
Multigrain Parallelization for Model-based
Design Applications Using the OSCAR Compiler

Dan Umeda, Takahiro Suzuki, Hiroki Mikami,
Keiji Kimura, and Hironori Kasahara

Green Computing Systems Research Center
Waseda University - Tokyo, Japan - Tel./Fax. +81-3-3203- 4485/4523

{umedan,taka,hiroki}@kasahara.cs.waseda.ac.jp,
{keiji,kasahara}@waseda.jp,

http://www.kasahara.cs.waseda.ac.jp/

Abstract. Model-based design is a very popular software development
method for developing a wide variety of embedded applications such as
automotive systems, aircraft systems, and medical systems. Model-based
design tools like MATLAB/Simulink typically allow engineers to graph-
ically build models consisting of connected blocks for the purpose of
reducing development time. These tools also support automatic C code
generation from models with a special tool such as Embedded Coder to
map models onto various kinds of embedded CPUs. Since embedded sys-
tems require real-time processing, the use of multi-core CPUs poses more
opportunities for accelerating program execution to satisfy the real-time
constraints. While prior approaches exploit parallelism among blocks by
inspecting MATLAB/Simulink models, this may lose an opportunity for
fully exploiting parallelism of the whole program because models po-
tentially have parallelism within a block. To unlock this limitation, this
paper presents an automatic parallelization technique for auto-generated
C code developed by MATLAB/Simulink with Embedded Coder. Specif-
ically, this work 1) exploits multi-level parallelism including inter-block
and intra-block parallelism by analyzing the auto-generated C code, and
2) performs static scheduling to reduce dynamic overheads as much as
possible. Also, this paper proposes an automatic profiling framework
for the auto-generated code for enhancing static scheduling, which leads
to improving the performance of MATLAB/Simulink applications. Per-
formance evaluation shows 4.21 times speedup with six processor cores
on Intel Xeon X5670 and 3.38 times speedup with four processor cores
on ARM Cortex-A15 compared with uniprocessor execution for a road
tracking application.

Key words: automatic parallelization, multi-core, model-based design,
MATLAB/Simulink, automatic code generation

1 Introduction

The Model-based design like MATLAB/Simulink [1] has been widely used since
it enables high software productivity in reduced turn-around times for embedded



2 Dan Umeda et al.

systems [2]. Commercial model-based design tools support auto-code generation
from a model that is represented by a block diagram [3, 4]. MATLAB/Simulink
is one of the most popular tools for the model-based design of automotive sys-
tems, aircraft systems, and medical systems. This tool can generate C/C++
code for embedded systems with Embedded Coder [5] (formerly known as Real-
Time Workshop). The automatic code generation feature saves programmers
from developing embedded applications in error-prone programming languages,
however, this code generator does not optimize the application for target sys-
tems. Of course, it does not parallelize the application, even though a target
system has a multi-core processor.

Several approaches have been proposed to utilize multi-cores for the appli-
cation developed in MATLAB/Simulink. Some products have supported semi-
automatic parallelization techniques for a multi-core processor using task parti-
tioning by an application developer [6, 7]. These technique can achieve a func-
tional distribution of MATLAB/Simulink application, but cannot reduce load
balancing which is most important for embedded real-time application. In ad-
dition, these tools support parallel processing in limited environments for sim-
ulation using Simulink. For an automatic parallelization of MATLAB/Simulink
applications, Arquimedes et al. proposed an automatic equation-level paralleliza-
tion technique of a Simulink model [8]. Their approach exploited parallelism
among Mealy blocks such as integrators, derivatives, unit delays and so on.
However, their method is only applicable to applications for simulation includ-
ing mealy blocks. This approach does not focus on embedded systems. As an
automatic parallelization technique for embedded applications, Kumura et al.
proposed a model based parallelization by analyzing of dependencies from block
connections among Simulink blocks [9]. This technique makes it possible to per-
form a parallel processing by exploiting block level parallelism from a model.
However, exploiting this parallelism does not always allow us to exploit the
full capability of multi-cores since a granularity of task depends on how the
MATLAB/Simulink users define a block. A model information is too abstract
to represent multi-grain parallelism including parallelism intra-blocks such as
library Simulink blocks and users customized blocks. Therefore, this may lose
an opportunity for optimizations, for example, by causing unequal workload on
each core.

