
Enhancing the Performance of a Multiplayer Game

by Using a Parallelizing Compiler

Yasir I. M. Al-Dosary, Keiji Kimura, Hironori Kasahara and Seinosuke Narita

Department of Computer Science and Engineering, Waseda University

3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Abstract— Video Games have been a very popular form of digital

entertainment in recent years. They have been delivered in state

of the art technologies that include multi-core processors that are

known to be the leading contributor in enhancing the

performance of computer applications. Since parallel

programming is a difficult technology to implement, that field in

Video Games is still rich with areas for advancements. This

paper investigates performance enhancement in Video Games

when using parallelizing compilers and the difficulties involved

in achieving that. This experiment conducts several stages in

attempting to parallelize a well-renowned sequentially written

Video Game called ioquake3. First, the Game is profiled for

discovering bottlenecks, then examined by hand on how much

parallelism could be extracted from those bottlenecks, and what

sort of hazards exist in delivering a parallel-friendly version of

ioquake3. Then, the Game code is rewritten into a hazard-free

version while also modified to comply with the Parallelizable-C

rules, which crucially aid parallelizing compilers in extracting

parallelism. Next, the program is compiled using a parallelizing

compiler called OSCAR (Optimally Scheduled Advanced

Multiprocessor) to produce a parallel version of ioquake3.

Finally, the performance of the newly produced parallel version

of ioquake3 on a Multi-core platform is analyzed.

The following is found: (1) the parallelized game by the

compiler from the revised sequential program of the game is

found to achieve a 5.1 faster performance at 8-threads than

original one on an IBM Power 5+ machine that is equipped with

8-cores, and (2) hazards are caused by thread contentions over

globally shared data, and as well as thread private data, and (3)

AI driven players are represented very similarly to Human

players inside ioquake3 engine, which gives an estimation of the

costs for parallelizing Human driven sessions, and (4) 70% of the

costs of the experiment is spent in analyzing ioquake3 code, 30%

in implementing the changes in the code.

Keywords-component; Video Games; Quake; ioquake3;

parallel Computing; parallelizing compilers, OSCAR

I. INTRODUCTION

Video Games have been a very popular form of digital

entertainment that is presented on many different platforms.

To deliver the most entertaining experience to the audience

Video Gaming companies have always pursued the cutting

edge in innovation and technology. [1][2]

As computer developers sought to achieve high

performance by dramatically shifting to multi-core

processors, so did Video Gaming companies. However,

because of difficulties such as resource contentions and

pointer analysis parallel programming is still a very

challenging technology to implement [8].

To minimize the cost of implementing parallel

programming while still achieving higher performance

parallelizing compilers have been researched and developed.

The concept of parallelizing compilers [3] is to mask the

complexities of parallelism from the programmer and

produce high performance from an originally sequential

program.

Parallel computing in Video Games as a research field is

relatively young, and is still rich for advancement. To our

knowledge, no research has yet been conducted that studies

parallelism in Video Games by using parallelizing

compilers.

An important feature in Video Games is the AI, which is

an integral part in the total Gaming experience Offline and

Online. For example, in highly popular Games such as the

Halo FPS series [9] and Call Of Duty [10] FPS series,

players can join forces together in Gaming sessions and

complete missions against AI driven players; Online and

Offline. For ease of reading Game sessions shall be referred

to as sessions, and AI driven players as Bots.

Enhancing the performance of Game servers could allow

for many benefits for developers, host and users alike. With

enhanced performance, programmers could have more

computing freedom to develop more advanced AI driven

players and Game mechanisms, which should lead to a

richer Gaming experience for the users. Furthermore,

enhanced performance could also allow farther boarders in

creating larger and different Game styles with far more

participants and complex objective. Moreover, these

enhancements should also lower server requirements which

should lead to cheaper hardware costs on the hosts. Even

with added players, bigger scale and more exciting Game

styles, this enhancement should help maintain Game

smoothness for the users.

