
IPSJ SIG Technical Report

Opportunities and Challenges of Application-Power
Control in the Age of Dark Silicon

Dominic Hillenbrand1,a) Yuuki Furuyama1,b) Akihiro Hayashi1,c) HirokiMikami1,d)

Keiji Kimura1,e) Hironori Kasahara1,f)

Abstract: In the age of dark silicon on-chip power control is a necessity. Upcoming and state of the art embedded-
and cloud computer system-on-chips (SoCs) already provideinterfaces for fine grained power control. Sometimes
both: core- and interconnect-voltage and frequency can be scaled for example. To further reduce power consumption
SoCs often have specialized accelerators. Due to the risingspecialization of hard- and software general purpose oper-
ating systems require changes to exploit the power saving opportunities provided by the hardware. However, they lack
detailed hardware- and application-level-information. Application-level power control in turn is still very uncommon
and difficult to realize. Now a days vendors of mobile devices are forced to tweak and patch system-level software
to enhance the power efficiency of each individual product. This manual process is time consuming and must be re-
iterated for each new product. In this paper we explore the opportunities and challenges of automatic application-level
power control using compilers.

1. Introduction and Related Work

In the domain of mobile devices the market is dominated by

multi-core SoCs such as Texas Instrument’sOMAP, Qualcomm’s

Snapdragon, NVIDIA’s Tegra and Samsung’sExynos. These

SoCs have accelerator- and peripheral-cores for video and audio

applications. SoCs for base stationsFreescale QorIQ Qonverge
and car navigationRenesas SH-Navi3- for example - are concep-

tually similar but deploy different domain specific accelerators.

Recent SoCs support various methods for reducing power con-

sumption, such as: DFVS [1] (Dynamic-Frequency-Voltage Scal-

ing), adaptive body bias [2], [3], [4], big-little as well aspower-

and clock-gating. These power saving mechanisms can often not

be independently applied to cores due to resource sharing atthe

hardware-level. Thus otherwise independent device drivers must

be aware of shared clocks and voltage controllers - for example -

when they exert power control. Excessive resource sharing may

severely reduce the design space of power control.

In the reference [5], the authors projected that in a relatively

short time span a significant amount of chip area will remain

”dark” - due to power- and parallelism-constrains. New ap-

proaches such as near-threshold computing [6] achieve up to10

times better power efficiency and may help to reduce ”dark sili-

con”. Intel [7] has recently designed a prototype processorthat

1 Waseda University, Shinjuku-ku, Tokyo, Japan
a) dominic@kasahara.cs.waseda.ac.jp
b) furuyama@kasahara.cs.waseda.ac.jp
c) ahayashi@kasahara.cs.waseda.ac.jp
d) hiroki@kasahara.cs.waseda.ac.jp
e) kimura@kasahara.cs.waseda.ac.jp
f) kasahara@waseda.jp

is able to operate from 280mV up to 1.2V (3-915MHz) - thus

covering the range from sub-, near- up to super-threshold. In

the sub-threshold region leakage dominates and in the super-

threshold region dynamic power. The lowest energy per instruc-

tion is achieved in the near-threshold region.

Should future SoCs provide scaling from sub- to super-

threshold then power will vary more than 10x depending on volt-

ages. Thus DFVS-control - for example - has a large window of

opportunities for power reductions in such chips.

In this paper we focus on power control in the open-source

Linux- and Android operating system. Both support DFVS

through the ”cpufreq” [8] device driver. Thecpufreq device

driver calls user-selectable ”governors” to determine newvolt-

ages and frequencies. Afterwards thecpufreqdevice driver in-

vokes low-level device drivers to actually set voltages andfre-

quencies.

Linux has several governors:user-space, ondemand, conser-

vative, powersave, performanceand interactive. For our consid-

erations theuser-space-governor is most important as it enables

DFVS for user-space applications. Theondemand, conservative
andinteractive-governor provide automatic DFVS-control based

on monitoring application activity. The last two governorspow-
ersaveandperformancemerely configure the lowest- or highest-

performance operating points.