Unlike these prior approaches, this paper proposes an automatic paralleliza-
tion method using an automatic multigrain parallelizing compiler, or the OSCAR
compiler [10] from auto-generated C code developed by MATLAB/Simulink.
While this approach successfully analyzes the C code because it is easy for the
compiler to exploit parallelism using pattern matching and the code does not
require a sophisticated pointer analysis for readability and MISRA-C, it is pos-
sible that future versions of Embedded Coder could limit the analysis of par-
allelism. The compiler exploits both of coarse grain parallelism inter-block and
loop level parallelism intra-block from the auto-generated C code. Then, the
compiler adjusts a task granularity with the minimum overhead by perform-
ing inline expansion and task fusion for conditional branches to improve the



Multigrain Parallelization for Model-based Design Applications 3

utilization of each core. After optimization, the compiler assigns parallel task
onto processor cores using a static task scheduling considering profiling informa-
tion on MATLAB/Simulink. Then, the compiler finally generates parallelized C
code regardless of target processors. Although this paper focuses on the appli-
cation developed by MATLAB/Simulink, the proposed method has a potential
to apply to other model-based design tools since it exploits parallelism from the
auto-generated C code regardless of a grammar of the tools. The features of the
proposed method include:

– Fully automatic parallelization technique of the C code generated by a
model-based design tool for embedded systems without dependence on a
grammar of this tool.

– Construction of automatic profiling framework for a MATLAB/Simulink
model to improve performance of the statically scheduled parallel code.

– Multigrain parallelization technique of model-based design applications that
enables to overcome the limitation of the block level parallelization technique
that is common in the field of model-based design.

The rest of this paper is organized as follows: Section 2 provides a framework
for parallelization of model-based design applications. Section 3 introduces how
to exploit parallelism from MATLAB/Simulink application using the OSCAR
compiler. Section 4 describes multi-grain parallel processing method for the ap-
plications. Section 5 shows performance evaluation for the applications using the
proposed method. Finally, section 6 represents some conclusions.

Fig. 1. Overview of the proposed framework for parallelization of model-based design
applications



4 Dan Umeda et al.

2 Framework for Parallelization of Model-based Design
Applications

This section describes a framework for parallelization of model-based design ap-
plications. The model-based design tools with an automatic code generator like
MATLAB/Simulink are widely used since it enables high software productivity
for embedded systems. However, the code generator like Embedded Coder does
not optimize the application for target multi-cores. Therefore, several researchers
have proposed the parallelization technique for the application on multi-cores.
The previous works [8] and [9] analyzed a model file model.mdl to exploit par-
allelism among blocks in the model. This may lose an opportunity to exploit
the whole parallelism in the model. For example, their approaches lose to ex-
ploit hierarchical multigrain parallelism, even though a model has parallelism
inner Simulink blocks. It may cause unequal workload on each core. Addition-
ally, they depend on a grammar of the model-based design tool. Indeed, the
model file model.mdl have changed to a new model file model.slx from MATLAB
R2012a.

In contrast, our proposed method analyzes auto-generated C code developed
by MATLAB/Simulink with Embedded Coder to exploit hierarchical multigrain
parallelism which is not represented in the model file. This approach does not
depend on the grammar of model-based design tools since it analyzes the code
to extract parallelism. Additionally, the proposed framework uses profiling in-
formation including execution counts and time to handle dynamic features of
programs such as conditional branches and fluctuations in the number of itera-
tions of loops.

Fig.1 shows an overview of the proposed framework. At the step1, the OS-
CAR compiler analyzes C code that is generated by Embedded Coder from a
model. Then, the compiler instruments a sequence of C code inserting profile
functions and the MATLAB/Simulink interface (MEX function [11]). This code
is used to gather profiling information about a program execution on MAT-
LAB/Simulink. Thereby, this framework can gather the profiling information
in software-in-the-loop simulation (SILS) or processor-in-the-loop simulation
(PILS) on the model-based design tool. Then, the profiler generates the pro-
filing information during executing a model including the profile C code. At the
step2, the compiler analyzes the auto-generated C code and exploits hierarchi-
cal multigrain parallelism in the whole program. After exploiting parallelism,
the compiler schedules parallel tasks onto processor cores and finally generates
parallelized C code using the profiling information.

