
IPSJ SIG Technical Report

Automatic parallelization with OSCAR API Analyzer:
a cross-platform performance evaluation

CeciliaGonzalez-Alvarez1,2,a) Youhei Kanehagi1,b) Kosei Takemoto1,c) Yohei Kishimoto1,d)

Kohei Muto1,e) Hiroki Mikami1,f) Akihiro Hayashi1,g) Keiji Kimura1,h)

Hironori Kasahara1,i)

Abstract: To satisfy the demands of auto parallelizing compilers in the diverse industry of multicores, we have devel-
oped the OSCAR API Analyzer. It allows programs automatically parallelized by the OSCAR compiler with OSCAR
API directives to target many different platforms using just sequential compilers. We have evaluated the execution
performance of the parallelization of Fortran SPEC benchmarks (tomcatv, swim2000, mgrid2000) and media C bench-
marks (AAC encoder, Optical flow, MPEG2 encoder, MPEG2 decoder, Face detect) on five HPC servers and four
embedded multicores. Speedups on servers were up to 18x for 32 cores (swim2000 on Hitachi SR16000), whereas on
embedded systems, AAC encoder speedup was up to 47x on TilePro64, for 64 homogeneous cores, and up to 32.65x
for the optical flow on the heterogeneous multicore RP-X, using 8 cores and 4 accelerators.

1. Introduction and Motivation

In the latest years, multicores have invaded every spot of the
computing spectrum, from High Performance Computing (HPC)
to embedded systems. Specifically, the recent rise and expected
continuous grow of embedded multicores in new markets like
smartphones or advanced automobile control suggests that re-
search directions will be focused on leveraging high-performance
and low power multicore embedded systems. One of the top pri-
orities of embedded companies is the portability of applications
and libraries. Therefore, automatic parallelizing compilers that
can target multiple multicore platforms are of great interest for
the current market. If embedded companies can minimize their
investment in compiler development, they will get parallel code
quickly to satisfy the tightly product release plan, as it is the case
in the Japanese smartphone market every Spring and Fall.

There have been several source-to-source compilers that per-
form automatic parallelization, such as SUIF [7] or Polaris [4].
Lately, there parallel APIs are also becoming of special interest,
like The Multicore Association communication API [21] for em-
bedded systems, or OpenCL [11], mostly used on systems with
accelerators like GPGPUs.

1 Waseda University
2 Universitat Politecnica de Catalunya
a) cecilia@kasahara.cs.waseda.ac.jp
b) ykane@kasahara.cs.waseda.ac.jp
c) kosei@kasahara.cs.waseda.ac.jp
d) kisimoto@kasahara.cs.waseda.ac.jp
e) kmuto@kasahara.cs.waseda.ac.jp
f) hiroki@kasahara.cs.waseda.ac.jp
g) ahayashi@kasahara.cs.waseda.ac.jp
h) kimura@apal.cs.waseda.ac.jp
i) kasahara@kasahara.cs.waseda.ac.jp

Several compilers that generate parallel code for shared-
memory multiprocessors use the de-facto standard multicore API
OpenMP [17]. However, compilers for each existing system do
not always support OpenMP, as it is the case of embedded sys-
tems.

In previous works, Kasaharaet al. presented OSCAR (Op-
timally SCheduled Advanced multiprocessoR) compiler [9], a
source-to-source compiler that extracts multigrain parallelism of
C and Fortran applications. The compiler rewrites the programs
with OSCAR API [18], also presented by them in a previous work
[13]. OSCAR API includes a subset of OpenMP for thread con-
trol and multiprocessor task management, such as memory allo-
cation, power control, data transfer by DMAC, realtime execu-
tion, accelerator control and cache control. Still, the specific part
of OSCAR API that can be applicable depends on the target plat-
form. For instance, parallel processing on SMP servers uses only
the parallel thread generation and memory order management di-
rectives of the API, whereas certain heterogeneous systems can
use as well the memory map API, the power API and the acceler-
ator API. Furthermore, run-time implementations of the API may
differ across the platforms.

In this paper, we extend the above mentioned works with the
following contributions:
• A new compilation flow for automatic parallelization of C

and Fortran applications that abstracts the target run-time
with an API Analyzer. It enables the rapid development of
parallelizing compilers for homogeneous and heterogeneous
multicores, using each platform sequential compiler as the
backend compiler. Consequently, platforms that do not sup-
port OpenMP compilers can also benefit from automatic par-
allelization.