In this paper the potential performance enhancement of

sequentially written Video Games by the use of a

parallelizing compiler while investigating the difficulties in

achieving that goal shall be examined. The target

application shall be a well-renowned Video Game called

ioquake3 [4][5] which presents many of the important

elements found in Video Game such as intelligent Bots.

ioquake3 is an enhancement of the QuakeIII [18] Game,

which is an installment in the Quake First Person Shooter

Game series; First Person Shooters are Video Games that

simulate human-like movement in a 3D world where players

combat each other using artillery weapons, Shooters, while

viewing the virtual world from the eyes of the controlled

character, First Person.

The main contributions of this paper are (1) examining

the source code of a popular multiplayer Game, ioquake3,

from a view of a parallelizing compiler, then showing the

modifications of several code fragment so that the compiler

can exploit parallelism from the source code, (2) showing

that the performance of the Game enhances with the

increasing numbers of processor cores exploited by the

compiler, and (3) investigating the difficulties in

parallelizing sessions that are populated particularly by

large numbers of Bots.

Finally, a hazard-free version of ioquake3 was

successfully implemented, then, was compiled using the

OSCAR [3,7] compiler to produce a parallel version of

ioquake3. Then, the performance on a multi-core platform

was analyzed, IBM POWER5+ [20]. The parallelized Game

by the compiler from the revised sequential program of the

Game was found to achieve a 5.1 faster performance at 8-

threads than original one. Finally, the experience during this

work is summarized. The rest of the paper is as follows.

Section 2 mentions some of the main researches of this field

that relate to this work. Section 3 presents a brief overview

of the OSCAR compiler and Parallelizable-C [6]. Section 4

presents the methodology that was taken to achieve a

parallelized ioquake3. Section 5 presents the performance

results and analysis of this experiment. Finally, in Section 6

the conclusions are drawn.

II. RELATED WORKS

The methodology and requirements in benchmarking

Video Game servers were thoroughly examined using a

Video Game called Quake [12]. The behavior and

requirements resembled benchmarking Online Transaction

Processing Systems. Furthermore, increasing the number of

players from 16 to 100 without overloading the CPU was

possible. Consequently, the bottlenecks created by the

additional users were both Game-related as well as network-

related processing in about a 50:50 ratio.

The parallelism and scalability of interactive,

multiplayer game servers was investigated by designing and

implementing a parallel version of Quake by hand.[13] The

pioneering investigation of parallelism in Gaming engines

found that scaling interactive multiplayer Games such as

Quake to large number of players by using parallelism is a

challenging task. Moreover, the main bottlenecks were lock

synchronization and high wait times where significant

future improvements are possible by taking advantage of

Game-specific knowledge.

The difficulties in porting a parallel version of Quake to

implement Transactional Memory and the eventual

performance were examined [14]. Another parallel version

of Quake was designed by hand that uses Transactional

Memory completely from the original Quake. The

difficulties involved in achieving that and how much

performance improvement could be achieved from this

technology was investigated.[15]

III. OSCAR COMPILER AND PARALLELIZABLE-C

OSCAR compiler [3,7] is a parallelizing compiler
developed in Waseda University; it excels at enhancing the
performance of a sequentially written C Program by
extracting parallelism at the multigrain level and exploiting
data locality. In this section, the process in which OSCAR is
able to achieve performance enhancement with those
techniques will be explained.

Here, multigrain parallelism is the technique of

extracting parallelism at different grains such as coarse

grain task parallelism, loop iteration parallelism, and

statement level near fine grain parallelism. In the following

text, loops, function calls and basic blocks are defined as

coarse grain tasks.
The OSCAR compiler begins by analyzing the sequential

program and decomposes it into three types of macro-tasks;
Basic Block (BB); Repetition Block (RB); Subroutine Block
(SB). If there are parallelizable Loops they are decomposed
into loops of smaller iterations as macro tasks- the number of
iterations are determined by the original number of iterations
and the number of Processor Cluster and Processor Elements.

Data dependencies and control flow amongst macro-tasks
are hierarchically analyzed. Then, Earliest Executable
Condition analysis that is based on those Data Dependencies
and Control Flow is made to determine parallelism amongst
those macro-tasks. The analysis result is represented as a
Macro Task Graph (MTG). If a MT is a subroutine call or a
loop that has coarse grain task parallelism, the compiler
generates inner MTs inside that MT hierarchically.

Finally, the OSCAR compiler assigns macro-tasks to the
targeted processor groups or processor cores by using either
static or dynamic scheduling.