3 Exploiting Parallelism Using the OSCAR Compiler

This section explains a method to exploit multigrain parallelism from auto-
generated C code developed by MATLAB/Simulink using the OSCAR compiler.



Multigrain Parallelization for Model-based Design Applications 5

Fig. 2. Sample Simulink model and auto-generated C code from the model using the
Embedded Coder

3.1 Example of MATLAB/Simulink Application

This paper takes an example of MATLAB/Simulink application to describe the
parallelism in it. The example is simple to explain parallelism of the model,
however, real applications are too sophisticated to extract all parallelism be-
cause there are many of block connections and feedback loops. Therefore, it is
difficult to achieve efficient performance on multi-cores using manual paralleliza-
tion. Fig.2-(a) shows a model of Sobel filter that performs edge detection of a
binary image. It consists of a Const block, a Divide block, MATLAB Function

blocks (user’s library functions) named as CalcGx and CalcGy, and a Subsystem
block named as Norm. Evidently, the model has parallelism among CalcGx and
CalcGy because there is no connection among them.

Fig.2-(b) shows auto-generated C code from the model in Fig.2-(a) by Em-
bedded Coder. A loop as shown in line 4-6 corresponds to the Divide block
in Fig.2-(a). Each of functions of Sobel CalcGx and Sobel CalcGy corresponds
each of the MATLAB Function blocks named as CalcGx and CalcGy in Fig.2-(a).
A function of Sobel Norm corresponds to the Subsystem block named as Norm
in Fig.2-(a).

3.2 Coarse Grain Task Parallel Processing

Coarse grain task parallel processing uses parallelism among three kinds of coarse
grain tasks, namely macro-tasks (MTs). Parallelism is expressed graphically as a
macro-task graph (MTG) including data dependencies and control dependencies
among MTs. The MTs on the MTG are assigned to processor cores by a static or
a dynamic task scheduling method. As a result of the assignment, the OSCAR
compiler generates parallelized C code while preserving the original semantics
of the program.

Generation of Macro-tasks In the coarse grain task parallelization of the OS-
CAR compiler, auto-generated C code from a MATLAB/Simulink model is de-
composed into the MTs. The MTs include basic blocks (BBs), repetition blocks
or loops (RBs), and subroutine blocks (SBs). The MTs can be hierarchically



6 Dan Umeda et al.

defined inside each sequential loop or a function [10]. Moreover, the RB is trans-
formed LOOP, which means the compiler analyzes this loop as a sequential loop,
or DOALL which means the compiler analyzes this loop as a parallelizable loop.

Exploiting of Coarse Grain Task Parallelism After generation of MTs,
data dependencies, and control flow among MTs are analyzed. The compiler
generates a hierarchical macro-flow graph (MFG) which represents control flow
and data dependencies among MTs [10].

Then, the Earliest Executable Condition Analysis [10] is applied to the MFG
to exploit coarse grain task parallelism among MTs by taking into account both
the control dependencies and the data dependencies. This analysis generates a
hierarchical macro-task graph (MTG). The MTG represents coarse grain task
parallelism among MTs. If SB or RB has nested inner layer, MTGs are generated
hierarchically. Fig.3 shows a hierarchical MTG of the C code in Fig.2-(b). Nodes
represent MTs. Small circles inside a node represents conditional branches, for
example, bb1 and bb4 in MTG2-1. Solid edges represent data dependencies.
Dotted edges in MTG2-1, MTG3-1, and MTG4-1 represent extended control
dependencies. The extended control dependency means ordinary control depen-
dency and the condition on which a data dependence predecessor of an MT is
not executed. Solid and dotted arcs, connecting solid and dotted edges have two
different meanings. The solid arc represents that edges connected by the arc are
in AND relationship. The dotted arc represents that edges connected by the
arc are in OR relationship. In an MTG, edges having arrows represents original
control flow edges or branch direction.

sb2 and sb3 in MTG0 are in parallel. Therefore, block level parallelism among
CalcGx and CalcGy in Fig.2-(a) are exploited from the auto-generated C code.
Additionally, loop level parallelism which is not represented in Fig.2-(a) is ex-
ploited from the auto-generated C code since the compiler analyzes doall in
Fig.3 as parallelizable loops. Therefore, coarse grain task parallel processing
using the compiler allows us to exploit hierarchical multigrain parallelism of
MATLAB/Simulink applications from the auto-generated C code.

