
Automatic Local Memory Management for
Multicores Having Global Address Space

Kouhei Yamamoto1, Tomoya Shirakawa1, Yoshitake Oki1, Akimasa Yoshida1,2,
Keiji Kimura1, and Hironori Kasahara1

1 Department of Computer Science and Engineering, Waseda University, Japan
2 Graduate School of Advanced Mathematical Sciences, Meiji University, Japan

{yamamoto,tshira,okiyoshi}@kasahara.cs.waseda.ac.jp,akimasay@meiji.ac.jp,

kimura@apal.cs.waseda.ac.jp,kasahara@waseda.jp

http://www.kasahara.cs.waseda.ac.jp

Abstract. Embedded multicore processors for hard real-time applica-
tions like automobile engine control require the usage of local memory on
each processor core to precisely meet the real-time deadline constraints,
since cache memory cannot satisfy the deadline requirements due to
cache misses. To utilize local memory, programmers or compilers need to
explicitly manage data movement and data replacement for local mem-
ory considering the limited size. However, such management is extremely
difficult and time consuming for programmers. This paper proposes an
automatic local memory management method by compilers through (i)
multi-dimensional data decomposition techniques to fit working sets onto
limited size local memory (ii) suitable block management structures,
called Adjustable Blocks, to create application specific fixed size data
transfer blocks (iii) multi-dimensional templates to preserve the original
multi-dimensional representations of the decomposed multi-dimensional
data that are mapped onto one-dimensional Adjustable Blocks (iv) block
replacement policies from liveness analysis of the decomposed data, and
(v) code size reduction schemes to generate shorter codes. The proposed
local memory management method is implemented on the OSCAR multi-
grain and multi-platform compiler and evaluated on the Renesas RP2 8
core embedded homogeneous multicore processor equipped with local
and shared memory. Evaluations on 5 programs including multimedia
and scientific applications show promising results. For instance, speedups
on 8 cores compared to single core execution using off-chip shared mem-
ory on an AAC encoder program, a MPEG2 encoder program, Tomcatv,
and Swim are improved from 7.14 to 20.12, 1.97 to 7.59, 5.73 to 7.38, and
7.40 to 11.30, respectively, when using local memory with the proposed
method. These evaluations indicate the usefulness and the validity of the
proposed local memory management method on real embedded multicore
processors.

Keywords: Parallelizing Compiler, Local Memory Management, Mul-
ticore, Global Address Space, DMA, Data Decomposition



2 Yamamoto et al.

1 Introduction

As modern embedded systems demand for more performance with lower power
consumption, the architectural design of multicore processor has succeeded in
pursuing both requirements. However, in embedded multicores for hard real-
time control systems such as automobile engine control units, cache memory
cannot be used to meet hard deadline constraints. In these systems, multicore
architectures having local memories with addresses mapped to parts of global
address space have been generally used. Examples of such embedded multicore
processors are Renesas’s RP2 [16] and V850E2/MX4 [19].

Local memory is a fast on-chip memory which can be explicitly controlled
by software. Typically, local memory is reserved for data that is extensively
reused throughout the entire program. A similar class of fast on-chip software
controllable memory is scratch-pad memory [1, 12]. Although the functionality of
scratch-pad memory is similar to local memory, scratch-pad memory is generally
smaller in size and is specialized for data locality on a finer region of the program.

The low latency and software manageable characteristics of local memory
offers guaranteed execution timing, which is a crucial property for real-time con-
trol embedded domains. Moreover, optimal mapping of data onto local memory
through software implementations can achieve data locality and satisfy deadline
requirements by removing runtime uncertainties by cache miss hits.

There remains a major obstacle when utilizing software based local memory
for embedded systems with multicore processors: the mapping and decompo-
sition of data onto local memory of each processor core. In other words, the
use of local memory considering data locality requires comprehensive control of
data placement and eviction by the programmer. To overcome this difficulty, a
promising approach is to build a compiler algorithm to automatically decompose
data and insert data transfer codes. Such compiler based approach will not only
prevent error-prone code productions otherwise done by the programmer, but
will also allow local memory optimizations to become available for a wide range
of applications.