1ⓒ 2012 Information Processing Society of Japan

Vol.2012-ARC-202 No.10
Vol.2012-HPC-137 No.10

2012/12/13

IPSJ SIG Technical Report

Fig. 1 OSCAR multicore architecture diagram.
Each core has a CPU with instruction- and data caches (I/D-
cache), local data memory (LDM), L2-cache and distributed
shared memory (DSM). Peripherals are the DMA-controller
(DTC) and a network interface to the on-chip network. Com-
ponents can have frequency-voltage registers (FVR). External
memories (CSM) are accessed by the inter-chip connection
network. Concrete implementation of the architecture is ab-
stracted.

• Evaluation of performance and scalability of the pro-
posed automatic parallelizing framework in several shared-
memory HPC systems, several homogeneous multicore em-
bedded systems and a heterogeneous multicore system. As a
proof of the validity of the new framework compilation with
sequential compilers as the backend, we compare the results
against executables generated with OpenMP backend com-
pilers.

The key components of the paper are themultiplatform par-
allelizing compilation flow with OSCAR compiler as the auto-
matic parallelization compiler, andOSCAR API Analyzer that
enables parallelization of several multiprocessors servers and em-
bedded multicores with almost no development costs.

The rest of the paper is organized as follows. Section 2 explains
OSCAR compiler and OSCAR API. Section 3 explains OSCAR
API Analyzer implementation details. In Section 4, we present
the evaluation results of the automatic parallelization of bench-
marks on HPC and embedded systems. Section 5 explores the
related work and Section 6 finalizes with the conclusions.

2. OSCAR infrastructure

OSCAR Multicore architecture [12] is an architecture abstrac-
tion designed to work cooperatively with a multigrain paralleliz-
ing compiler such as OSCAR compiler [9]. The goal of OSCAR
Multicore is to build a scalable, highly performance and cost ef-
fective computer system for various targets, from embedded com-
puters like the ones found on smartphones, automobiles, PDAs,
game machines and medical systems, to HPC systems.

The OSCAR reference architecture is shown in Figure 1. It
consists of several multicore chips and an off-chip Centralized
Shared Memory (CSM) module. Each multicore chip has multi-

ple processor cores and an on-chip CSM. Each processor core has
a CPU, a Local DataMemory and Local ProgramMemory (LDM,
LPM) for core private data and instructions, a Distributed Shared
Memory (DSM) for synchronization flags and shared data, a
Data Transfer Controller (DTC), a Frequency and Voltage Con-
trol Register (FVR) and a network interface that connects Proces-
sor Elements (PE) within a chip. Each module in the OSCAR
memory architecture may have an FVR. The OSCAR compiler
and API can support several memory configurations and multi-
cores that are subsets of the reference architecture designed for
each target application.

OSCAR compiler exploits multiple grains of parallelism such
as coarse-grain task parallel processing, loop-iteration level paral-
lel processing and statement level near fine-grain parallel process-
ing [12]. It consists of the following phases: front end, that per-
forms lexical and syntax analysis and generates an intermediate
representation (IR); middle path, that performs macro-task gen-
eration [10], coarse-grain task parallelization, processor grouping
and macro-task scheduling, data locality optimization and power
reduction; back end, that generates binary or source code with
OSCAR API.

OSCAR API is an interface that provides parallel execution,
memory allocation, data transfer by DMAC, power control, syn-
chronization, realtime execution, cache control and accelerator
control. The OSCAR API is designed on a subset of OpenMP.
Therefore, a program that is automatically parallelized by the OS-
CAR compiler with OSCAR API can be compiled by OpenMP
compilers and can support both C and Fortran programs. The
directives in the OSCAR API are related to the above modules
of the OSCAR Multicore architecture. If the target architecture
does not have some of those modules, directives related to those
modules can be ignored.

Figure 2 shows the compilation flow of the OSCAR compiler
with the OSCAR API. In the first step, a sequential Parallelizable
C or Fortran program is parallelized by the OSCAR compiler.
Parallelizable C is a set of coding guidelines for C programs tak-
ing compilers parallelization in consideration [16]. For heteroge-
neous architecture, the accelerator compiler or the programmer
first inserts hint directives to indicate OSCAR compiler the parts
of the code that can be offloaded to accelerators [8]. The gener-
ated C or Fortran code includes OSCAR API directives. In the
last step the OSCAR API Analyzer transforms the directives into
function calls to the OSCAR run-time support. Since the direc-
tives are a subset of OpenMP it is also possible to feed the sources
into an OpenMP-compliant compiler. However, the API Ana-
lyzer is easier to port to new platforms than modifying OpenMP-
compliant compilers such as GCC, as experiments in our group
have shown. Futhermore, the OSCAR API Analyzer is able of
processing accelerator directives.

