, respectively.
Then, the compilation flow of the OSCAR compiler using the OSCAR API is
described. Evaluation results of the OSCAR Compiler and the OSCAR API are
also shown in this section.

3.1 OSCAR API v1.0

The OSCAR API is designed on a subset of OpenMP[20] for preserving porta-
bility over a wide range of shared memory multicore architectures. An OpenMP-
based design can support both C and Fortran programs.

The directives of the OSCAR API v1.0 are decided for the target multi-
core architecture, namely the OSCAR architecture shown in Fig.1. The OSCAR
architecture consists of multiple multicore chips and an off-chip CSM (Central-
ized Shared Memory) module. Each multicore chip has multiple processor cores
and an on-chip CSM. Each processor core has a CPU, data caches, instruction
caches, an LPM (Local Program Memory), an LDM (Local Data Memory) for
core private data, a DSM (Distributed Shared Memory) for synchronization flags
and shared data, a DTC (Data Transfer Controller, a kind of intelligent DMA
controller), a Timer (Timer Unit), an FVR (Frequency and Voltage Control
Register) and a Group Barrier (Group Barrier Synchronization module). Each
module in the OSCAR architecture may have an FVR.

OSCAR API Ver. 2.1 5

CPU
Local Data

Memory

(LDM)

Distributed
Shared Memory

(DSM)

Data Transfer
Controller

(DTC)

Private
Level-1 Data

Cache

(L1DCACHE)

Level j+1 Shared Cache
(L(j+1)SCACHE)

On-chip Centralized Shared Memory
(OnchipCSM)

Group
Barrier

Frequency and

Voltage Control

Register (FVR)

Timer

Off-chip Centralized Shared Memory (OffchipCSM)

Processor Core 0 (PC0) PC1 PCn

Multicore Chip 0 (CHIP0) CHIP1 CHIPm

FVR

FVR

FVR FVR

FVR FVR

LjCACHE

Private Level-i Unified Cache

(LiCACHE)

Private

Level-1

Instruction

Cache 1

(L1ICACHE)

Local Program Memory
(LPM)

Interconnect

Interconnect

Fig. 1. OSCAR Multicore Architecture

Though the OSCAR API defines the OSCAR architecture as the target ar-
chitecture, the API dose not require that the final target architecture has all
of those modules except off-chip CSM. For example, the OSCAR API can be
applied to the multicore, which has only instruction caches, data caches and off-
chip CSM like an ordinary SMP multicore architecture, by ignoring directives
related with LDM and DSM. Thus the OSCAR API can be applied to various
kinds of shared memory type multicore systems.

In order to avoid the complexity of a backend compiler and runtime rou-
tines, only three directives are chosen from the OpenMP, such as “parallel
sections”, “flush”, and “critical”. These three directives enables the paral-
lel execution model of the OSCAR compiler, namely one-time single level thread
creation[10, 14].

In the OSCAR API v1.0, one OpenMP directive (threadprivate) is extended,
and 12 directives are newly added in addition to the previously mentioned three
directives from the OpenMP. Fig.2 shows a list of these directives in the OSCAR
API v1.0. These directives are classified into six categories such as Parallel Ex-
ecution API, Memory Mapping API, Synchronization API, Data Transfer API,
Power Control API, and Timer API. These APIs control modules in the OSCAR
architecture. For example, in the case of Memory Mapping API, “threadprivate”,
“distributedshared” and “onchipshared” locate variables on LDM, DSM and on-
chip CSM, respectively.

3.2 OSCAR API v2.0

From the OSCAR API v2.0, accelerator directives for heterogeneous multicores
and cache control directives for non-coherent cache architecture have been sup-

6 K. Kimura et al.

• Parallel Execu�on API

– parallel sec�ons

– flush

– cri�cal

• Memory Mapping API

– threadprivate

– distributedshared

– onchipshared

• Synchroniza�on API

– groupbarrier

• Data Transfer API

– dma_transfer

– dma_con�guous_parameter

– dma_stride_parameter

– dma_flag_check

– dma_flag_send

– execu�on

• Power Control API

– fvcontrol

– get_fvstatus

• Timer API

– get_current_�me

Fig. 2. List of Directives in OSCAR API v1.0

ported. In this paper, only accelerator related directives are described because
of the scope of this paper.