Similar tocpufreqdriver,Linux has acpuidledriver [9] which

has two governorsladder andmenu. Thecpuidle device driver

calls the active governor to determine sleep modes for idling. The

ladder-governor selects sleep modes in a step-wise fashion. The

menu-governor exploits scheduling information which are avail-

able when the kernel supports ”tickless” mode[10]. In the next

c© 2012 Information Processing Society of Japan 1

IPSJ SIG Technical Report

Fig. 1 Motivational Case Study
The Figure illustrates that underLinux 2.6.27 user-space DFVS is
inefficient on the Renesas RPX-SoC . Theuser-spacegovernor inter-
face needs 1700µs on average but writing to the hardware voltage-
and frequency registers takes just 6µs. In this particular micro-
benchmark an user-space test-application toggled DFVS between 81-
and 648 MHz. In Section 5.3 we will show more efficient interfaces
for DFVS for user-space applications. Clock gating on RPX takes
one cycle. However, clock gating can only be utilized from kernel-
space since a privileged instruction must be executed. If the kernel
would provide a clock gating system call it would take 1500 times
longer at 648 MHz than actually conducting the clock gating opera-
tion.

section we present a motivational case study to highlight the chal-

lenges of user-mode pwoer control in theLinux kernel.

2. Motivational Case Study

The Renesas RPX processor - see Figures 1 and 2 - provides

low latency DFVS and clock-gating. Changing the voltage- and

frequency registers takes a few microseconds and clock gating

merely nano-seconds. In Figure 1 we can see that theLinux user-

space-governor interface is not able to exploit the hardware capa-

bilities. Where do these overheads occur?

For user-space DFVS it is necessary to understand how the

user-space-governor functions:

First, applications open a pseudo-file ”scalingsetspeed” in the

sysfs-file system. Secondly, they write a text string with the new

frequency into the pseudo-file. Thirdly, they close the file.

Thus three system calls are required. However, this still does

not explain the manifold overhead. Our analysis indicate that

thesysfs-kernel layer which passes pseudo-file operations to the

cpufreq-device driver is to blame. In Section 5.1 we will present

improved interfaces for user-space DFVS control.

Our novel contributions are:
• Case Study: Analysis of three methods for user-space DFVS

• Efficient clock- and power-gating for user-space applications

via ”autoidle”-threads and new system calls

• A power-adaptive in-kernel barrier for user-space applica-

tions

• Discussion of opportunities and challenges of user-space

power control

Our contributions and insights apply to embedded systems as

well as large data centers since both are power constrained and

frequently utilizeLinux. In the following section we introduce

our experimental hardware setup.

Fig. 3 OSCAR - Task Schedule
The figures illustrate a static schedule generated by our OSCAR
compiler for a heterogeneous SoC with processors and accelerators.
The left figure visualizes task dependencies. The boxes represents
macro-tasks (MT) which are coarse grained tasks with loops,func-
tion calls and basic blocks. The blue coloured boxes can be mapped
to processors, the green coloured boxes can additionally bemapped
to accelerators (ACC). The figure on the right shows the schedule for
three processors CPU0, CPU1, CPU2 and an accelerator (ACCa).
CPU2 offloads tasks to the accelerator and performs necessary data
transfers. First, our compiler assigns the ready macro-task MT1 to
CPU0. Then MT2 and MT3 are mapped to CPU0 and CPU1. Af-
ter MT1 finishes, MT2 and MT3 become ready and so forth until all
tasks have been executed. Occasionally, ”green” accelerator tasks
are mapped to processors if the accelerator is unavailable.

3. Experimental Hardware Setup

For our experiments we have used the Renesas RPX-SoC[11],

[12]. This 45nm research SoC - see Figure 2(a) - has eight SH4A

processors, reconfigurable ALU arrays, two MX-2 matrix pro-

cessors, a video processing unit, and various peripheral cores for

DDR, SATA, PCIe, DMA, GPIOs and UART. The chip consumes

ca. 3 watts at 648 MHz and 1.15V. In our board configuration

the voltage can be scaled in three steps from 1.1 - 1.3V. The fre-

quency is adjustable in four steps: 81 MHz, 162 MHz, 324 MHz

and 648 Mhz.

The RPX-SoC is supported by two operating systems:Linux

2.6.27 andLWOS. LWOS is a light-weight operating system writ-

ten by Renesas for internal usage.Linux can only utilize the first

processor cluster (4 cores) since cache coherency is not main-

tained between clusters.LWOS and its applications do not have

this limitation and can utilize all 8 cores.

The following section we propose compiler assisted power

control for some user-space applications and introduce ourOS-

CAR compiler tool-chain.

4. Compiler generated power control to the
rescue

The computing world is moving away from standard comput-

ers to more specialized devices. Tablet PCs, smart phones and

server processors utilize highly specialized SoCs. Accordingly,

power management becomes more specialized as well.

Operating systems usually have DFVS- and idle-device drivers

for new SoCs - but they are not able to schedule applications and

power control efficiently together - simply because the scheduler

is unaware of higher-level behaviours.