3. OSCAR API Analyzer

The OSCAR API Analyzer enables the use of the memory
mapping API and the power control API of OSCAR API in any
given target platform. The tool interprets parts of platform depen-
dent directive statements and transforms program sources to use
standard library calls. The sources that are generated from this

2ⓒ 2012 Information Processing Society of Japan

Vol.2012-ARC-202 No.10
Vol.2012-HPC-137 No.10

2012/12/13

IPSJ SIG Technical Report

Fig. 2 OSCAR compilation flow for homogeneous and heterogeneous multicore systems.

Fig. 3 Diagram of the OSCAR API Analyzer workflow.
The OSCAR API Analyzer reads in a configuration file and the
C/Fortran sources compiled by tset he OSCAR parallelizing
compiler that now containdirectives. The Analyzer transforms
the directives into run-time library calls for the target platform,
that sequential compilers are able to handle to generate the final
multicore-enabled binary.

transformation are linked with run-time libraries that are easy to
create. OSCAR compiler can be used to parallelize programs
automatically and to perform power control with almost no de-
velopment efforts. Therefore, the development cost of using the
OSCAR API Analyzer is considerably lower than developing a
parallelizing compiler for every target architecture, enabling au-
tomatic parallelization in a wide range of different architectures.

3.1 OSCAR API Analyzer Workflow
Figure 3 shows the workflow of the OSCAR API Analyzer.

Inputs of the workflow are C or Fortran code files that have been
automatically parallelized with OSCAR compiler and thus use di-
rectives of the OSCAR API. To create an executable for each one

of the target parallel architectures we compile the generated C or
Fortran program with run-time library functions and link with the
specific run-time library of the architecture.

Outputs of the OSCAR API Analyzer are C or Fortran paral-
lelized programs that use run-time library functions. The config-
uration file that the Analyzer uses for each platform describes
and sets the architecture configuration, the address of the dis-
tributed shared memory (DSM), transformations of the data trans-
fer, groupbarrier directive to implement barrier synchroniza-
tion among any group of processor cores, the associated module
name and module number for the power control API.

3.2 Runtime Library Functions Transformation
The core task of OSCAR API Analyzer is the transformation

of OSCAR API into run-time library functions. Taking the ex-
ample of a C program that has been parallelized with OSCAR
compiler, the OSCAR API directives are specified as pragmas in
the C code. Therefore, to be able to use the functions of a stan-
dard parallel library, the OSCAR API Analyzer has to transform
the OSCAR API directives into run-time stub library functions
that call functions of the standard parallel library of the target.

Figure 4 shows an example of conversion of parallel sec-
tions to perform thread creation. In Figure 4(a) 4 threads are
created using theparallel sections directive. The OS-
CAR API Analyzer generates the code in Figure 4(b). Func-
tions thread function 00[0-3] start the execution of the
threads, but whilefunction thread function 000 runs as
a normal function, oscar thread create prepare the ex-
ecution of functionsthread function 00[1-3]. Finally,
oscar thread join function performs the synchronization of
the threads.

In platforms where the pthread library is available, func-
tions oscar thread create and oscar thread join call
pthread create andpthread join, respectively.

3ⓒ 2012 Information Processing Society of Japan

Vol.2012-ARC-202 No.10
Vol.2012-HPC-137 No.10

2012/12/13

IPSJ SIG Technical Report

OMP_NUM_THREADS=4

#pragma omp parallel_sections

{

#pragma omp section {

. . .

}

#pragma omp section {

. . .

}

#pragma omp section {

. . .

}

#pragma omp section {

. . .

