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Abstract

Currently few mobile applications exploit the power- and performance capabilities of multi-core architectures.
As the number of cores increases, the challenges become more pressing. We picked three challenges: applica-
tion parallelization, performance-predictability/portability and power control for mobile devices. We tackled the
challenges with our auto-parallelizing compiler and operating system enhancements.

1 Introduction

Mobile devices such as smart-phones and tablet PCs have become prevalent. Several mobile SoC (system-
on-chip) vendors compete for the lowest power consumption and highest performance. Heterogeneous multi-
core architectures allow operating systems to choose between cores that have different performance- and
power characteristics. However current process schedulers have been designed with symmetric architectures
in mind. Therefore SoC vendors - currently - experiment with custom kernel modifications: NVIDIA “hot-
plug” [4] - for example - takes cores on- and off-line during run-time. ARM experimented with hypervisors
[5] that automatically switches between pairs of cores so that operating systems perceive symmetric multi-
core architectures. For Android an estimated 700,000 applications [3] are available. Few applications take
advantage of multi-core architectures. Tools like OpenCL, Intel TBB, Cilk plus, OpenMP and OpenACC - for
example - are often not supported on mobile operating systems. On Android - for example - only rudimentary
support for the low-level pthreads-library is available to native applications. In this paper we have identified
three challenges for mobile platforms: (1) parallelization, (2) performance portability and predictability and
(3) power control.

Our contribution is a methodology that tackles these three challenges for some applications: For (1)
we use our own auto-parallelizing compiler OSCAR [1]. For (2) and (3) we have experimentally extended
and modified the Android kernel. The Android kernel is used in Android itself and also for Tizen, Firefox
OS, Chrome OS, WebOS and Ubuntu for mobile. Figures 1, 3a and 3b illustrate that OS-level power control
and -scheduling are not suitable in certain situations. The parallelized application in Figure 3a experiences
unpredictable execution times. The execution profiles of this application are shown in Figure 1 and 2. The
“white gaps” in the execution profile in Figure 4b indicate slack that could have been avoided - if scheduling
and DVFS had been applied properly. Figure 3b illustrates OS-level DVFS-control lag and -oscillations.
Figure 4a shows the significant latency-reductions of our user-space- and improved kernel interface for DVFS.
In the following sections we discuss our approach.

2 Application Parallelization

Our group has developed an auto-parallelizing compiler - called OSCAR [1]. OSCAR accepts sequential
C-code as input and generates parallelized C-code with OSCAR API as output. Therefore programmers do
not need to bother with intricacies of new software tools and parallel programming. The parallelized C-code
output can be compiled with platform specific sequential C-compilers. These platform specific compilers may
further take advantage of VLIW- or vector-instructions. OSCAR controls cache-placement, data movements -
between processors and accelerators and power. Especially, memory management is crucial for scalability on
architectures with hundreds of cores. In the following section we explain how we can maintain performance-
portability and -predictability.

3 Performance- portability and predictability

On embedded real-time operating systems applications are isolated and have strong performance guarantees.
As we have seen - in Figure 3a - this is not the case on mobile operating systems. Our Android kernel
exclusively assigns cores to applications via a new API. Our scheduler modifications were minimal. We



avoid task-creation and -migration on reserved cores. Furthermore, we keep interrupts and kernel threads
off reserved cores. During measurements a video player was active in full-screen mode to simulate device
usage and disturbances. We executed our benchmarks in the background. Figure 2 shows that our kernel
has dedicated cores 1–3 to our OSCAR-parallelized AAC-encoder. All other user- and system processes run
on the remaining core 0. Over 20 runs we see execution times vary between 2.71–2.74s on our modified
kernel. On the original kernel execution times vary between 3.1–136.82s (2.72-110.36s with thread binding) -
see Figure 3a. Ocassionally, the vendor “optimized” automatic OS-level power management and -scheduling
leads to application-thread synchronization issues. In the following section we discuss the advantages of
application-level power control.