In this paper, a local memory management method with data decomposi-
tion for software controlled un-cached local memory on multicore processors is
proposed to satisfy deadline constraints and obtain high performance. In par-
ticular, the method realizes local memory management techniques that deter-
mine data placement and replacement on local memory considering data locality
over the whole input C program. The data decomposition process decomposes
multi-dimensional arrays for each nested level. Additionally, data transfer costs
between multiple processor cores are mitigated through Direct Memory Access
(DMA) controllers. To allow automatic parallelization for various applications
using local memories, the method is implemented on OSCAR compiler, a C and
Fortran source-to-source multi-grain and multi-platform parallelizing compiler
[14]. The effectiveness of the proposed method is demonstrated through several
benchmark applications written in Parallelizable C [11] that have various data
sizes and dimensions.



Automatic Local Memory Management for Multicores 3

The rest of the paper is organized as follows. Section 2 introduces related
works. Section 3 covers the proposed data decomposition method and local mem-
ory management method. Section 4 shows evaluation results of the proposed
methods on benchmark applications. Section 5 concludes the paper.

2 Related Works

There have been many researches on local memory management methods.
In static data management, data partitions and allocations remain constant

throughout the lifetime of the program. Avissar et al. proposed a compiler strat-
egy that automatically partitions and allocates data onto different memory units
[3]. Similar methods were reported by Steinke et al., utilizing a compiler exten-
sion technique for embedded systems to analyze the most frequently used data
and variable within the application for static mapping onto local memory [4].
Steinke’s analysis focuses mainly on reducing energy consumption by utilizing
energy efficient local memories over caches. Panda et al. reported a method to
partition scalars and array variables and map them onto on-chip scratchpad
memory at compile time [1]. Excess variables that could not fit on scratch-pad
memory are mapped onto off-chip memory. However, their approach is limited
to single thread execution environments. For static allocation of data onto multi-
core processor environments, Che et al. presented an integer linear programming
formulation and a heuristic technique to model code overlays and communica-
tion costs to maximize throughput of stream programs [5]. Their method shows
improvement on stream programs for static allocations, but does not mention
explicit mapping managements of data onto local memory. Similarly, Issenin et
al. proposed a data reuse method for loops on multicore processor environments
[9]. Their method focuses on data locality within loops, but does not consider
locality between tasks of the entire program.

To achieve flexibility for allocated variables during the entire runtime of
the program, several dynamic allocation algorithms for local memory are pre-
sented. Udayakumaran et al. proposed a dynamic allocation method that con-
siders runtime behaviors of the program running on a single core processor [6].
Specifically, their method copies frequently accessed data onto scratch-pad mem-
ory by compiler codes dynamically and evict unused data to free scratch-pad
space. However, the method is relevant only for single thread environments,
neglecting communication and synchronization costs that occur for multicore
processor environments. For multicore processor systems, Guo et al. proposed a
data allocation algorithm for scratchpad memories to reduce memory access cost
[7]. They incorporate a data duplication algorithm to extensively copy specific
data onto remote processor core’s scratch-pad memory to further reduce mem-
ory access costs. However, their method does not present explicit management
techniques for mapping data onto local memory. Kandemir et al. proposed a
data tiling strategy for multicore processor systems [8]. Their method focuses on
array-intensive applications, and aims to increase inter-processor data sharing
opportunities and minimize off-chip memory requests. Their technique, however,



4 Yamamoto et al.

considers data locality within loops and does not extract locality that spreads
across the entire program.

As presented in this section, partitioning and allocating data onto software
managed memory has been attempted by various researchers. However, the ma-
jority of the proposed solutions consider static or dynamic allocations of data
that only assume single thread environments. Moreover, previous methods do not
target data locality stretched across multiple coarse-grain tasks or local mem-
ory management techniques that extensively control the position of the stored
data on local memory. Therefore, an integrated analysis of dynamically allocat-
ing and evicting data on coarse-grain tasks, including arrays accessed within
nested loops, for software managed local memory under a multicore processor
environment, to our knowledge, has not been attempted so far.