}

}

(a) OSCAR API directives

void thread_function_000(void);

void thread_function_001(void);

void thread_function_002(void);

void thread_function_003(void);

int thr1;

int thr2;

int thr3;

oscar_thread_create(&thr1, thread_function_001, 0);

oscar_thread_create(&thr2, thread_function_002, 1);

oscar_thread_create(&thr3, thread_function_003, 2);

thread_function_000();

oscar_thread_join(thr1);

oscar_thread_join(thr2);

oscar_thread_join(thr3);

(b) Runtime library functions

Fig. 4 OSCAR API Analyzer conversion example.
Figure (a) shows the directives generated by OSCAR compiler.
Eachomp section is mapped to a thread. Figure (b) shows
the output of the OSCAR API Analyzer. Thedirectiveshave
been translated to run-time library calls.

#pragma oscar onchipshared(var1)

(a) OSCAR API directive

int __attribute((section("OSCAR_SHARED")))var1;

(b) code for GCC conversion

Fig. 5 OSCAR API-Analyzer conversion example.
The onchipshared directive is transformed into a GCC-
specific compiler annotation for the variablevar1.

3.3 Memory Allocation Transformation
The run-time library cannot implement the memory allocation

as it is stated in directives such asthread private. Therefore,
it is necessary to convert the memory allocation specification of
OSCAR API to a description of the memory attribute layout used
by the native compiler.

Figure 5 shows an example of this tranformation for the
case of the directiveonchipshared. Figure 5(a) displays how
onchipshared directive allocatesvar1 in the on-chip central-
ized shared memory (CSM). Figure 5(b) shows the transforma-
tion when GCC is the native compiler: the variablevar1 is de-
clared as an attribute in the sectionOSCAR SHARED. As the linker
configuration file of the target platform places theOSCAR SHARED
section in the on-chip CSM, variable var1 will consequently be
allocated there.

Figure 6 shows another example of OSCAR API transforma-
tion related to memory allocation, in this case for the directives
threadprivate anddistributedshared, under the assump-

int var1[10];

short int var2 [10][10];

#pragma omp threadprivate(var1)

#pragma oscar distributedshared vpc(0) (var2)

(a) OSCAR API directives

#pragma section MEM_LM

int var1[10];

#pragma section

#pragma section MEM_DSM0

short int var2[10][10];

(b) Output code of OSCAR API Analyzer

Fig. 6 OSCAR API-Analyzer conversion example.
In Figure (a) two variables (var1and var2) are mapped to
thread private and distributed shared memory. After translation
with the OSCAR API Analyzer - see Figure (b), the variables
are mapped to the platform specific memory areas:MEM LM and
MEM DSMO.

tion of using SH-compiler as the native compiler. These direc-
tives specify that variablesvar1 andvar2 are allocated in the
on-chip shared memory (CSM) and the distributed shared mem-
ory, respectively (Figure 6(a)). The OSCAR API Analyzer trans-
forms those directives into the code shown in Figure 6(b), with
sectionsMEM LM andMEM DSM describing that variablesvar1 and
var2 are placed in Local Data Memory (LDM) and Distributed
Shared Memory (DSM).

4. Evaluation results

We evaluate the performance and scalability of several bench-
marks on HPC servers and embedded systems. We also compare
the results to their OpenMP counterpart when applicable.

The benchmarks consist of Fortran and C codes for the servers,
and only C codes for the embedded machines. Note that some
of the original C codes of the applications had been modified to
made them compliant with the Parallelizable C language [16].

The figures show the number of parallel cores on the x-axis
and the application speedup on the y-axis. Each bar series rep-
resents a benchmark compiled with the OSCAR API Analyzer
and a sequential compiler. If an OpenMP compiler is available
for the evaluated platform, bar series also represent executables
generated by OpenMP compilers. In that case,(omp) or (api)
follows the name of the benchmark if an OpenMP compiler or the
OSCAR API Analyzer have been used, respectively.

4.1 HPC systems
Experimental setup

Five different HPC servers were used to run the experiments:
Fujitsu m9000 (256-core SMP), Hitachi SR16000 (128-core
SMP), Hitachi SMP 64-core Blade server BS2000, Hitachi Intel-
core SMP RS440 and Dell PowerEdge AMD-core SMP R815.
Table 4.1 shows the configuration details of these servers.

The sequential compiler used to ultimately generate the exe-
cutables is GCC. All the applications have been compiled with
optimization level flag-O3.
Fortran benchmarks

We test the compilation flow with Fortran applications from the
SPEC Benchmarks [20]; they appear in the charts of this paper as
tomcatv, swim2000 andmgrid2000. We test them on Hitachi
Power7 SR16000 and Hitachi Intel-core SMP RS440 servers.