Scheduling of Coarse Grain Task onto Multi-cores After exploit of hierar-
chical multigrain parallelism, a static task scheduling or a dynamic task schedul-
ing is chosen for each MTG to assign MTs onto multi-cores. If an MTG has only
data dependencies and is deterministic, a static task scheduling at compilation
time is applied to it by the OSCAR compiler. In the static task scheduling, the
compiler uses four heuristic scheduling algorithms including CP/ETF/MISF,
ETF/CP/MISF, DT/CP/MISF and CP/DT/MISF [12]. The compiler chooses
the best schedule from those scheduling. If an MTG is non-deterministic by con-
ditional branches or runtime fluctuations among MTs, the dynamic task schedul-
ing at runtime is applied to it to handle the runtime uncertainties. The compiler
generates dynamic task scheduling routines for non-deterministic MTGs and in-
serts it into a parallelized code. The static task scheduling is generally more



Multigrain Parallelization for Model-based Design Applications 7

Fig. 3. Hierarchical MTG

effective than the dynamic task scheduling since it can minimize data transfer
and synchronization an overhead without a runtime scheduling overhead.

Parallelized C Code Generation Using the OSCAR API The OSCAR
compiler generates parallelized C code with the OSCAR API [13] that is de-
signed on a subset of OpenMP for preserving portability over a wide range
of multi-core architectures. If data is shared on threads, the compiler inserts
synchronizing instructions using spin locks. Additionally, MEX functions are
inserted as necessary to execute parallelized C code in the SILS or PILS on
MATLAB/Simulink.

4 Multigrain Parallel Processing Method for
MATLAB/Simulink Applications

This section describes a proposed multigrain parallel processing method for
MATLAB/Simulink applications. Embedded applications are generally executed
repeatedly within a short period. Therefore, reducing overhead as much as pos-
sible is important for efficient parallel processing on multi-cores. The proposed
method enables us to parallelize the application using hierarchical multigrain
parallelism with a minimum overhead for embedded systems. The kernel tech-
nique is to generate the statically scheduled parallel code using multigrain par-
allelism. The proposal method consists of the following steps.

step1 Automatic profiling in SILS or PILS on MATLAB/Simulink to handle
dynamic features of programs.



8 Dan Umeda et al.

step2 Inline expansion to exploit more parallelism over hierarchies or program
structure.

step3 Macro task fusion for conditional branches to generate statically sched-
uled parallel code.

step4 Converting loop level parallelism into task level parallelism to perform
efficient parallel processing among loops and other MTs without an overhead
of loop level parallelization.

The following provides details of the proposed method.

4.1 Automatic Profiling in model-based development

Profiling is an important technique for improving the preciseness of static task
scheduling by a parallelizing compiler. Moreover, it is particularly effective for
handling dynamic features of programs such as conditional branches and the
fluctuations in the number of loop iterations. For this purpose, the compiler
generates a sequence of code to collect profiling information. Additionally, MEX
functions as the interface between C code and MATLAB/Simulink are inserted
into this code to obtain the profiling information in the SILS or the PILS on
the model-based tool. Two types of profile functions are inserted immediately
before and after each MT. The one is a function to measure execution counts of
each MT. This information is utilized for estimating branch probability and the
number of loop iterations. The other is a function to measure the execution time
of each MT. This information is utilized for optimization and the static task
scheduling in the compiler. In the other words, execution counts and time in the
level of MT are attained with executing the code. The profiler finally generates
the profiling information including longest path, shortest path, and average path
in repeated executions during executing a model including the profile C code.