Fig.3 shows a target heterogeneous multicore architecture in the OSCAR
API v2.0. A processor core can have accelerator modules as shown in this figure
in addition to the OSCAR architecture shown in Fig.1. Each accelerator must be
coupled with a controller CPU, which manages initialization and data transfer
for accelerators. It is recommended that an accelerator module and the corre-
sponding controller CPU are equipped in the same processor core as in Fig.3
because of low communication overhead between them. However, an accelerator
and the controller CPU can be located in different processor cores like ordinary
heterogeneous system having GPUs.

Fig.4 shows added directives in the OSCAR API v2.0. One directive for
accelerator control and five directives for cache control are added. In addition,
two hint directives for the OSCAR compiler are added.

Regarding to the accelerator modules, an “accelerator task” hint direc-
tive can be used for specifying a loop or a function call, which can be executed
on accelerator modules. The OSCAR compiler uses this hint directive for its
task scheduling considering accelerators[18, 16]. An “accelerator task entry”
specifies an entry function that initiates the target accelerator and starts the
program code for the accelerator. When a controller CPU calls an entry func-
tion specified by an accelerator task entry, this controller CPU waits for the
completion of the function executed on an accelerator since the OSCAR API
v2.0 supports a blocking execution model as an accelerator execution model.

3.3 Compilation Flow of OSCAR Compiler with OSCAR API

Fig.5 shows an image of the compile flow of the OSCAR compiler with the
OSCAR API. In this figure, “Parallelizable C” stands for C with some restriction
around pointer usages for ease of parallelization by the compiler.

Firstly, a sequential C or Fortran program is taken into the OSCAR compiler.
For heterogeneous parallelization, accelerator compilers or application developers
insert “accelerator task” hint directives to specify the part of the program,

OSCAR API Ver. 2.1 7

CPU

Group
Barrier

Frequency and

Voltage Control

Register (FVR)

Timer

Processor Core 0 (PC0) PC1 PCn
Multicore Chip 0 (CHIP0) CHIPk

FVR FVR FVRLjCACHE

Private Unified Level-i Cache

(LiCACHE)

Private
Level-1

Instruction
Cache

(L1ICACHE)

Local Program Memory (LPM)

CPU

Local Data
Memory
(LDM)

Distributed
Shared Memory

(DSM)

Data Transfer
Controller

(DTC)

Private
Level-1 Data

Cache

(L1DCACHE)

Level j+1 Shared
Cache

 (L(j+1)SCACHE)

On-chip
Centralized

Shared Memory
(OnchipCSM)

Group
Barrier

Frequency and

Voltage Control

Register (FVR)

Timer

Processor Core n+1 (PC n+1) PCn+2 PCm
Off-chip Centralized
Shared Memory
(OffchipCSM)

FVR

FVR FVR FVRLjCACHE

Private
Level-1

Instruction
Cache

(L1ICACHE)

Local Program Memory (LPM)

Accelerator

Local Data
Memory
(LDM)

Distributed
Shared Memory

(DSM)

Data Transfer
Controller

(DTC)

Private
Level-1 Data

Cache

(L1DCACHE)

Interconnect
Interconnect

Private Unified Level-i Cache

(LiCACHE)

Fig. 3. OSCAR Heterogeneous Multicore Architecture

• Accelerator API

– accelerator_task_entry

• Hint directives for
OSCSR compiler

– accelerator_task

– oscar_comment

• Cache Control API

– cache_writeback

– cache_selfinvalidate

– complete_memop

– noncacheable

– aligncache

Fig. 4. List of Added Directives in OSCAR API v2.0

which can be executed on accelerators, before the parallelizaiton by the OSCAR
compiler.

Then, the source sequential program is parallelized by the OSCAR compiler.
The OSCAR compiler generates a parallelized C or Fortran code by inserting
directives in the OSCAR API described in Section3.1 and Section3.2. When the
compiler assigns tasks onto accelerators, the generated codes for accelerator tasks
are placed on separate files from those for the CPUs. The entry functions for the
accelerator tasks are annotated by “accelerator task entry” directives.

This parallelized code is then compiled by an OpenMP compiler for server
platform, or translated into a C or Fortran program with run-time library calls
by an API translator in front of a backend compiler of the target multicore.

8 K. Kimura et al.

Finally, the backend compiler generates an executable object for the target
multicore. Accelerator programs are compiled by accelerator compilers and liked
with the CPU object files.

Backend Compiler
!

!

!

Backend Compiler
!

!

!

Backend Compiler
!

!

!