4ⓒ 2012 Information Processing Society of Japan

Vol.2012-ARC-202 No.10
Vol.2012-HPC-137 No.10

2012/12/13

IPSJ SIG Technical Report

Table 1 Evaluation environment (HPC systems)

System Fujitsu m9000 Hitachi SR16000 Hitachi BS2000 Hitachi RS440 Dell Power Edge R815

CPU
SPARC64 VII

2.88GHz
IBM POWER 7

4GHz
Intel Xeon E7-8870

2.4GHz
Intel Xeon X7560

2.27GHz
AMD Opteron 6174

2.20MHz
#cores 256 128 80 32 48

L1 Cache 128KB / core 32KB / core 48KB / core 32KB (I); 16KB (D) 128KB / core
L2 cache 6MB / CPU 256KB / core 256KB / core 256KB / core 512KB / core
L3 cache N/A 32MB / 8 cores 30MB / CPU 24MB / CPU 12MB / 12 cores

Fig. 7 Performance of Fortran benchmarks on Hitachi Intel-core
SMP RS440.

Figure 7 shows the results for the SR16000 server. The
benchmarks with OSCAR API Analyzer support can reach a
speedup up to 18x, as it is the case ofswim2000 for 32 cores
(swim2000(api)-labeled bar). Besides, we get up to 2.5x more
speedup withmgrid2000 (mgrid2000(api)-labeled bar) com-
pared to the OpenMP execution (mgrid2000(omp)-labeled bar).
The reason of this speedup difference between the OpenMP ver-
sion and the Analyzer version is due to a more efficient implemen-
tation of the run-time libraries that the Analyzer uses, compared
to the OpenMP run-time for this particular system.

Figure 8 shows the results for the RS440 server. In
this case, OSCAR API Analyzer gives also the best perfor-
mance, up to 14.85x of speedup formgrid2000 with 32 cores
(mgrid2000(api)-labeled bar). This means that using OSCAR
API with the API Analyzer and sequential compilers as backend
compilers give a similar or better performance than the OpenMP
compilers as the backend compilers.
C benchmarks

The C benchmarks used in the evaluation of the servers are:
AAC encoder (aac), Optical Flow (optflow), MPEG2 encoder
(m2enc) and Face detect (fd). These benchmarks are from known
benchmark suites such as Mediabench and OpenCV, or obtained
from collaboration with other research groups. They were rewrit-
ten in Parallelizable C, except foraac, that was originally written
in Parallelizable C. We test their performance on Fujitsu SPARC-
VII m9000, Hitachi Power7 SR16000, Hitachi SMP Blade server
BS2000, Hitachi Intel-core SMP RS440 and Dell PowerEdge
AMD-core SMP R815.

Figure 9 shows the performance results on m9000. This ma-
chine has no results form2enc because of unsupported libraries
in the platform. The maximum performance achieved is 10x of
speedup with thefd benchmark parallelized for 16 cores with the

Fig. 8 Performance of Fortran benchmarks on Hitachi Intel-core
SMP RS440.

Fig. 9 Performance of C benchmarks on Fujitsu SPARC-VII
m9000.

OSCAR API Analyzer (fd(api)-labeled bar).
The server SR16000 has a similar performance, as we see in

Figure 10, reaching 19.15x of speedup also with thefd bench-
mark and 32 cores (fd(api)-labeled bar). However, scalability for
m2enc degrades from 16 cores (m2enc(api)-labeled bar).

In turn, the scalability of all the benchmarks on BS2000 (Fig-
ure 11) grows more steadily.aac gives the best result with 11.8x
for the Analyzer version with 16 cores (aac(api)-labeled bar).

Results for the RS440 machine, shown in Figure 12, give
the best speedup also toaac, 19x for 32 cores (aac(omp)-
labeled bar), but followed closely by the Analyzer with 18.85x
(aac(api)-labeled bar). However, in this machine, the scalability
of optflow andm2enc from 16 cores does not improve for either
OpenMP or the Analyzer.

We see in Figure 13, that shows the results for R815, a common
trend for the execution of the C applications on the servers: all the

5ⓒ 2012 Information Processing Society of Japan

Vol.2012-ARC-202 No.10
Vol.2012-HPC-137 No.10

2012/12/13

IPSJ SIG Technical Report

Fig. 10 Performance of C benchmarks on Hitachi Power7
SR16000.