4 Application Power Control

Our OSCAR compiler automatically generates power control commands for DVFS, power- and clock gat-
ing by utilizing the results of source-program analysis [1]. Manual - fine-granular - application-level power
control would take months of profiling and testing to achieve comparable results. On embedded operating
systems applications can directly access hardware registers and privileged instructions. However, on mobile
operating systems the kernel separates applications from hardware. Clock gating on our research processor
RPX [6] - see Figure 4b - takes only 0.002µs, a system-call 3µs and kernel overheads account for more than
20µs. Thus low-latency clock gating cannot be exploited from applications without further hard- and software
modifications. DVFS is less time critical than clock gating. To enable low-latency application-level power
control we ported DVFS kernel-drivers into user-space. The drivers become part of the application and can
directly access memory-mapped hardware registers. In addition to the user-space driver we have introduced
a new - very portable - DVFS kernel interface that bypasses the sysfs-file layer [2]. Our OSCAR-compiler
supports all presented methods. In the following section we conclude our paper.

5 Conclusion

The OSCAR-compiled AAC-encoder finished within 4±1.27s on the original kernel with thread pinning and
excluding one outlier. In the default mode - without thread pinning - execution times are frequently above 10s,
sometimes even exceeding hundreds. On our modified kernel - in contrast - AAC finishes within 2.72±0.02s.
For 3 threads the speed-up of the OSCAR parallelized AAC encoder is 2.83x. Thus OSCAR in combination
with our kernel enhancements is a viable approach for exploiting multi-core architectures on mobile devices.
By porting our kernel DVFS-drivers into user-space we could achieve a 155x latency reduction on RPX/
Linux. Our new DVFS-kernel interface achieved a 28x latency reduction and is portable across different
architectures - see Figure 4a. OSCAR can generate task- and power-control schedules. Therefore OS-power-
and scheduling-control is not required - but can even be harmful as our results show. Unfortunately, processors
are not designed to provide such support in user-space. Furthermore, some SoCs support only one frequency-
and voltage for all cores. Our compiler - however - can choose optimal frequencies and voltages for each core.
Application level power- and scheduling-control may also be useful for applications which are not compiled
by OSCAR. Therefore, it would be beneficial if such APIs would be standardized.
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Operating System Scheduler - Thread Pro�le AAC

Fig. 1. This thread execution profile shows our ACC-encoder running on the Nexus-7 with the default Android kernel 3.1.10.
The compiler was configured to parallelize AAC for 3 cores. The purple colored blocks indicate execution of AAC. Frequently,
AAC is interrupted by other applications and system-tasks. Although AAC spawns 3 threads only cores 0 and 2 are utilized,
core 3 is idling and core 4 is shut-off. In this particular run the execution time was >100s, instead of roughly 2.7s. The reason is
that 2 threads must share one core and burn CPU time in spin-locks. Thus the OS-scheduler in the Nexus-7 fails to efficiently
map threads to cores.

Application Scheduler & Modi�ed Kernel - Thread Pro�le AAC

Fig. 2. Behavior of our enhanced kernel: The OSCAR-compiled AAC-encoder runs on cores 1–3 without interferences - all other
tasks, e.g. movie player, are on core 0. Our enhanced kernel temporarily provides exclusive CPU-core access to applications.
Figure 1 shows the behavior of the original kernel.
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(a) The figure shows the sorted execution times over 20 measur-
ments of our AAC encoder on the Nexus-7. Our modified kernel
has improved scheduling capabilities and ensures consistent exe-
cution times. AAC was configured to use 3 cores - one core was
assigned to remaining applications. On the default kernel execu-
tion times explode due to synchronization issues - see Figure 1. If
threads are pinned ("2. Default OS-Kernel") then scheduling can
be improved on the default OS-kernel. The necessary system call
is not supported in default Android.

(b) The figures show the power consumption in Watts
over time for a one shot task using two different DVFS-
schedulers on the Linux kernel 2.6.27 and the Renesas
RPX-processor. Control lag and oscillations are clearly
visible.

Fig. 3. Behavior of OS level scheduling and power control: (a) Execution Time Variability (b) Power Profile of two DVFS
governors

(a) User-space DVFS on Linux/RPX takes 1700µs but
the hardware accounts just for 6µs. In Section 4 we
introduced two new methods for user-space DVFS, a
new DVFS-kernel interface and a user-space DVFS
device driver. This Figure shows that our new ker-
nel interface is about 30 times faster than the standard
Linux DVFS user-space governor interface. Our user-
space device driver is even 150x faster.

(b) The white gaps in this execution profile indicate idle times.
They could be reduced with our OSCAR compiler by inserting
DVFS-control commands. To illustrate the slack we included
this execution profile of an OpenMP parallelized benchmark
("lu") although it is not strictly a mobile application. Indeed,
very few mobile applications utilize multiple threads.

Fig. 4. DVFS Latencies (a) and Non-OSCAR compiled application (b)