4.2 Inline Expansion

The OSCAR compiler generates a hierarchical MTG to perform hierarchical
parallelization [10]. It is effective to perform parallel processing for applications
having large execution time, for example, simulation of scientific computation.
However, real embedded applications are generally executed repeatedly within a
short period. Therefore, it is not enough parallelism to parallelize efficiently in
each hierarchy. Thus, the proposed method uses an inline expansion technique
[14] to exploit multigrain parallelism from programs over hierarchies or nested
levels. This technique analyzes parallelism after each SB is inline expanded. After
the analysis, the compiler selects SBs to improve parallelism and expands them.
Fig.4 shows an overview of the inline expansion technique. In Fig.4-(a), it is not
enough parallelism to parallelize hierarchically in MTG0, MTG1, and MTG3.
The inline expansion applies sb2 in MTG0 including parallelism inner the block
to improve parallelism. As a result, the compiler generates an MTG in Fig.4-(b).
As shown in Fig.4-(b), more coarse grain parallelism is exploited than that of
the MTG in Fig.4-(a).



Multigrain Parallelization for Model-based Design Applications 9

Fig. 4. Overview of the inline expansion technique

4.3 Macro Task Fusion

The OSCAR compiler has two types of task scheduling as mentioned in sec-
tion 3.2. The one is the dynamic task scheduling that is applied to an MTG
including conditional branches. The other is the static task scheduling that is
applied to an MTG including no conditional branches. The static task schedul-
ing is preferable for parallelization of the embedded applications because of its
few runtime overhead. However, most of MATLAB/Simulink applications have
Switch, Saturation and Trigger blocks that are converted into if-statements
by Embedded Coder. It introduces to choose the dynamic task scheduling includ-
ing the runtime overhead. Since these conditional branches cannot be handled
by the static task scheduling, the proposed scheme applies macro task fusion
to MFG to hide conditional branches inside MTs. The method is described as
follows.

step 1 Search MFG nodes having a conditional branch.
step 2 For each conditional branch node found in step 1, apply step 3-6.
step 3 Search a set of MFG nodes that is post-dominated by the conditional

branch node.
step 4 Define a post-dominator node having a minimum number of the MT

with the exception of the conditional branch node as an exit node.
step 5 Merge a group from the conditional branch node and the exit node into

a single MT.
step 6 Generate a fused MT including conditional branches inner the MT.

This process eliminates all conditional branches from an MFG. After the tech-
nique, if the fused MT has enough parallelism inner the MT, duplications of
if-statements [15] is applied to it for an improvement of parallelism.



10 Dan Umeda et al.

Fig.5 shows an overview of the macro task fusion technique. At the step 1,
the compiler searches MFG nodes having a conditional branch from an MFG. At
the step 2, the compiler applies step 3-6 to each conditional branch node found
step 1. At the step 3, the compiler searches a post-dominator of the conditional
branch node. At the step 4, the compiler chooses a node having a minimum
number in the post-dominators with the exception of the conditional branch
node. Then, the node is defined as an exit node of the conditional branch node.
At the step 5, the compiler merges a group from the conditional branch node
and the exit node into a single MT. As a result, the compiler generates a fused
MT including conditional branches inner the MT at the step 6.

In this example, the compiler chooses bb1 and bb7 having a small circle
inside a node that represents a conditional branch in Fig.5-(a). In Fig.5-(a), bb1
dominates bb1, bb5, sb6, bb7, bb10 and emt11. Additionally, bb7 dominates
bb7, bb10 and emt11. Therefore, the compiler chooses bb5 and bb10 as the
exit node for each of the conditional branch nodes. Merging bb1-5 and bb7-10,
the compiler generates an MFG as shown in Fig.5-(b). In this figure, block
shows the merged MT by the technique. Exploiting parallelism using the Earliest
Executable Condition Analysis, the compiler generates an MTG as shown in
Fig.5-(c). Then, the duplication of if-statements applies to inner block3 not to
eliminate parallelism. bb1 including if-statements is duplicated, and block3 is
divided into two nodes. As a result, the compiler generates an MTG having
duplicated MTs such as block3 and block4 as shown in Fig.5-(d). Thus, a
compiler coarsens MTs without losing parallelism and can apply static task
scheduling without runtime overhead to an MTG having conditional branches.