If several MTs share the same piece of data that is larger
than the available cache size or the local memory, the
OSCAR compiler will decompose the MTs into smaller ones
so that it will be able to fit the data accessed by those sharing
MTs into the cache or memory space by loop aligned
decomposition. Then, these decomposed MTs are scheduled
onto Processor elements, which access the same data
successively as much as possible.

One of the main difficulties in determining potential
parallelism in a program is pointer analysis [8].
Parallelizable-C is a programming guideline to help
automatic compilers perform pointer analysis precisely, and
extract the most possible amount of parallelism from a
sequential program. Parallelizable-C [6] is an accumulation
of rules that guide the programmer while sheltering the
programmer from the complexities of parallel tuning. Further
details on OSCAR program optimizations [7][21]

IV. METHODOLOGY

In this section the techniques implemented in creating a
parallelized version of ioquake3 shall be explained. In Video
Games, Client-side processes such as graphics rendering
have already been deeply researched. In the ioquake3 engine
AI computations and Game logic are executed completely on
the server-side; thus, this research shall focus completely on
server-side operations.

A. Profiling

To learn what bottlenecks are created in Bot sessions, a
free-for-all (no teams) Bots ioquake3 match in a medium to
small sized map was profiled using Visual Studio
Performance Profiler [19]. The reason for choosing a
relatively smaller map was to force more Bot interactions.
Furthermore, larger scale sessions have recently been
gaining popularity, such as BattleField3 [11]; thus, to
examine future potential growth ioquake3’s engine limit was
increased from 32 to 112 Bots. The Bots were a mixture of 8
types [16] that are of different personalities- different
aggression levels, different weapon preferences and so forth.
The Bots were set to be at the highest level of difficulty;
hence more complex decision making computations are
required; thus, more CPU intense. Therefore, this setup and
variation should allow for different computing outcomes,
which should give a richer profiling result.

B. Profiling Results

A typical Game session begins by conducting all Game
initializations, such as match time limit and so forth;
afterwards, the main Game loop begins. The profiler showed
the existence of 3 post-initializations bottlenecks that
comprise of over 90% of the total CPU time with an almost
equal distribution amongst them. The bottlenecks are BotAI(),
ClientThink(), and SendClientMessages() that shall be
explained later on in this section. In this paper, for ease of
reading all functions() shall be written with brackets as such.

C. Program Code Analysis

a) Session Flow Overview

First, the server starts up the session by retrieving the
necessary Game options and map configurations. Then, the
server manifests the virtual world with the proper
information.

Now, the Match begins. The program spins in a
continuous loop until an End Game condition is met; such
as a player reaching the score limit. As mentioned earlier,
over 90% of the total computational time is consumed by the
three main bottlenecks found in this loop; BotAI(),
ClientThink() and SendClientMessages().

b) Bottlenecks
In this section an overview of the general role each

bottleneck has within the engine.

BotAI()

The BotAI() function takes on the role of the brains in

Bots where decisions are made. First, the BotAI() function,

the brains, views other players and Entities (such as items

and weapons) around it using the Messages that were built

for it by the SendClientMessages()- this function will be

explained in the following sector.

Then, the Bot makes a logical decision of what action

to take (pursue enemy, retreat, jump, fire weapon, pickup

item and such) based on the combination of those

surroundings and personal conditions (how much health it

has; ammo amount; weapon type and so forth).

Furthermore, to carry out certain actions a Bot must

move inside the World. For a Bot to recognize which path

[16] to take, it relies on what is called Area Awareness

System (AAS)[16]. The AAS system contains the World

Map, and the routing costs.

Finally, when the Bot finishes making its decision, and

chooses an action, it inputs the desired commands exactly

like a Human player, such as left_key, fire_weapon,

jump_key, reload_weapon, change_weapon, aim_nozzle,
into its local command input data area. For ease of reading,

a Human player shall be written with a first upper case letter.

And here is where the BotAI()'s task ends, and Human

and Bots players become transparent to the engine; thus,

they will both be handled in exactly the same manner by the

engine.

ClientThink()

A Client is the player, which includes Humans and Bots.