Exec.
Object

Proc0

Scheduled

Tasks

 T1 off

Proc1

Scheduled

Tasks

 T2 T4

Proc2

Scheduled

Tasks

 T3 T6(slow)

RP1

API

Translator

API

Translator

API

Translator

RP2

Other

Multicores

(with ACC)

Exec.
Object

Exec.
Object

Native

Compiler

Native

Compiler

Native

Compiler

OSCAR
Compiler

•Multigrain

parallel

processing

•Data locality

optimization

•Data Transfer

optimization

•Low power

optimization

Sequential
Program

Parallelized Fortran or

C code with OSCAR API

Written in Fortran or

Parallelizable C Backend Compiler

Exec.
Object

OpenMP

Compiler

RP1

Accelerator
 Compiler

Accelerator
 Compiler

Acc1

Scheduled

Tasks T7

Insert Hint
Directives

as Acc-Information

Fig. 5. Compilation Flow of OSCAR Compiler with OSCAR API

3.4 Evaluations

The evaluation results of the OSCAR compiler and the OSCAR API on a server
machine and a heterogeneous embedded multicore are shown in this section.

For the evaluation on the server machine, Hitachi SMP RS440, which is
equipped with Intel Xeon X7560 driven at 2.27GHz, is used. RS440 has four
Intel Xeon processors and each of them has 8 cores. Therefore, this server ma-
chine has totally 32 cores. Fortran and C benchmark programs are used for
the evaluation on RS440. tomcatv, swim2000 and mgrid2000 from SPEC bench-
marks are used as Fortran benchmark programs. AAC encoder (aac), Optical
Flow (optflow), MPEG2 encoder (m2enc) and Face Detect (fd) are used as C
benchmark programs. These programs are parallelized by the OSCAR compiler,
then the generated parallelized Fortran and C programs with the OSCAR API
are compiled by gcc with “-O3 -fopenmp”. The OSCAR API’s compatibility
with OpenMP allows developers to use gcc as an OSCAR API translator and a
backend compiler.

Fig.6 shows the evaluation results on RS440. X-axis shows the number of
cores and Y-axis shows the speedup against sequential execution time. Each
bar shows the speedup for each evaluated program. These graphs show each

OSCAR API Ver. 2.1 9

evaluated program achieves scalable performance improvement along with the
increasing number of cores. Especially, mgrid2000 in Fortran benchmark pro-
grams achieves 14.20 times speedup, and aac in C benchmark programs achieves
19.06 times speedup with both on 32 cores, respectively.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 4 8 16 32

s
p

e
e

d
u

p

number of cores

RS440 (Fortran benchmarks)

tomcatv

swim2000

mgrid2000

0.00

5.00

10.00

15.00

20.00

25.00

1 2 4 8 16 32

s
p

e
e

d
u

p

number of cores

RS440 (C benchmarks)

aac

optflow

m2enc

m2dec

fd

Fig. 6. Evaluation Result on Intel Xeon Server (RS440)

For the evaluation on the heterogeneous embedded multicore, RP-X devel-
oped by Hitachi, Renesas, Tokyo Institute of Technology, and Waseda University,
is used[21]. RP-X has eight SH4A cores driven at 648MHz and four FE-GA recon-
figurable accelerator cores driven at 324MHz. Different configurations of number
of SH4A cores and FE-GA cores are evaluated. AAC encoder and Optical Flow
are used for this evaluation. The OSCAR compiler parallelized these programs
and generates parallelized C code with OSCAR API v2.0 including accelerator
directives. These inserted OSCAR API directives are translated into runtime
library calls for the evaluated RP-X system by the developed API translator.

Fig.7 shows the evaluation results on RP-X. Each bar shows speedup on each
core configuration against the sequential execution on one SH4A core. For exam-
ple, “8SH” bar shows the speedup using eight SH4A cores. Similarly, “4SH+2FE”
bar shows the speedup using four SH4A cores and two FE-GA cores. This figure
also shows the scalable performance improvement along with the increasing num-
ber of SH4A cores and FE-GA cores. Especially, Optical Flow program achieves
32.65 times speedup with eight SH4A cores and four FE-GA cores.

4 Flag Based Accelerator Control

The proposed CPU, DTC (Data Transfer Controller) and Accelerator execution
model, Flag Based Accelerator Control, extended in the OSCAR API v2.1 is
described in this section.