3 The Proposed Local Memory Management Method

The target architecture of the proposed method consists of multiple processor
cores with an on-chip and/or off-chip centralized shared memory, or CSM. An
example architecture is the OSCAR multicore architecture shown in Fig.1 [11].
Each processor core is equipped with local data memory, or LDM, for core private
data and a distributed shared memory, or DSM, for data shared among processor
cores. In embedded multicores, since the local memories are mapped to global
address space, they can be recognized as distributed shared memory. Often, local
memory is implemented by a single port memory and distributed shared memory
is implemented using two ports memory. Within this memory architecture, the
proposed method aims to exploit data locality of core private data on local
memory. The main idea of the proposed method is to decompose data so that a
working set can fit on LDM and the data on LDM can be reused among different
coarse-grain tasks.

Fig. 1. Overview of the OSCAR Multicore Architecture



Automatic Local Memory Management for Multicores 5

An overview of the proposed compiler local memory management method
for multicores using adjustable block assignment and replacement technique is
summarized below.

1. Chooses block sizes for data transfer between shared memory and LDM
specifically for each application.

2. Divides all data in the application into constant size aligned block structures
called Adjustable Blocks. In contrast to other block allocation schemes such
as buddy memory allocators where block sizes are restricted to multiples of
powers of two and the granularity of the block is defined as a single page
size, Adjustable Blocks divide data into integer divisible sizes and can further
divide blocks into single word sizes for scalar variables.

3. Hierarchically decomposes multi-dimensional arrays by the outer-most loop
dimension until the decomposed array fits inside the chosen block size.

4. Maps each decomposed array to assigned blocks on LDM considering locality
optimizations.

5. Schedules eviction and reloading of blocks from LDM and shared memory.
Blocks with dead variables or blocks with variables that will be reused in
the most distant future have high replacement priorities.

3.1 Coarse-Grain Task Parallelization [14, 15]

The input C program is initially divided into coarse-grain tasks, or tasks with
sufficient amount of work that can be efficiently scheduled to processors by the
compiler. Coarse-grain tasks are also called Macro Tasks (MTs), and are divided
into three categories: Basic Blocks (BBs), Repetition Blocks (RBs) for loops, and
Subroutine Blocks (SBs) for functions. RBs and SBs are hierarchically decom-
posed into smaller MTs if coarse-grain task parallelism still exists within the
task, as shown in RB number 7 in Fig.2. After all MTs for the input program
are generated, they are analyzed to produce a Macro Flow Graph (MFG). MFGs
depict the control flow and the data dependencies of the entire input program
as a graph structure. Further, Macro Task Graphs (MTGs) are generated by
analyzing the earliest executable condition [14] of every MT and analyzing the
control dependencies and data dependencies among MTs on the MFG. MTGs
illustrate parallelism among MTs and are utilized as the baseline structure for
the proposed data localization method to extract data locality from the entire
input program. An example MFG and MTG is illustrated in Fig.2 and Fig.3.

The scheduling of MTs to processor cores can be done either statically at
compile time or dynamically at run time. The decision of static or dynamic
scheduling of MTs depends on the topology and the branch structure of the
MTG of the input program.

3.2 Data Decomposition Method

By analyzing the MTG of the input program, the data decomposition phase
decomposes RBs connected by data dependence edges on the MTG so that data
transfers among the data dependent RBs can be made through LDMs.



6 Yamamoto et al.

Fig. 2. Macro Flow Graph (MFG) Fig. 3. Macro Task Graph (MTG)

The data decomposition process begins by creating groups of loops, or Target
Loop Groups (TLGs), from the MTG that access the same arrays. The loops
within these groups are then analyzed for dependencies through the Inter-Loop
Dependency (ILD) analysis phase [15]. Once this dependency analysis completes,
the number of required decompositions, namely the number of small loops each
loop should be decomposed into, is decided from the available LDM size and the
array sizes accessed by the decomposed loops.