Fig. 11 Performance of C benchmarks on Hitachi SMP Blade
server BS2000.

Fig. 12 Performance of C benchmarks on Hitachi Intel-core SMP
RS440.

machines have similar performance results for the OpenMP and
OSCAR API Analyzer executables. Therefore, the API Analyzer
allows the set of C benchmarks to achieve with sequential com-
pilers a similar performance compared to the one achieved with
OpenMP compilers.

4.2 Embedded systems
Experimental setup

Table 4.2 shows the hardware details of the embedded multi-
cores for the experiments. The table also shows the sequential
compiler that is used with OSCAR API Analyzer. All the appli-

Fig. 13 Performance of C benchmarks on Dell PowerEdge AMD-
core SMP R815.

Fig. 14 Performance of benchmarks on RP-X multicore.

cations have been compiled with the maximum optimization level
for the compiler, unless otherwise specified.
Homogeneous embedded systems

All the benchmarks used in the evaluation of the embedded ho-
mogeneous multicores are written in C. They are AAC encoder
(aac), Optical Flow (optflow), MPEG2 encoder (m2enc) and
MPEG2 decoder (m2dec) and Face detect (fd).

Figure 14 shows the performance on the heterogeneous mul-
ticore RP-X with no accelerators.optflow achieves the best
speedup with 6x for 8 cores, similar to the speedups ofaac and
m2enc. However,m2dec has a poor scalability in this platform,
because of the characteristics of slice level parallelism exploited
by this application.

Tilera Tile64, in Figure 15, achieves good performance results
with up to 41.5x foraac being executed on 64 cores.

From the 64-core TilePRO we move to the dual core Qual-
comm Snapdragon S4. Its results in Figure 16 show that all the
applications have more than 1.6x of speedup when executing on
2 cores, with up to 1.95x of speedup in the case ofaac.

Finally, Figure 17 shows the results for the 3 ARM11-core
ETKernel MPCore. The automatic parallelization ofaac shows
up to 2.85x of speedup. However, the performance ofoptflow

with 3 cores is not improving compared to 2 cores, because of
the nature of the computation of the application, which results in
poor scalability for 3 cores.

6ⓒ 2012 Information Processing Society of Japan

Vol.2012-ARC-202 No.10
Vol.2012-HPC-137 No.10

2012/12/13

IPSJ SIG Technical Report

Table 2 Evaluation environment (embedded systems)

System RP-X Tilera TilePro64 Qualcomm Snapdradon S4 ETKernel MPCore

CPU
SH-4A

648MHz (FE-GA 324MHz)
TLR36480(MIPS)

700MHz
Dual Krait
1.5 GHz

ARM 11
400 MHz

#cores 8 + 4 FE-GA 64 2 3
L1 Cache 16KB (ILRAM), 16KB (LDM), 64KB (DSM) I$ 16KB, D$ 8KB I$ 32KB, D$ 32KB 48KB
L2 cache 256 KB 64KB 1MB -
Compiler SH compiler tile-gcc (gcc 4.4.3 based) arm-linux-androideabi-gcc RVDS 4.0

Fig. 15 Performance of benchmarks on Tilera Tile64.

Fig. 16 Performance of benchmarks on Qualcomm Snapdragon
S4.

Heterogeneous embedded systems
The Heterogeneous Multicore RP-X is configured for these ex-

periments with 4 FE-GA accelerators [14]. The code that is of-
floaded on the accelerators corresponds to a hand-tuned library
code specifically for each application.

We evaluate its parallel performance with Optical Flow and
AAC encoder for different configurations as we show in Figure
18.

The x-axis shows the processor configurations. For example,
8SH+4FE represents the configuration of eight SH-4A general-
purpose cores and four FE-GA accelerator cores and the y-axis
shows the speedup. The proposed framework achieved speedups
of up to 32.65x with 8SH+4FE for Optical flow, and up to
16.08x for the AAC encoder. As we see, the optical flow bench-
mark benefits most of the accelerator cores, and we can observe

Fig. 17 Performance of benchmarks on ETKernel MPCore.

Optical Flow AAC

0

10

20

30

40

1SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

16.08

8.77

4.60
6.33

1.00

32.65

26.71

18.85

5.40

1.00

Heterogeneous mul�core RP-X

Fig. 18 Performance of benchmarks on the heterogeneous multi-
core RP-X with FE-GA accelerators

super-linear speedups. The optical flow application uses vendor-
supplied libraries for key-operations such as SADT (sum of abso-
lute differences). Our own AAC-codec port is in its early stages
and cannot yet fully exploit the potential of the accelerators.