This execution model assumes there are CPU, DTC, ACC (Accelerator) and
a local memory such as LDM or DSM in Fig.3 in a processor core of a multicore
chip. CPU, DTC and ACC share the local memory. Program code for DTC and

10 K. Kimura et al.

Optical Flow AAC

0

10

20

30

40

1SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

16.08

8.77

4.60
6.33

1.00

32.65

26.71

18.85

5.40

1.00

Fig. 7. Evaluation Result on Heterogeneous Embedded Multicore (RP-X)

ACC are located on the local memory by the compiler. When this system exe-
cutes a parallelized program, CPU, DTC and ACC are executed independently.

Fig.8 shows a block diagram of such a processor core. This figure also shows
an execution image of the CPU, DTC and ACC.

Flag variables shared among CPU, DTC and ACC are located on the local
memory ((0) in the figure). When CPU starts the execution of DTC, CPU in-
crements the flag variable “A” on the local memory (1). DTC checks the flag
variable “A” (2). When DTC detects the update of flag “A”, it starts data trans-
fer between off-chip memory or a DSM on an other core (3). After data transfer,
DTC increments the flag variable “B” (4). ACC also checks the flag variable “B”
(5). When ACC detects the update of flag “B”, it starts its execution (6). Thus,
CPU, DTC and ACC can execute their own program simultaneously and the
overhead for control and data transfer is hidden by such an overlap execution
model.

DTC

Sync Flag Area
Flag Var. (A): i->i+1
Flag Var. (B): i->i+1

ACC

CPU DTC

SSSSyyyyyyyyynnnnnnnnnnncccccccc Fla
Flag Var. (AC

C
(3)

rea
->i+1111111111
>i+1111111Flag Var. (B): i->

(1) (2) (4)

(0)
(6)

Local Memory

(5)

Fig. 8. Execution Image of Flag Based Accelerator Control

In order to give more concrete execution image, firstly, a sample code and
its execution image on an ordinary non-overlap, or blocking, manner are shown
in Fig.9-(a) and Fig9-(b), respectively. Then, sample codes of CPU, DTC, and

OSCAR API Ver. 2.1 11

ACC for the proposed flag based accelerator control are shown in Fig.10-(a), and
an execution image by those codes is shown in Fig.10-(b).

There is a doubly nested loop in the Fig.9-(a). The inner loop is to be executed
on ACC. Before this inner loop, DTC loads the data from the off-chip memory
to the local memory. Similarly, DTC stores the data from the local memory to
the off-chip memory after the inner loop. This sample code is executed as shown
in the Fig.9-(b). CPU starts the execution of DTC. This CPU waits for the end
of DTC execution. Then, CPU starts the execution of ACC. CPU also waits
for the end of ACC execution. Thus, the utilization of CPU, DTC and ACC
becomes very low.

On the other hand, in the proposed execution model, each of program code
for DTC and ACC are separately generated in addition to that of CPU, as
shown in the Fig.10-(a). Flag-send and flag-check codes are also inserted into
those program codes. The program codes for DTC and ACC are located on the
local data memory. Fig.10-(b) shows an execution image of the sample code in
Fig.10-(a), which is similar to double buffer execution image. In this example,
the ACC execution with “Set Flag (G0)”, DTC load for next iteration with “Set
Flag (B1)”, and CPU execution for preparing next iteration are simultaneously
executed. The end of DTC load is notified by DTC’s update of the flag variable
“B”. Each of CPU and ACC can start next execution by checking the flag vari-
able “B” independently. Thus, such an overlap of execution among CPU, DTC
and ACC can aggressively hide the data transfer and control overhead of DTC
and ACC.

5 OSCAR API Extension for Flag Based Accelerator

Control

The newly added directives in the OSCAR API v2.1 are introduced in this
section.

In order to realize the proposed flag based accelerator control described in
Section 4, the following three directives are added:

– accelerator task entry nonblocking

– acc flag send

– acc flag check

accelerator task entry nonblocking takes a list of function names. These
functions are entry points of the accelerator cores. An entry function specified
by this directive is located on a source file for the target accelerator core. Note
that a source file for the target accelerator core includes other functions called by
entry functions. Such an entry function is compiled by an accelerator compiler
and combined with a start code for the accelerator. When a CPU calls an entry
function, this CPU executes a start code of the accelerator, then this accelerator
starts the body of the entry function. From this point, the accelerator core
executes its own program independently from CPU cores.