3.2.1 Target Loop Group (TLG) Creation and Inter-Loop
Dependency (ILD) Analysis

Fig. 4. Example of ILD Analysis Fig. 5. A Simple TLG with Two Loops

Loops that access the same array are gathered into group of loops called
TLGs. The loop with the largest estimated time within a TLG is chosen as the
baseline loop for that specific TLG. This baseline loop is used as a criterion for
the data dependency check on the ILD analysis phase. Fig.4 depicts an example
where the baseline loop is chosen as RB3, which is data dependent on indices



Automatic Local Memory Management for Multicores 7

Fig. 6. Example of Localizable Regions (LR) and Commonly Acccessed Regions (CAR)

i and i-1 of RB2 and i-1, i, and i+1 of RB1. The ILD analysis phase resolves
data dependencies between loops within the generated TLGs and detects relevant
iterations of those loops that have dependence with the iterations of the baseline
loop. Moreover, the ILD analysis phase detects Commonly Accessed Regions
(CAR), or array regions accessed by multiple processors, and Localizable Regions
(LR), or array regions accessed by a single processor, of each TLG. Data reuse
can be performed on arrays accessed by LRs that stretch across multiple loops
within a TLG, since LRs encompass loop regions that can be safely kept in
LDMs of each processor. An example diagram of IR and CAR is shown in Fig.6.
Fig.5 shows an example of a TLG. In this example, the second loop is chosen
as the baseline loop since its estimated cost is larger than the first loop. For the
indices of array a, iteration i of the baseline loop has dependencies on iteration
i of the first loop and iteration i+1 of the current loop.

3.2.2 Decomposition Count

The working set size of data shared across multiple decomposed small loops after
decomposition must be strictly less than the available LDM size of the target
processor core. To mitigate the algorithmic complexity for parameter calcula-
tions, the presented method chooses decomposition counts, namely the number
of small data portions each data should be decomposed into, that allows all
decomposed arrays within a TLG to simultaneously exist on LDM. By simpli-
fying the decomposition decision algorithm, the method guarantees mapping of
arbitrary sized arrays onto LDM with low overhead.

3.2.3 Extending the Data Decomposition Method to
Multi-dimensional Loops

Previous data decomposition schemes that exploit data locality mostly focus on
dividing the outer-most loop of a nested loop. Hence, these methods can not
treat cases where decomposition of the outer loop fails to generate array sizes
smaller than the available LDM size. In contrast, the data localization method
presented in this paper is safely applicable to loops with arbitrary dimensions.



8 Yamamoto et al.

Fig. 7. Decomposition of Only the Outer Loop

Fig. 8. Decomposition of Outer and Inner Loops

Fig.7 depicts an example of decomposing only the outer-most loop of a nested
loop. In this example, dividing the outer-most loop still leaves behind a 64 it-
eration inner loop, which accesses an array shared between two loops. Previous
data decomposition methods will fail to place the array onto LDM if this target
array size is larger than the available LDM size. Fig.8 illustrates an example of
decomposing both the outer and the inner loop of the original loop code of Fig.7.
By calculating the necessary decomposition count from the total array size and
the LDM size, the decomposition process not only terminates on the outer-most
loop, but continues inwardly onto inner loops and decides the decomposition
count for each nest level. By hierarchically dividing each nest level, data size of
the accessed array can be significantly reduced, ultimately allowing programs
with large data size to adjustably fit on LDM.

3.3 Scheduling of Decomposed Loops

Decomposed loops with common iteration ranges are placed and executed on the
same processor core to achieve data locality. Decomposed loops with accessing
the same iteration ranges are grouped together into Data Localizable Groups
(DLGs) [15]. An example of DLG is shown in Fig.6. Once DLGs are generated,
the decomposed small loops within each DLG are statically scheduled to the
same processor core.