ClientThink()’s main responsibility is applying Client

commands into the Virtual World while handling all the

interactions that occur between the designated Client and

everything else in the Virtual World; Client(player)-and-

Client (Fireweapon() at foe, and consequently

DoDamage()); Clients-and-Entities(such as weapons and

items); Client-and-World(Move()). Most importantly is that

it is also responsible for updating both the “Acting” Client

and the “Acted upon” Client/Entity/World- detailed

explanations will be presented in the following sector.

SendClientMessages()

This function is responsible for sending all the updates

of the surroundings to each Client. First, a snapshot of the

surroundings of a designated Client is built into a message.

A snapshot is similar to a camera snapshot of the

surroundings from the iterating Client’s 360 degree

horizontal view. Then, in the case of the networked Human

players, that message is sent to the designated Client over

the network. Furthermore, in the case of Bots (who can only

exist inside the server), the messages are saved into a global

variable. The Bots then read the messages directly- during

BotAI().

 ”Why would a Bot that exists inside the virtual world

needs Messages to learn of its surroundings?”:The

answer is so that Bots would simulate the existence of

a Human player and view the world with the same

limitations, thus not having any unfair advantages over

Human players.

while(!quit)

{

 foreach(client = clients)

 {

 BotAI(client);

 ClientThink(client);

 SendClientMessages(client);

 }

}

Listing 1: An abstract view of bottleneck execution

Figure 2: The Move()-Area Tree relationship

//Parallelized For Loop

foreach(client = clients)

{

 BotAI(client);

}

//Batch write operations moved here.

foreach(client = clients)

{

 WriteChatMessages(client);

}

BotAI(client_t *client)

{

 ...

 //WriteChatMessages(client);

 ...

}

Listing2: Hazard prevention in pseudo code

4. Parallelism
A) Can these Bottlenecks achieve reasonable

parallelism?
As shown in listing1, the engine was written to

accommodate sessions with varying player numbers by

implementing For Loops that iterate through each connected

player and execute the given job; AI, Thinking and Message

Sending. For loops that require relatively large CPU

computations are potential for parallelism that may enhance

the performance. Therefore, ioquake3 with these three CPU

hungry bottlenecks may be assumed to have a fair amount

of extractable parallelism.

B) First Parallelizing Attempt
As an initial experiment, the program in its original

structure was compiled using the OSCAR compiler. This

was conducted to examine how much performance

enhancement could initially be achieved using the original

code. Eventually, the Game performed at the same original

speed.

After the OSCAR compiled code of ioquake3 was

examined, it was discovered that the previous loop (listing1)

of the newly compiled code has the same sequential

structure as the original code; thus resulting in a sequential

execution, which executes at the same speed as the original

sequential code. This can be explained by that because of

the existence of data dependencies within the previous loop,

the compiler could not salvage any extractable parallelism

amongst it. Therefore, eliminating the hazards is essential

for the compiler to extract parallelism from ioquake3.

C) Implementing Parallelism
This is the core of this research where the difficulties

that were found in parallelizing this sequential Game,

ioquake3, and how they have been resolved to achieve

parallelism shall be explained. However, for the sake of

space only the major issues shall be mentioned.

BotAI()
 Relocating Read/Write Operations Outside of the

Parallelized Area

Read and write operations that are made from and to

complex global data structures such as Linked-Lists can

become corruptive when multiple accesses are made in

parallel. An effective method to avoid corruption here is by

relocating the reads and writes operations to be outside of

the parallelized area, and then execute them as a batch. This

is applicable when the costs of the read and write operations

are cheap.

For example, the Bots chat with other players using

chat messages (not to be mistaken with Messages used for

updating player surroundings) that are read/written from/to

a global Linked-List. To protect the consistency of that

Linked-List when the encapsulating loop is parallelized, the

read/write operations were moved outside of that

parallelized loop, and executed as a batch. This technique

avoids any potential corruptions. In listing2, the write

operation is relocated outside the parallel loop to avoid data

race. The write was originally located after the critical path;

therefore it was relocated to be after the parallelized loop-

for the sake of space only the write operation is displayed.

 Parallelizable-C: Local Static Variables

Parallelizing compilers have difficulty in analyzing

static variables that are defined inside function scope.

Therefore, such static variables were rewritten into

automatic variables.