12 K. Kimura et al.

Kick DTC

Load
Calculate

Store

DTC-Load

Control Signal

Load from Memory

CPU DTC ACC

Store to Memory

Kick ACC

Kick ACC

Load
Calculate

Store

Kick DTC

DTC-Store

Prepare
Next Calculation

CORE

for () {
 DTC-Load (LM <- offchip)

 for () {

 {

 /* Accelerator Code

 (load/calc/store) */
 }

 Prepare Next Calculation

 }

 DTC-Store (LM->offchip)

}

(a) Sample Code

(b) Execution Image

Fig. 9. Execution Execution Image of CPU, DTC and Accelerator with Ordinary Con-
trol Model

DTC-Load
Set Flag (B1,G1)

DTC-Store
Set Flag (F0)

DTC-Load
Set Flag (B0)

Check Flag
A0

1)1)1)

Set Flag A1

DTC-Load
Set Flag (B1)

Flag set-and-checkCORE

ddd
))

Load from
 Memory

CPU DTC ACC

ee
00)))

Store to
 Memory

Set Flag H0

Set Flag H0

Set Flag H1

Set Flag A0

d

Load
Calculate

Store
Set Flag (G0)

DTC-Store
Set Flag (F1)

Set Flag H1
Set Flag A1

Load
Calculate

Store
Set Flag(G0)

Load
Calculate

Store
Set Flag(G1)

Check Flag G0
Prepare Next
Calculation

Prepare Next
Calculation

Check Flag G1

Set Flag H0

Check Flag G0
Prepare Next
Calculation

Check Flag A1 Check Flag B0

Check Flag B1

Check Flag B0
Check Flag A1

Check Flag B0

Check Flag H0

Check Flag H1

Check Flag H0

Check Flag B1

Check Flag B0

for () {
 Set Flag (A)

 Check Flag (B)

 for () {

 Check Flag (G)

 Prepare Next Calculation
 Set Flag (H)

 }

 Set Flag (E)

 Check Flag (F)

}

Check Flag (B)
Check Flag (H)

{

 /* Accelerator Code

 (load/calc./store */

}
Set Flag (G)

Check Flag (A)
DTC-Load (LM <- Mem)

Set Flag (B)

Check Flag (E)
DTC-Store (LM->Mem)

Set Flag (F)

DTC

ACC

DTC

CPU

(a) Sample Code

(b) Execution Image

Fig. 10. Execution Image of CPU, DTC and Accelerator with Flag Based Control
Model

OSCAR API Ver. 2.1 13

acc flag send and acc flag check are placed in functions written in source
files for target accelerators. An accelerator core sets a specified value into a flag
variable at an acc flag send directive. Similarly, an accelerator core checks a
flag variable and waits for that flag variable becoming a specified value at an
acc flag check directive.

dma flag send and dma flag check have been also defined for controlling
DTC from the OSCAR API v1.0. The usages of these directives are same as those
of acc flag send and acc flag check, respectively. These directives enable fine
grain and flexible communications between CPU cores, DTCs and accelerator
cores as shown in Fig.10.

In addition to the accelerator directives, two hint directives for the OSCAR
compiler are also added in the OSCAR API v2.1:

– deadline

– upper power limit

deadline specifies a deadline for the code fragment. This hint directive is
used for task scheduling considering deadline in the OSCAR compiler. Simi-
larly, upper power limit specifies a power limit for the code fragment. This
hint directive is also used for task scheduling considering power capping in the
compiler.

Fig.11 shows a sample accelerator program for acc flag send, acc flag check

and accelerator task entry nonbloking directives. In this sample program,
“oscartask CTRL2 loop1” function is listed in the accelerator task entry di-
rective, which has been introduced from the OSCAR API v2.0, and “oscar-
task loop2” function is listed in the accelerator task entry nonblocking di-
rective, respectively. “oscartask CTRL2 loop1” is called from a controller CPU
(controller(2)) and this controller CPU wait for the completion of this function
on the accelerator core. On the other hand, a caller CPU resumes its execution
just after calling “oscartask loop2”, then the CPU and the accelerator core can
execute their own programs simultaneously. In order to synchronize between a
CPU and an accelerator core, acc flag check and acc flag send are inserted
before and after the for-loop in oscartask loop2.

6 Conclusions

Hiding communication and data transfer overhead between CPU, DTC and ac-
celerator cores enables more flexible, efficient and low-powered parallel program
execution on future manycore processors for from embedded to super comput-
ers. For this purpose, a flag based accelerator control scheme has been pro-
posed that allows us to use CPUs, DTCs and accelerators autonomously with-
out the control by CPUs, in this paper. Then, the newly added directives in
the OSCAR API v2.1 have been introduced in addition to the brief review of
the OSCAR API v1.0 and v2.0. Development of manycore architecture and a
parallelizing compiler, which enable this flexible execution model by cooper-
ating between the architecture and the compiler, is our future work. The all

14 K. Kimura et al.

Fig. 11. Sample Code of OSCAR API v2.1

specifications for the OSCAR API v1.0, 2.0 and 2.1 will be available from
http://www.kasahara.cs.waseda.ac.jp/.