3.4 Local Memory Management

The challenge of mapping and evicting decomposed data for LDM still remains.
To address this problem, the LDM memory management phase of the method
utilizes scheduling results of DLGs to make appropriate mapping decisions on
LDM and insertion choices of data transfer codes for every decomposed data.



Automatic Local Memory Management for Multicores 9

After mapping decisions are determined from the DLG scheduling phase, the
method adopts Adjustable Blocks and Template Arrays for the actual mapping
of the decomposed data onto LDM [10]. Adjustable Blocks are hierarchical struc-
tures of constant size blocks and are used to flexibly choose appropriate memory
block sizes for each application program. Template Arrays are mapping struc-
tures that maps multi-dimensional arrays to specific one-dimensional blocks of
LDM, and are also used to maintain code readability of the indices of the arrays.

3.4.1 Adjustable Blocks

The decomposition count of data varies with the characteristic and the com-
plexity of the application, which require the LDM management method to han-
dle arrays with arbitrary sizes. However, simply adopting memory blocks with
varying sizes is insufficient, since the data placement and eviction process in-
duces memory fragmentation. To avoid such inefficiency, the proposed method
maps data onto LDM using hierarchically aligned constant size blocks called Ad-
justable Blocks [10]. The basic structure of Adjustable Block is depicted in Fig.9.
Adjustable Blocks allow flexible selection of block sizes depending on the data
size present in the input program, and can be further divided into smaller blocks
with integer divisible sizes of the parent block, unlike buddy memory allocators
where block sizes are limited to multiples of powers of two. The constant size
blocks and the hierarchical structure of Adjustable Blocks allow efficient map-
ping of blocks with varying size and dimension onto LDM as well as avoiding
performance critical fragmentations of LDM. For the current implementation of
the method, the block sizes of Adjustable Blocks are reduced by powers of 2 for
each level down the hierarchy.

When the Adjustable Block size for each application program is decided, the
LDM address space is decomposed into a set of blocks. During parallel execution,
the decomposed data are loaded to a block and evicted from the block managed
by the compiler.

Fig. 9. Hierarchical Structure of Ad-
justable Blocks

Fig. 10. Overview of Template Arrays



10 Yamamoto et al.

3.4.2 Template Arrays

LDM can be represented as a one dimensional array. Therefore, when a multi-
dimensional array is allocated onto LDM, the index calculation of the array
becomes complex. To overcome this complexity, the method introduces an array
mapping technique called Template Arrays [10]. Fig.10 displays an overview of
Template Arrays. The basic idea of Template Arrays is that each block on LDM
corresponds to multiple empty arrays with varying dimensions. These arrays have
an additional dimension augmented to its structure to store the corresponding
block number. By maintaining block numbers for every array on each block,
the method manages to systematically decide which region and block of LDM
memory is appropriate for the target decomposed array. Moreover, by choosing
a block that has the same dimension with the target array, the mapping provides
better readability for the array indices.

3.4.3 Block Eviction Policy

To adjustably utilize LDM during the runtime of the program, the proposed
method appropriately evicts memory blocks guaranteed to be unused or to be
reused latest in the future from LDM to off-chip shared memory to create new
spaces for incoming variables, unlike Least Recently Used (LRU) policies where
variables with the longest unused period are evicted. The live and dead informa-
tion of each variable is analyzed by the OSCAR compiler. In order to minimize
data transfer latencies and fully utilize data locality, data with high probability
of being accessed again continues to reside on LDM. In particular, the method
adopts the following block eviction priority policy to maintain data locality,
listed from most to least significance:

1. Dead variables (variables that will not be accessed further in the program)
2. Variables that are accessed only by other processor cores
3. Variables that will be later accessed by the current processor core
4. Variables that will immediately be accessed by the current processor core

3.5 Data Transfer Between Off-chip Memory

Data transfer codes between LDM and off-chip shared memory is inserted ac-
cording to the scheduling results of the DLGs as presented in section 3.3. The
method assumes DMA controllers as the underlying data transfer hardware to
allow fast and asynchronous burst transfers between processor cores. The cur-
rent implementation of the method explicitly inserts data transfer codes before
MTs that load data and after MTs that store data. Overlapping of data transfers
and task executions is not achieved due to a hardware bug in the RP2 multicore
processor used in this evaluation. Still, this MT-granularity data transfer policy
minimizes synchronization overheads and maintains data coherence with other
processing cores that work on the same array.