 Parallelizable-C: Localize read-only global

variables

Similarly, read only global variables were localized

since they confuse the compiler as being a racy condition.

Figure 3: A view of the task flow of FireWeapon()

ClientThink()
 Implementing Locks to Prevent Data Hazards

i. Locking the Access to Complex Data Structures

To prevent hazardous situations in contended globally

shared, complex data structures such as Trees, an

OpenMP[17] critical directives can be implemented to lock

the read and write operations, and allow only one thread

access at any time; thus avoiding any race conditions. These

locks were implemented in areas of low access frequency

where they may not create any additional bottlenecks. For

ease of reading the implementation of an OpenMP critical

directive to prevent data contentions amongst threads shall

be refered to as lock throughout the remainder of this paper.

An example of a globally contended shared and

complex data structure is the World Map Area Tree, which

represents the map that the players populate. The map is

divided into area nodes that compose the tree leavs. The

Game engine maps clients into this Area Tree based on their

current locations within the map. When a Client executes a

Move(), and leaves an area, the leaf, they resided into

another, the engine remaps the Client into their new area

that requires dual Link() and Unlink() operations, as shown

in Fig.2.

To prevent the Area Tree from becoming corrupted by

multiple concurrent links and unlinks, the Link() and

Unlink() functions are locked.

ii. Locking Illegal Private Data Access Amongst Threads

Another type of data hazards that was remedied with

locks were functions where the executing thread has

unmonitored access to the private data of another thread.

This engine structure may lead to racy conditions for the

same data area when parallelized.

An example of this engine structure is FireWeapon()

that executes the action of Firing Weapons of the iterating

Client and applying the damage on the spot to the target.

Therefore, if more than one Client Fires a weapon at the

same target, both Clients will be applying the damage

concurrently, which could lead to a hazardous condition;

thus access to FireWeapon() lock was implemented, as

shown in Fig.3.

Because a variable called player health must remain

consistant through out the execution and only be over

written at the end of the function, the lock was required at

the entry of the function, as shown in listing3.

 Preventing Hazards by Transforming Memory

Allocation from Temporary to Permenant

Temporary allocation and dealloction of memory

resources may become hazardous if mutliple occurrances

happen concurrently. Transforming temporary memory

allocations to one-time permenant allocations eliminates the

need for deallocations, and by locking the one time

allocation processes such hazards can be avoided.

An example of this is the action of dropping weapons

upon Client death. Dying Clients require temporary memory

allocation to drop their weapon into the World. The dropped

weapon is temporarily assigned an allocation from a shared

memory pool, and returned when the pool is empty,

otherwise the memory allocation remains with the Client

during the session duration.

To prevent any hazardous situations from occuring, first

the memory pool size was increased to the size that

eliminates the need for any deallocations, thus all first time

allocations become permenant. Then, those first-time

allocations were locked. This technique prevents hazards

with the small cost of additional memory that systems

nowadays have abundance of.

SendClientMessages()
 Transforming Global Variables into Localized

Variables

One method implemented in this work to avoid race

over globally shared variables is to transform the shared

global variable into a localized thread data.

For example, gSnapshotEntities is a global variable-

somewhat shared camera- that holds the IDs of Entities that

will be built into a snapshot of the surrounding Entities'

locations and movements; thus, if two or more Clients need

their snapshots to be built simultaneously, Clients may race.

gSnapshotEntities was replaced with lSnapshotEntities,

which was implemented as a variable into the Client’s local

data structure- a personal camera; thus, snapshots can be

safely built into the new local variable belonging to the

designated Client; thus avoiding race. The new structure of

lSnapshotEntities was also implemented to be lighter weight

to increase memory use efficiency.

 Replicating Global Counters Jobs by the Use of

Local Variables

Note: Player health

must remain consistent

throughout the entire

flow of the function.

//Parallelized For Loop

foreach(client = clients)

{

//snapshotClient->snapshotID = gSnapshotC++;

snapshotClient->snapshotIDArr[omp_get_thread_num()]

 = client->ID;

}

Listing4: Hazard prevention in pseudo code

void ClientEvents(client_t *client) {

int event;

foreach (event = client->events) {

switch (event) {

case EV_FIRE_WEAPON:

//Restricts access to one instance at a time

#pragma omp critical

{

FireWeapon(client);

}

break;

}

}

}

Listing3: Pseudo code hazard prevention by using Locks

Global one-dimensional counters were implemented to

regulate tasks, such as preventing duplicates in a list by

acting as a unique tag for each newly created list, and

stamped on each item entering that list. This global counter

is incremented with each iteration where a new list is

created, which may cause race hazards when more than one

list is being created in parallel in that iterating loop.