5. Related work

Automatic parallelizing source-to-source compilers for homo-
geneous multiprocessors, such as Nanos Mercurium [2], SUIF [7]
or Polaris [4] have proven to be a desirable path for the computing
community interested in universalizing automatic parallelization.
Multiplatform parallelizing compilers rely on multiplatform APIs
for their deployment on several architectures. The Multicore As-
sociation works on proposals of multiplatform APIs for embed-
ded systems, like the already released communication API [21].
OpenCL has been developed as a multiplatform parallel API [11],

7ⓒ 2012 Information Processing Society of Japan

Vol.2012-ARC-202 No.10
Vol.2012-HPC-137 No.10

2012/12/13

IPSJ SIG Technical Report

mostly used on systems with accelerators like GPGPUs.
Par4All [22] is an automatic parallelizing and optimizing com-

piler for sequential programs written in Fortran and a strict subset
of C. It generates OpenMP, CUDA and OpenCL code, and can be
coupled with an accelerator run-time that provides the adaptation
layer for different accelerators.

The compiler framework proposed by Lee [15] translates
standard OpenMP shared-memory programs into CUDA-based
GPGPU programs. Other work that targets heterogeneous ar-
chitectures is OMPSs [6]. Their proposed OpenMP based an-
notations that ease programmability. Experiments with their
compiler infrastructure generate parallel programs for shared-
memory servers as well as Cell BE and GPUs. One more com-
piler for heterogeous multicores, CellSs [3], performs automatic
parallelization of a subset of sequential C programs with data flow
annotations on the Cell BE architecture.

Thecafc [5] Fortran parallelizing compiler target several clus-
ter platforms. It is based on the Co-array Fortran global address
space programming model. Authors evaluate a set of benchmarks
on several cluster architectures and compare their results to those
of MPI, as we have compared ours to OpenMP.

6. Conclusions and Future work

Although automatic parallelizing compilers that address plat-
forms as diverse as servers or embedded systems are scarce, their
possibilities are promising in a world where multicores will dom-
inate for several generations. To overcome the difficulty of devel-
oping parallelizing compilers for every platform, new strategies
of compilation have to be proposed.

In this paper, we have introduced the OSCAR API Analyzer, a
support set of tools and libraries that enable OSCAR compiler to
be used for automatic parallelization just using sequential com-
pilers. The API Analyzer enables easy portability, which is im-
portant for embedded systems, where OpenMP support is usually
not available. The compilation framework presented generates
parallelized code for shared-memory multiprocessos as well as
homogeneous and heterogeneous embedded multicores. It also
allows the rapid development of parallelizing compilers for new
platforms like the heterogeneous multicore RP-X, minimizing the
implementation costs of OpenMP compilers for each multicore
aimed to be supported with automatic parallelization. We eval-
uated the framework with C and Fortran benchmarks on differ-
ent platforms. Server results show up to 18x in 32 cores for the
swim2000 benchmark on Hitachi SR16000 using the OSCAR
API Analyzer. Furthermore, performance and scalability using
sequential compilers as the backend compilers with OSCAR API
Analyzer are similar to using the OpenMP compiler as the back-
end compiler for OSCAR API programs. Therefore, the Analyzer
is capable of the same performance as the highly-tuned OpenMP
support of the vendor compilers. For homogeneous embedded
systems, we observed in the AAC encoder benchmark speedups
up to 47x on the 64-core machine TilePro64. On the other hand,
for the heterogeneous multicore RP-X, the Optical flow bench-
mark achieve up to 32.65x of speedup for 8 cores and 4 FE-GA
accelerators. To our knowledge, this is the first compiler infras-
tructure of this kind to present a so detailed study in such a wide

type of systems.
However, there are some aspects that have been left for future

work, such as the power analysis control capabilities of the OS-
CAR API Analyzer, or the evaluation of its performance using
other sequential compilers as backend, like XLC or ICC for sev-
eral server machines.

Acknowledgments The authors would like to thank the OS-
CAR API Committee for their valuable support in this research.

References

[1] M. Amini, B. Creusillet, and S. Even.Par4All: From Convex Array
Regions to Heterogeneous Computing. 2nd International Workshop on
Polyhedral Compilation Techniques (IMPACT 2012), 2012.