Automatic Local Memory Management for Multicores 11

3.6 Code Compaction Method

3.6.1 Overview of the Code Compaction Method

The LDM management approach presented by previous researches produces du-
plicated code for each decomposed loop. This straightforward scheme generates
multiple copies of the loop body with different lower and upper bounds, effec-
tively creating unique loop codes for each decomposition count. To prevent such

Fig. 11. Overview of the Strip Mining
Technique for Nested Loops

Fig. 12. Code Compaction Applied to the
Nested Loop on Fig.7

code bloat, the proposed method adopts code compaction techniques based on
strip mining [13]. Fig.11 depicts the strip mining scheme incorporated to the
method. By applying mid-grain parallelization to the outer-most blocking loop,
proper mapping onto processor cores and execution order can be guaranteed
without applying scheduling.

3.6.2 Code Compaction Method for Multi-dimensional Loops

To utilize code compaction techniques for multi-dimensional loops, iteration
ranges among multiple loops within TLGs must first be aligned by loop peeling
[17, 18]. After peeling the excessive iteration ranges for every loop, the target
loops are fused as a single MT. Fig.12 shows an example with multi-dimensional
loops, illustrating the code compaction method applied to the original loop code
on Fig.7. Since the first and the second loops within the TLG on Fig.7 has dif-
ferent iteration ranges, the iteration of the first loop with indices i = 15 and j
= 63 will be peeled to match up with the smaller iteration ranges of the second
loop. Following this loop peeling, the method then performs loop decomposition.
If the decomposition count is 2, each loop nest will be divided into 2 pieces, con-
sequently performing strip mining with block sizes of 8 as the outer loop and 32
as the inner loop.

4 Evaluations

To show the effectiveness of the method, this section presents evaluation re-
sults on several benchmark applications. The method was implemented on the



12 Yamamoto et al.

OSCAR automatic parallelization compiler and tested on Renesas’s RP2 SH4A
processor based 8 core homogeneous multicore processor [16]. The RP2 mul-
ticore processor is based on the OSCAR multicore architecture shown in the
previous section. Each processor core of RP2 is based on SH4A with 600MHz,
and has dedicated LDM to freely load and evict data during program execution.
To share data among processor cores, each core has access to a processor wide
distributed shared memory. An overview of the RP2 architecture is depicted in
Fig.13. RP2 is equipped with LDM (OLRAM) with a 1 clock cycle latency, dis-
tributed shared memory (URAM) on each processor core with a 2 clock cycle
latency, and a 128MB DDR2 CSM with a 55 clock cycle latency. Data cache, or
D$, is not used for the evaluation. Every processor core is connected with SHwy,
which is Renesas’s standard bus.

Fig. 13. Architecture of the RP2 Multicore Processor

4.1 Tested Applications

To evaluate the performance of the proposed data localization method, 5 sequen-
tial programs written in Parallelizable C [11], such as the example code in Fig.7
used for the explanation of the proposed method, an AAC encoder, a MPEG2 en-
coder, SPEC95 Tomcatv, and SPEC95 Swim were used. Tomcatv and Swim are
chosen from the SPEC95 benchmark suite since both applications in this version
have data size small enough to fit into the limited off-chip CSM size of RP2. The
method applied one-dimensional decomposition to AACenc and Mpeg2enc, and
two-dimensional decomposition to the sample program, Tomcatv, and Swim.
These applications were compiled by the OSCAR source-to-source automatic
parallelization compiler for multiple platforms with the proposed method inte-
grated as part of OSCAR’s analysis phase, followed by a backend compilation
process by a native compiler for each target multicore processor to generate ma-
chine codes. The 4 programs, except the example program of Fig.7, are explained
below.