Fig. 5. Overview of the macro task fusion technique



Multigrain Parallelization for Model-based Design Applications 11

4.4 Converting Loop Level Parallelism into Task Level Parallelism

Kumura et al. [9] has proposed the block level parallelization technique from the
data flow graph of the block diagram of a model. This method enables us to
exploit parallelism among blocks in the model. However, it is difficult to exploit
parallelism in a block using only information of the block diagram. In contrast,
this paper proposes the multigrain parallelization technique from auto-generated
C code. The code level analysis in this method enables us to exploit loop level
parallelism in addition to task level parallelism. In this paper, parallelizable
loops shown as Doall are decomposed into n small Doalls (or MTs) statically to
perform parallel processing efficiently without a runtime overhead of loop level
parallelization. In this method, the n is a number decided by less than a number
of processor cores and Tmin. Tmin is defined as a minimum task cost for loop
level parallelization considering overheads of parallel thread fork/join and task
scheduling on each target multi-core [10].

These decomposed small Doalls can be executed in parallel among other MTs.
After parallelizable loop decomposition, the static task scheduler in section 3.2
assigns all MTs including decomposed Doalls onto processor cores.

5 Performance Evaluation of MATLAB/Simulink
Applications on Multi-cores

This section describes performance evaluation of the proposed multigrain par-
allelization technique for MATLAB/Simulink applications on several multi-core
platforms.

5.1 Target MATLAB/Simulink Applications

This section evaluates the performance on Intel and ARMmulti-cores using three
important applications such as road tracking for self-driving cars, vessel detection
for medical image recognition, and anomaly detection for pattern recognition re-
ally used an industry. These applications have both parallelism among Simulink
blocks and inner a block. Therefore, they are suitable to be parallelized by the
automatic multigrain parallelization technique. Each application is described in
the following.

Road Tracking. Road tracking in a model of [16] is an image processing to
detect and track edges set in primarily residential settings where lane markings
may not be present. The model has over one hundred Simulink blocks and block
level parallelism among Simulink blocks in the left road and right road. The size
of an input image is 320 x 240 pixels. In this evaluation, For Iterator blocks
are expanded and S-Function blocks of parallel Hough transformation [17] are
used instead of library Hough Transformation block to be close real embedded
applications.



12 Dan Umeda et al.

Vessel Detection. Vessel detection model implemented from [18] is an image
processing to detect vessels from retinal images for a diagnosis of various eye
diseases. The model is simplest in the three applications and includes one Data
Type Conversion, one MinMax, one Switch and eight MATLAB Function blocks
using the Kirsch’s edge operator blocks. The operator blocks are in parallel. The
size of an input image is 200 x 170 pixels.

Anomaly Detection. Anomaly detection model is a real product application
in A&D CO., LTD. and an image processing to detect anomaly from an input
image. The model is most complex and has longest execution time in the three
applications. It includes morphological opening, morphological dilation,
blob analysis blocks and so on. There is parallelism among some image pro-
cessing block. The size of the input image is 600 x 600 pixels.

5.2 Evaluation Environment.

This evaluation uses the Intel Xeon X5670 and the ARM Cortex-A15. The Xeon
X5670 processor has six processor cores with each processor core running at 2.93
GHz. Each processor core has 32 KB L1-cache and 256 KB L2-cache. 12 MB
L3 cache is shared on six processor cores. The Cortex-A15 processor has four
1.60 GHz processor cores. Each processor core has 32 KB L1-cache, and four
processor cores has a shared 2 MB L2-cache.