As shown in the right-side of the first line in the loop

of listing4, a case of this was gSnapshotC that acted as a

unique id number for each built snapshot where gSnapshotC

was copied, stamped, into a snapshotted Client snapshotID

variable space and then incremented. This unique

gSnapshotC ID was implemented to prevent the same Client

from being included into the same snapshot more than once,

to prevent list duplicates.

The method of hazard prevention implemented here

was to replace the global variable gSnapshotC with a local

variable that is unique in value. The gSnapshotC was

deleted. Then, the unique ClientID number of the iterating

Client was copied into the snapshotID instead of the deleted

gSnapshotC; thus eliminating any possibility of race, as

shown in the bottom line of that loop in listing4.

 Transforming Tag Containers from 1-Dimensional

Into Per-Thread Size

A compliment to the task in the previous topic, when

an item that will enter a list that prohibits duplicates requires

a space for a unique listID, a stamp space. When this item

enters int more than a single list at a time, it must acquire a

stamp per list; thus one space is insufficient. Adding more

spaces equal to the size of the number of valid lists per-time

is a proper solution.

Again as shown in the left-side of the top line in the

loop of listing4, a Client that is built into a snapshot uses the

local snapshotID to hold the unique snapshotID tag,

gSnapshotC in the sequential state. If that Client is to be

built into more than one snapshot concurrently, it requires a

snapshotID container per concurrent snapshot built, a stamp

space. Therefore, the Client’s variable space, snapshot was

re-implemented from a 1-dimentional integer variable to an

array of integers with size equal to the number of

simultaneously running threads, while making the proper

adjustment to preserve the integrity of program, as shown

on the left-side of the bottom line of that loop in listing4. In

listing4, omp_get_thread_num() is a function from the

OpenMP[16] library that returns the thread number that is

currently executing.

 Parallelizable-C: Array[Array[struct_t]]

Based on the Parallelizable-C rules,

Array[Array[struct_t]] is a data structure that is difficult to

analyze for extracting parallelism. Therefore, all such

structures have been re-implemented to be compliant to the

Parallelizable-C rules, such as the format of Array[struct_t],

while maintaining that the integrity of the program to not be

broken.

V. PERFORMANCE RESULTS

To measure the impact of the experiment, the

performances of the parallelized ioquake3 were compared

with the sequential version on a multi-core platform. The

measurements covered all three bottlenecks. Because they

comprise of over 90% of the total Game session CPU load,

the results can be taken as an indicator of the overall impact.

All Game matches were with 112 Bots and score limited

where a Bot earns a point for every kill it makes, and

immediate respawn settings. Spawn, is the act of the engine

placing a player into the virtual world in a session.

Respawning is the act of spawning a player after death.

With immediate respawning the CPU load should always be

at its highest. The measurements were made for 5 seconds,

which should be enough to cover all processing scenarios.

To examine what influences performance, several session

variations were created, which will be explained next.

The engine has total control over spawning locations.

However, the order in which players are spawned can be

controlled by the server administrator. Different spawning

orders should yield different initial spawning locations,

which should result in Bots encountering a relatively

different type of enemies in each order. Therefore, two

spawning orders were created, Spawning Order-A, and

Spawning Order-B.

Three different setups were implemented: 1) Spawning

Order-A in Q1dm3, a single-layered map, this shall be the

performance baseline. 2) Spawning Order-B in Q1dm3 map,

to investigate if different enemies influence Bot

computations, hence performance. 3) Spawning Order-A in

Q3dm3, a multi-layered map, to investigate if map structure

influences performance.