Automatic Local Memory Management for Multicores 13

– AACenc is an AAC encoder application provided by Renesas Technology.
For evaluation, a 30 second audio file was used as input to generate an audio
file with a bit rate of 128Kbps.

– Mpeg2enc is a MPEG2 encoder application which is part of the MediaBench
benchmark suite. For evaluation, a 30 frame video with a resolution of 352
by 256 pixels was used as input.

– Tomcatv is a loop-intensive benchmark application from the SPEC CPU95
benchmark suite. Before performing the LDM management method, loop
fusion and variable renaming were applied.

– Swim is a benchmark application that performs 2 dimensional array compu-
tations from the SPEC CPU95 benchmark suite. Before performing the LDM
management method, loop distribution and loop peeling were performed.

4.2 Evaluation Results

Fig. 14. Speedups of the Proposed Method (Local Memory) Compared to Executions
Utilizing Shared Memory (Shared Memory) on Benchmarks Applications using RP2

Fig.14 shows the experimental results of the applications on the RP2 8 core
processor. Since, to our knowledge, there are no other open-source compilers
that explicitly manage LDM, the results compare executions of the applications
that utilize the proposed LDM management method and off-chip CSM.

In the sample program of Fig.7, the parallelized program by the OSCAR
compiler using off-chip CSM, or DDR2 memory, achieved speedups of 3.85 for 4
cores and 6.49 for 8 cores. On the other hand, the proposed LDM management
method obtained better speedups, such as 2.64 for single core, 12.61 for 4 cores,
and 20.64 for 8 cores, compared to single core executions using off-chip CSM.

For AACenc, the speedups using the off-chip CSM was 3.58 for 4 cores
and 7.14 for 8 cores compared with single core environment. By contrast, the
speedups for AACenc using the proposed LDM management method were 2.06



14 Yamamoto et al.

for 1 core, 8.94 for 4 cores, and 20.12 for 8 cores. For Mpeg2enc, the speedups
obtained using the off-chip memory were 2.00 on 4 cores and 1.97 on 8 cores
against sequential execution. The proposed method outperformed off-chip mem-
ory solutions by obtaining speedups of 2.33 for single core, 6.81 for 4 cores, and
7.59 for 8 cores. In Tomcatv, speedups achieved by utilizing the CSM were 3.18
for 4 cores and 5.73 for 8 cores. Compared to the CSM environment, the pro-
posed method obtained higher speedups of 1.88 for 1 core, 5.07 for 4 cores, and
7.38 for 8 cores. For Swim, speedups using the off-chip CSM were 3.76 for 4 cores
and 7.40 for 8 cores against 1 core execution. In contrast to those results, the
proposed method showed speedups of 1.33 for 1 core, 5.50 for 4 cores, and 11.30
for 8 cores. The evaluations show that the proposed LDM management method
achieves scalable speedups for embedded and scientific applications.

5 Conclusions

This paper has proposed automatic local memory management method with data
assignment to adjustable blocks chosen for each application utilizing data assign-
ment units between off-chip shared memory and local memory. The method also
incorporates multi-dimensional templates that allow programmers to understand
the parallelized program using local memory management. Utilizing local mem-
ory is necessary to satisfy deadline requirements for applications of embedded
systems, such as automobile engine control programs, with multicore processors.
This software managed local memory control approach successfully decomposes
large size data into smaller chunks so that the working set fits on local mem-
ory, while avoiding fragmentation and maintaining readability of code using Ad-
justable Blocks and Template Arrays. Data transfer between local memory and
off-chip memory is managed through insertion of data transfer codes between
coarse-grain tasks. Additionally, the proposed method allows reuse of data on
local memory over different loops. The proposed method further integrates code
compaction technique to mitigate code bloat, allowing the technique to success-
fully decompose multi-dimensional arrays. The method was implemented on the
OSCAR source-to-source parallelization compiler to automatically generate data
locality optimized code. Evaluations were performed on the RP2 8 core multi-
core processor equipped with off-chip shared memory and local memory. For
the sample program in Fig.7, the proposed local memory management method
achieved a speedup of 20.64 times for 8 cores against sequential execution us-
ing off-chip shared memory of RP2. Similarly, on 8 cores using local memory,
AACenc, Mpeg2enc, Tomcatv, and Swim obtained speedups of 20.12, 7.59, 7.38,
and 11.30, respectively, against 1 core execution using the off-chip shared mem-
ory. These results reveal that the proposed automatic local memory management
method is effective for reducing execution times for embedded applications with
deadline constraints.