[2] J. Balart and A. Duran.Nanos mercurium: a research compiler for
openmp. European Workshop on OpenMP, 2004.

[3] Bellens, P., Perez, J.CellSs: a programming model for the Cell BE
architecture. SC 2006 Conference, 2006

[4] Blume, W., Doallo, R., and Eigenmann, R.Parallel programming with
Polaris. Computer, (1996).

[5] Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey.A multi-platform Co-
Array Fortran compiler. Proceedings of the 13th Intl. Conference of
Parallel Architectures and Compilation Techniques, 2004.

[6] R. Ferrer, J. Planas, and P. Bellens.Optimizing the exploitation of mul-
ticore processors and GPUs with OpenMP and OpenCL. Languages
and Compilers for Parallel Computing, pages 215–229, 2011.

[7] M. Hall and J. Anderson.Maximizing Multiprocessor Performance
with the SUIF Compiler. Computer, pages 84–89, 1996.

[8] A. Hayashi, Y. Wada, T. Watanabe, T. Sekiguchi, M. Mase, J. Shirako,
K. Kimura, and H. Kasahara.Parallelizing compiler framework and
API for power reduction and software productivity of real-time het-
erogeneous multicores. Languages and Compilers for Parallel Com-
puting, pages 184–198, 2011.

[9] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara, and
S. Narita.A multi-grain parallelizing compilation scheme for OSCAR
(optimally scheduled advanced multiprocessor). Languages and Com-
pilers for Parallel Computing, pages 283–297, 1991.

[10] H. Kasahara, M. Obata, and K. Ishizaka.Automatic coarse grain task
parallel processing on SMP using OpenMP. Languages and Compil-
ers for Parallel Computing, pages 189–207, 2001.

[11] Khronos Group. OpenCL. http://www.khronos.org/opencl.
[12] K. Kimura, Y. Wada, H. Nakano, T. Kodaka, K. Ishizaka, and H. Kasa-

hara.Multigrain Parallel Processing on Compiler Cooperative Chip
Multiprocessor. 9th Annual Workshop on Interaction between Com-
pilers and Computer Architectures (INTERACT’05), pages 11–20,
2005.

[13] K. Kimura, M. Mase, H. Mikami, T. Miyamoto, J. Shirako and
H. Kasahara.OSCAR API for real-time low-power multicores and its
performance on multicores and SMP servers. Languages and Compil-
ers for Parallel Computing, pages 188–202, 2010.

[14] T. Kodama, T. Tsunoda, M. Takada, H. Tanaka, Y. Akita, M. Sato,
and M. Ito.Flexible Engine: A Dynamic Reconfigurable Accelerator
with High Performance and Low Power Consumption. COOL Chips
IX, 2006.

[15] S. Lee, S. Min, and R. Eigenmann.OpenMP to GPGPU: a compiler
framework for automatic translation and optimization. ACM Sigplan
Notices, pages 101–110, 2009.

[16] M. Mase, Y. Onozaki, K. Kimura, and H. Kasahara.Parallelizable C
and Its Performance on Low Power High Performance Multicore Pro-
cessors. Proc. of 15th Workshop on Compilers for Parallel Computing,
2010.

[17] OpenMP. Simple, Portable, Scalable SMP Programming.
http://www.openmp.org/.

[18] OSCAR API v2.0.http://www.kasahara.elec.waseda.ac.jp/api2/regist.html.
[19] J. Shirako, N. Oshiyama, and Y. Wada.Compiler control power sav-

ing scheme for multi core processors. Languages and Compilers for
Parallel Computing, 2006.

[20] Standard Performance Evaluation Corporation.SPEC CPU2000.
[21] The Multicore Association.Multicore Communication API (MCAPI).
[22] M. Torquati, M. Vanneschi, and M. Amini.An innovative compilation

tool-chain for embedded multi-core architectures. Embedded World
Conference, 2012.

[23] Yuyama, Y., Ito, M., Kiyoshige, Y., Nitta, Y., Matsui, S., Nishii, O.,
Hasegawa, A., et al.A 45nm 37.3GOPS/W Heterogeneous Multi-Core
SoC. ISSCC, pages 86-87, 2010.

8ⓒ 2012 Information Processing Society of Japan

Vol.2012-ARC-202 No.10
Vol.2012-HPC-137 No.10

2012/12/13