5.3 Performance Evaluation on multi-cores

Fig. 6. Speedup ratio for MATLAB/Simulink applications on Intel and ARM multi-
cores

Fig.6-(a) and (b) shows average speedup obtained by using only the task
level parallelization technique that is similar to the single level parallelization
technique in [9] and the multigrain parallelization technique corresponds to pro-
posed method on Intel Xeon X5670 and ARM Cortex-A15. The speedups in
Fig.6-(a) and (b) are relative to sequential execution using only one core of each



Multigrain Parallelization for Model-based Design Applications 13

application. 1.92 times speedup for the road tracking application, 2.65 times
speedup for vessel detection application and 2.50 times speedup for the anomaly
detection application can be achieved using the task level parallelization tech-
nique on Intel Xeon X5670 with six processor cores. On ARM cortex-A15 with
four processor cores, 1.94 times speedup for the road tracking application, 2.74
times speedup for the vessel detection application and 2.29 times speedup for the
anomaly detection application can be achieved using the task level parallelization
technique.

In speedup of the proposed method, 4.21 times speedup for the road track-
ing application, 5.80 times speedup for the vessel detection application and
4.10 times speedup for the anomaly detection application can be achieved using
the multigrain parallelization technique on Intel Xeon X5670 with six proces-
sor cores. On ARM cortex-A15 with four processor cores, 3.38 times speedup
for the road tracking application, 3.56 times speedup for the vessel detection
application and 3.24 times speedup for the anomaly detection application can
be achieved using the multigrain parallelization technique. Therefore, the pro-
posed method attains 2.19 times speedup for the road tracking application, 2.19
times speedup for the vessel detection application and 1.64 times speedup for
the anomaly detection application compared with the execution using the task
level parallelization technique on Intel Xeon X5670 using six processor cores.
On ARM Cortex-A15 with four processor cores, 1.75 times speedup for the road
tracking application, 1.30 times speedup for the vessel detection application and
1.41 times speedup for the anomaly detection application compared with the
execution using the task level parallelization technique.

Fig. 7. Execution time per a frame for the road tracking application on Intel and ARM
multi-cores

Further, this paper describes execution time per a frame for the road tracking
application with a scatter per an input image. Fig.7-(a) and (b) shows execution
time per a frame on Intel Xeon X5670 and ARMCortex-A15 for the road tracking
application. The upper lines in Fig.7-(a) and (b) show execution time of ordinary
execution. Each of the execution fluctuates from 1.705 ms to 4.728 ms on Intel
Xeon X5670 and from 10.58 ms to 32.36 ms on ARM Cortex-A15. The middle
lines in Fig.7-(a) and (b) show execution time using the task level parallelization



14 Dan Umeda et al.

technique. Each of the execution fluctuates from 0.815 ms to 2.510 ms on Intel
Xeon X5670 with six processor cores and from 4.88 ms to 17.02 ms on ARM
Cortex-A15 with four processor cores. The lower lines in Fig.7-(a) and (b) show
the execution time using the multigrain parallelization technique. Each of the
execution fluctuates from 0.459 ms to 0.983 ms on Intel Xeon X5670 with six
processor cores and from 3.38 ms to 9.04 ms on ARM Cortex-A15 with four
processor cores. Clearly, each variance of the execution time of the multigrain
parallelized program is much lower than that of each sequential program on each
processor. Therefore, the proposed method allows us to perform stable execution
regardless of on input image. In worst case of sequential execution time on each
processor, proposed method gives us 4.81 times speedup on Intel Xeon X5670
with six processor cores, and 3.72 times speedup on ARM Cortex-A15 with four
processor cores using the multigrain parallelization technique compared with the
sequential execution on each processor.

6 Conclusions

This paper has proposed the automatic multigrain parallelization scheme us-
ing the OSCAR compiler for embedded applications developed by MATLAB/
Simulink. This scheme exploits multigrain parallelism from auto-generated C
code by Embedded Coder and optimizes this code. The proposed method in-
cludes three techniques of the inline expansion, the macro task fusion of con-
ditional branches and the converting loop level parallelism into task level par-
allelism. The inline expansion is used to exploit more parallelism over hierar-
chies or nested levels. The macro task fusion is used to generate the statically
scheduled parallel code without the runtime overhead. The converting loop level
parallelism into task level parallelism is used to improve parallelism without
the overhead of loop level parallelization. Additionally, the proposed method
also includes the automatic profiling framework to improve performance of the
statically scheduled parallel code.