Acknowledgments. This work was partly supported by JSPS KAKENHI
Grant Number JP15K00085.



Automatic Local Memory Management for Multicores 15

References

1. Panda, P. R. et al.,”Efficient utilization of scratch-pad memory in embedded pro-
cessor applications,” Proc. of European conference on Design and Test, 1997.

2. Kandemir, M. et al.,”Dynamic management of scratch-pad memory space,” Proc.
of Design Automation Conference, 2001.

3. Avissar, O. et al.,”An optimal memory allocation scheme for scratch-pad-based
embedded systems,” ACM Transactions on Embedded Computing Systems, 2002.

4. Steinke, S. et al.,”Assigning program and data objects to scratchpad for energy
reduction,” Proc. of Design, Automation and Test in Europe Conference and Exhi-
bition, 2002.

5. Che, W. et al.,”Compilation of stream programs for multicore processors that in-
corporate scratchpad memories,” Proc. of Design, Automation and Test in Europe
Conference and Exhibition, 2010.

6. Udayakumaran, S. et al.,”Dynamic allocation for scratch-pad memory using
compile-time decisions,” ACM Transactions on Embedded Computing Systems,
2006.

7. Guo, Y. et al.,”Data placement and duplication for embedded multicore systems
with scratch pad memory,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 2013.

8. Kandemir, M. et al.,”Exploiting shared scratch pad memory space in embedded
multiprocessor systems,” Proc. of Design Automation Conference, 2002.

9. Issenin, I. et al.,”Multiprocessor system-on-chip data reuse analysis for exploring
customized memory hierarchies,” Proc. of Design Automation Conference, 2006.

10. Kasahara, H. et al.,”U.S. Patent No. 8,438,359,” Washington, DC: U.S. Patent and
Trademark Office, 2013.

11. Kimura, K. et al.,”Oscar api for real-time low-power multicores and its perfor-
mance on multicores and smp servers,” International Workshop on Languages and
Compilers for Parallel Computing, 2009.

12. Banakar, R. et al.,”Scratchpad memory: design alternative for cache on-chip mem-
ory in embedded systems,” Proc. of international symposium on Hardware/software
codesign, 2002.

13. Wolfe, M.,”More iteration space tiling,” Proc. of ACM/IEEE conference on Super-
computing, 1989.

14. Kasahara, H. et al.,”A multigrain parallelizing compilation scheme for OSCAR
(optimally scheduled advanced multiprocessor),” International Workshop on Lan-
guages and Compilers for Parallel Computing, 1991.

15. Yoshida, A. et al.,”Data-localization for fortran macro-dataflow computation using
partial static task assignment,” Proc. of international conference on Supercomput-
ing, 1996.

16. Ito, M. et al.,”An 8640 mips soc with independent poweroff control of 8 cpu and
8 rams by an automatic parallelizing compiler,” Proc. of IEEE International Solid
State Circuits Conference, 2008.

17. Kennedy, K. et al.,”Optimizing Compilers for Modern Architectures: A
Dependence-Based Approach,” Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA. 2001.

18. Padua D. et al.,”Advanced compiler optimizations for supercomputers,” Commu-
nications of the ACM 29, 1986.

19. https://www.renesas.com/en-in/products/microcontrollers-
microprocessors/v850/v850e2mx/v850e2mx4.html