Similarly, to avoid OS influencing the measurements,

the best out of 100 runs of each session was chosen. The

experiment was conducted on an IBM POWER5+ platform,

which is equipped with 8-cores at clock-rate 1.5 GHz, 16

Figure4:Performance results of Spawning Order-A inQ3dm1

Figure5:Performance results of Spawning Order-B inQ3dm1

Figure6:Performance results of Spawning Order-A inQ3dm3

GB of RAM. Each processor core has access to 32+32

KB/core of L1, 1.9MB of L2 and 36MB of L3 dedicated

cache. The gettimeofday function from the time Linux C-

library was implemented as the measuring instrument.

As show in Fig. 4, 5 and 6, the speedup measured well

where all three setups displayed an almost identical grade of

speedup behavior. The performance displayed a great

amount of speedup at all number of cores, where the 1
st
, 2

nd

and 3
rd

 setup at 8-cores achieved 4.3, 4.43 and 5.1

respectively.

Reasoning for the added performance in the third setup

can be attributed to the change in map structure from single-

layer, 1
st
 & 2

nd
 setup, to multi-layered, 3

rd
 setup, which

influences the frequency of Clients encounters to become

lower than the first two maps; thus, Clients execute

fireweapon() (Locked area) less than in the first two setups.

Therefore, 3
rd

 has less waiting time in ClientThink(). This

also can be seen in Fig.6 where ClientThink() in the 3
rd

setup outperforms the first two setups.

Furthermore, SendClientMessages() displayed a linear

speedup, as shown in Fig 4, 5 and 6. The lack for an access

to a cache analyzer made it difficult to examine the

reasoning for this behavior. However, it can be assumed that

because SendClientMessages() abides by the Parallelizable-

C rules more than ClientThink() and BotAI(), it displayed a

better performance. Furthermore, a frequently accessed

global variable level.gEntities that holds important Entity

data was called and accessed by all three bottlenecks.

Therefore, there is a high possibility that level.gEntities was

already in the cache when SendClientMessages() needed to

access it; thus, no time spent in retrieving it.

Further analysis of the results shows that the speedup

does not step up from 6-cores to 7-cores in all three setups.

This lack of added speedup at 7-cores can be associated

with ClientThink() slightly underperforming at 7-cores,

shown in the previous Fig. Due to the lack of proper

analytical tools it was difficult to pin point the exact cause

of this behavior. However, since different structures and

different enemies did not influence this behavior, it might be

related with a parallel aspect such as unfair load balancing.

In every session a match starts as soon as the World Map is

spawned, then, Clients are spawned continuously in a

sequence, one Bot per-frame. Therefore, at the start of the

session, because the number of Bots is low, not all threads

will be occupied with Bot computations. The load amongst

threads balances out as soon as the number of populating

Bots grows and reaches the limit of 112. Proving this with

the Linux version was unsuccessful, but was successful and

clearly seen on the Windows7 version.

VI. CONCLUSIONS

This paper has described the experience of achieving

enhanced performance in ioquake3 by the use of the

OSCAR parallelizing compiler. The autmatically

parallelized Game by the compiler from the revised

sequential program of the Game was found to achieve a 5.1

faster performance at 8-threads than original one on an 8-

core IBM POWER 5+ platform. The areas of the program

that was majorly modified into Parallelizable-C and avoided

lockage and SendClientMessages() exhibited the highest

level of performance speedup. Moreover, this speedup in

performance proves that taking advantage of Game-specific

knowledge can greatly help reduce data contentions, and

hazardous conditions, and with reduced lockage higher

performance could be produced[13].

From this experiment, it has been understood that Video

Games as applications are written to be highly resource

efficient that implement many programming shortcuts that

result in contentions over global resources, which come to

be the main cause for the hazards. Another cause of hazards

were the result of illegal access to private data amongst

threads.

Several effective methods for avoiding hazards that are

caused by read/write operations from/to a shared complex

data structure that are hard to localize were found; batch

excution outside the parallelized loop; lockage and so forth.

Other hazardous areas required restructuring of the engine

to avoid the hazardous contentions.

In ioquake3, the mechanisms of reperesenting both the

Bot, and the Human player inside the engine highly

resemble each other. Therefore, this work should be highly

beneficial in understanding parallelism of Human driven

sessions as well. Expirementing with large numbers of

Human players is outside the capabilities of this paper.

However, since SendClientMessages() should scale well

with Human players[13], a high level of speedup should be

expected in the view of the the results from this experiment.