References

1. S. Thakkar and T. Huff. Internet streaming simd extensions. Computer, 32(12):26–
34, 1999.

2. N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and H. Kuo. Intel avx: New frontiers
in performance improvement and energy efficiency, 2008.

3. Armv8 instruction set overview, 2012.

4. Nvidia’s next generation cuda computer architecture: Kepler gk110, 2012.

5. Nvidia tegra 4 family gpu architecgure, 2013.

6. G. Chrysos. Knights corner, intel’s first many integrated core (mic) architecture
product. In Proc. of Hot Chips 24 (HC24), August 2012.

7. http://www.nvidia.com/cuda/.

8. http://www.khronos.org/opencl/.

9. http://www.openacc-standard.org/.

OSCAR API Ver. 2.1 15

10. H. Kasahara, M. Obata, and K. Ishizaka. Automatic coarse grain task parallel
processing on smp using openmp. In Proc. of 13th International Workshop on
Languages and Compilers for Parallel Computing (LCPC’00), August 2000.

11. M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and H. Kasahara. Hierarchical
parallelism control for multigrain parallel processing. Lecture Notes in Computer
Science, 2481:31–44, 2005.

12. K. Kimura, Y. Wada, H. Nakano, T. Kodaka, J. Shirako, K. Ishizaka, and H. Kasa-
hara. Multigrain parallel processing on compiler cooperative chip multiprocessor.
In Proc. of 9th Workshop on Interaction between Compilers and Computer Archi-
tectures (INTERACT-9), February 2005.

13. A. Yoshida, K. Koshizuka, and H. Kasahara. Data-localization for fortran macro-
dataflow computation using partial static task assignment. In Proc. of 10th ACM
International Conference on Supercomputing, May 1996.

14. K. Ishizaka, M. Obata, and H. Kasahara. Coarse grain task parallel process-
ing with cache optimization on shared memory multiprocessor. In Proc. of
14th International Workshop on Languages and Compilers for Parallel Comput-
ing (LCPC2001), August 2001.

15. J. Shirako, N. Oshiyama, Y. Wada, H. Shikano, K. Kimura, and H. Kasahara.
Compiler control power saving scheme for multi core processors. Lecture Notes in
Computer Science, 4339:362–376, 2007.

16. Y. Wada, A. Hayashi, T. Masuura, J. Shirako, H. Nakano, H. Shikano, K. Kimura,
and H. Kasahara. A parallelizing compiler cooperative heterogeneous multicore
processor architecture. Lecture Notes in Computer Science, 6760:215–233, 2011.

17. K. Kimura, M. Mase, H. Mikami, T. Miyamoto, J. Shirako, and H. Kasahara. Oscar
api for real-time low-power multicores and its performance on multicores and smp
servers. Lecture Notes in Computer Science, 5898:188–202, 2010.

18. A. Hayashi, Y. Wada, T. Watanabe, T. Sekiguchi, M. Mase, J. Shirako, K. Kimura,
and H. Kasahara. Parallelizing compiler framework and api for power reduction
and software productivity of real-time heterogeneous multicores. Lecture Notes in
Computer Science, 6548:184–198, 2011.

19. H. Kasahara, M. Kogo, T. Tobita, T. Masuda, and T. Tanaka. An automatic coarse
grain parallel processing scheme using multiprocessor scheduling algorithms con-
sidering overlap of task execution and data transfer. In Proc. SCI99 and ISAS99,
August 1999.

20. http://www.openmp.org/.
21. Y. Yuyama, M. Ito, Y. Kiyoshige, Y. Nitta, S. Matsui, O. Nishii, A.Hasegawa,

M. Ishikawa, T. Yamada, J. Miyakoshi, K. Terada, T. Nojiri, M. Satoh, H. Mizuno,
K. Uchiyama, Y. Wada, K. Kimura, H. Kasahara, and H.Maejima. A 45nm
37.3gops/w heterogeneous multi-core soc. In Proc. of IEEE International Solid
State Circuits Conference (ISSCC2010), February 2010.