Using the proposed method, this paper parallelized three important applica-
tions such as road tracking for self-driving cars, vessel detection for medical image
recognition, and anomaly detection for pattern recognition really used an indus-
try. In the performance evaluation, the OSCAR compiler with proposed method
gave us 4.21 times speedup for the road tracking application, 5.80 times speedup
for the vessel detection application and 4.10 times speedup for the anomaly
detection application on Intel Xeon X5670 with six processor cores. Moreover,
3.38 times speedup for road tracking, 3.56 times speedup for the vessel detection
application and 3.24 times speedup for the anomaly detection application on
ARM Cortex-A15 with four processor cores. Comparing with the execution us-
ing the task level parallelization technique that is similar to the previous method
for MATLAB/Simulink applications, the proposed method attained from 1.30
to 2.19 times speedup on different multi-cores such as Intel or ARM. The pro-
posed method has successfully improved performance applications developed by
MATLAB/Simulink on multi-core processors.



Multigrain Parallelization for Model-based Design Applications 15

Acknowledgment

This work has been partly supported by A&D CO., LTD. for providing the
anomaly detection model. We would like to express appreciation to A&D CO.,
LTD..

References

1. MATLAB/Simulink, http://www.mathworks.com/products/simulink/
2. Kamma, D. and Sasi, G. : Effect of Model Based Software Development on Produc-

tivity of Enhancement Tasks - An Industrial Study. Software Engineering Conference
(2014)

3. Hanselmann, H., Kiffmeier, U., Köster, L., Meyer, M. and Rükgauer, A. : Produc-
tion Quality Code Generation from Sirnulink Block Diagrams. Proceedings of the
International Symposium on Computer Aided Control System Design (1999)

4. Gluch, D. and Kornecki, A. : Automated Code Generation for Safety Related Ap-
plications: A Case Study. Proceedings of the International Multiconference on Com-
puter Science and Information Technology (2006)

5. Embedded Coder, http://www.mathworks.com/products/embedded-coder/
6. Parallel Computing Toolbox,

http://www.mathworks.com/products/parallel-computing/
7. RTI-MP,

http://www.dspace.com/en/inc/home/products/sw/impsw/rtimpblo.cfm
8. Canedo, A., Yoshizawa, T. and Komatsu, H. : Automatic Parallelization of Simulink

Applications. Proceedings of the International Symposium on Code Generation and
Optimization (2010)

9. Kumura, T., Nakamura, Y., ISHIURA, N., TAKEUCHI, Y. and IMAI, M. : Model
Based Parallelization from the Simulink Models and Their Sequential C Code.
SASIMI 2012

10. Obata, M., Kaminaga, H., Ishizaka, K. and Hironori, Kasahara. : Hierarchical
Parallelism Control for Multigrain Parallel Processing. LCPC 2002

11. MEX Function,
http://www.mathworks.com/help/matlab/apiref/mexfunction.html

12. Kasahara, H. : Parallel Processing Technology. CORONA PUBLISHING CO., LTD
(1991)

13. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J. and Kasahara, H.
: OSCAR API for Real-time Low-Power Multicores and Its Performance on Multi-
cores and SMP Servers. LCPC 2009

14. Shirako, J., Nagasawa, K., Ishizaka, K., Obata, M. and Kasahara, H. : Selective
Inline Expansion for Improvement of Multi Grain Parallelism. The IASTED In-
ternational Conference on PARALLEL AND DISTRIBUTED COMPUTING AND
NETWORKS (2004)

15. Umeda, D., Kanehagi, Y., Mikami, H., Hayashi, A,. Kimura, K. and Kasahara,
H. : Automatic Parallelization of Hand Written Automotive Engine Control Codes
Using OSCAR Compiler. CPC 2013

16. Road Tracking, http://www.mathworks.com/help/vision/examples.html
17. Yen-Kuang C., Li, E., Jianguo L. and Tao, Wang. : Novel parallel Hough Transform

on multi-core processors, Acoustics, Speech and Signal Processing (2008)
18. Bhadauria, H., Bisht, S. and Singh A. : Vessels Extraction from Retinal Images,

IOSR Journal of Electronics and Communication Engineering (2013)