Finally, results from this paper should encourage more

Gaming companies to open their Game code to the public

domain. This should aid researchers to investigate better

ways in achieving higher performance from parallelism, and

investigate other crucial Video Gaming aspects as well.

ACKNOWLEDGMENT

The authors would like to thank id Software for releasing

the source code for QuakeIII to the public domain. The

authors would also like to thank to ioquake3 for making

their Mod available to the public domain, and for their

support in answering many questions. The authors are also

thankful to the anonymous reviewers on their insightful

comments. Special thanks Mr. Akihiro Hayashi and Mr.

Keiichi Tabata for their support in this work.

REFERENCES

[1] Sony: PlayStation®3 160GB system Tech Specs.

http://www.playstation.com :(Apr 2012)

[2] IBM: Cell Broadband Engine Architecture and its first

implementation. http://www.ibm.com:(Apr 2012)

[3] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K.

Fujiwara, S. Narita: A multi-grain parallelizing

compilation scheme on oscar (Optimally Scheduled

Advanced Multiprocessor). : Proc. 4th Workshop on

Language and Compilers for Parallel Computing, 1991

[4] id software: ioquake3. http://ioquake3.org, April 2012

[5] ioquake3: http://en.wikipedia.org/wiki/Id_Tech_3, Apr

2012

[6] Masayoshi Mase, Yuto Onozaki, Keiji Kimura,

Hironori Kasahara: parallelizable C and Its

Performance on Low Power High Performance

Multicore Processors.: In: Proc. of 15th Workshop on

Compilers for Parallel Computing, July 2010

[7] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, H.

Kasahara: Hierarchical Parallelism Control for

Multigrain Parallel Processing.: Prof. 15th Workshop

on Language and Compilers for Parallel Computing,

2002

[8] Hind M.: Pointer Analysis: Haven’t We Solved This

Problem Yet? In Proceedings of the ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for

Software Tools and Engineering, 2001, pp. 54-61

[9] Microsoft: Halo; http://halo.xbox.com:(Apr 2012)

[10] ACTIVISION: Call Of Duty http://www.callofduty.com,

Apr 2012

[11] EA.: BattleField: http://www.battlefield.com, April

2012

[12] Ahmed Abdelkhalek, Angelos Bilas, and Andreas

Moshovos: Behavior and Performance of Interactive

Multi-player Game Servers.: ACM Cluster Computing

Journal Volume 6 Issue 4, October 2003

[13] Ahmed Abdelkhalek, Angelos Bilas: Parallelization

and Performance of Interactive Multiplayer Game

Servers.: Parallel and Distributed Processing

Symposium 18th International Proceedings, April 2004

[14] Ferad Zyulkyarov, Vladimir Gajinov, Osman S. Unsal,

Adri´an Cristal: Atomic Quake: Using Transactional

Memory in an Interactive Multiplayer Game Server.:

Proceedings of the 14th ACM SIGPLAN symposium

on Principles and practice of parallel programming,

February 2009.

[15] Vladimir Gajinov, Ferad Zyulkyarov, Osman S. Unsal,

Adrian Cristal: QuakeTM: parallelizing a Complex

Sequential Application Using Transactional Memory.:

Proceedings of the 23rd international conference on

Supercomputing, June 2009

[16] Waveren, J.M.P. van.: The Quake III Arena Bot,. 2001.

[17] The OpenMP® API specification for parallel

programming. http://openmp.org/wp, April 2012

[18] QuakeIII:http://www.idsoftware.com, April 2012

[19] Analyzing Application Performance by Using Profiling

Tools http://www.microsoft.com, April 2012

[20] IBM eServer p5 550: http://www.ibm.com, Apr 2012

[21] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K.

Fujiwara, S. Narita: OSCAR API for Real-time Low-

Power Multicores and Its Performance on Multicores

and SMP Servers : Lecture Notes in Computer Science,

Springer, Vol. 5898, pp. 188-202, 2010

http://www.playstation.com/
http://www.ibm.com/
http://ioquake3.org/
http://en.wikipedia.org/wiki/Id_Tech_3
http://www.callofduty.com/
http://www.battlefield.com/
http://openmp.org/wp
http://www.microsoft.com/