To escape the dilemma partially one possibility - we propose

c© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

(a) RPX- Die Photo
The die photo above shows the 45nm Renesas-RPX experi-
mental processor[11], [12] which we have used for our exper-
iments. On the top we can see that the SATA- and PCIe-core.
Latter takes a significant amount of chip area. The two proces-
sor clusters: cores 0-3 and cors 4-7 are connected by a bridge.
The DDR memory controllers are located on the lower left and
upper right of the die. The FEPGA accelerators which are re-
configurable and the matrix processors (MX-2)for image pro-
cessing have not been used in this paper. Image source: [12]

(b) Architecture of RPX
The diagram shows the architecture of the Renesas RPX prototype chip. On the
top we can see two processor clusters - each with four SH-4A cores. The SH-
4A core has an floating-point unit (FPU), data transfer unit (DTU), instruction
and data caches, instruction- and data local memory (ILM/DLM), distributed
memory (URAM), cache ram control unit (CRU) and snoop controller (SNC).
Each cluster is internally connected by a bus. Both clustershave DDR memory
controllers (DBSC) and direct memory access controllers (DMAC). Addition-
ally, the first cluster has a VPU5 codec engine and the second,four FEGA
accelerators which are reconfigurable and a matrix processor (MX2) for im-
age processing. Both clusters are connected by a bridge. Cache coherency is
maintained within clusters but not between them. A third busprovides access
to peripherals such a PCI, SATA, sound processing unit (SPU)and local bus
state controller (LBSC) [11], [12].

Fig. 2 RPX - Heterogeneous Mulitcore SoC - Photo and Architecture
The left Figure shows the die of the Renesas RPX-prototype chip, the right Figure shows the
schematic architecture diagram. We used the RPX chip for ourexperiments in this paper.

in this paper - is to useauto-parallelizing compilers such as

our OSCAR-compiler[13], [14], [15] - for suitable applications.

Our OSCAR-compiler generates static task- and data-transfer-

schedules - see Figure 3 - as well as power control code with

nano-second resolution.OSCAR requires a SoC-specification

file to compute the schedules. Thus porting the software stack

involves creating a new SoC-specification and re-compilingthe

code.

OSCAR is implemented as a source-to-source -compiler for

C/FORTRAN. From input sources -OSCAR generates sources

for each processor which is compiled by standard C/FORTRAN-

compilers such asgcc for example. In the following section we

discuss different methods for user-space power control.

5. Case Study: User-space DVFS-control

The motivational case study in Section 2 revealed that user-

space power control can be inefficient. In this section we will

introduce two alternative methods of user-space DFVS control.

5.1 New system call for DFVS
To avoid the pseudo-file system overheads of theLinux user-

spacegovernor, we implemented a new system call that directly

invokes thecpufreq-device driver. Our initial version resembled

this code fragment:

asmlinkage long sys_freq(int core, int freq) {

struct cpufreq_policy policy;

cpufreq_get_policy(&policy, core);

policy.cpu = core;

policy.governor->store_setspeed((&policy, freq);

}

The above code first fills thecpufreqpolicy data structure with

the core number and calls the governor’sstoresetspeedfunc-

tion. Our new system call avoids textual parameter parsing,the

pseudo-file system layer and reduces the number of systems calls

- 1 instead of 3.

5.2 User-space device driver
After reducing the overhead of the kernel system call we

were asking ourselves how we could further minimize overheads.

On our hardware platform frequency- and voltage-registersare

memory-mapped registers. Via remapping memory-pages it is

possible to access these registers from user-space.

On Linux memory mapping can be performed by custom de-

vice drivers or more generically by using the/dev/mem device

driver and themmap-system call. The following code fragment

illustrates the procedures:

fd = open("/dev/mem", O_RDWR|O_SYNC);

...

mapped_addr = (unsigned int) mmap(NULL,

num_of_map, (PROT_READ | PROT_WRITE),

MAP_SHARED, fd, CnIFC_ADRS(0));

...

CnIFC ADRS(0) stands for the frequency control register ad-

dress of core 0 on RPX. The frequency registers of the remain-

c© 2012 Information Processing Society of Japan 3

IPSJ SIG Technical Report

Fig. 4 DFVS - Control Efficiency
In Section 2 we revealed that user-space DFVS onLinux takes 1700
µs but the hardware accounts just for 6µs. In Section 5 we intro-
duced two new methods for user-space DFVS, a new DFVS-system
call and a user-space DFVS device driver. This Figure shows that
our new system call is about 30 times faster than the standardLinux
DFVSuser-spacegovernor interface. Our user-space device driver is
even 150x faster. It takes 11µs, 5µs (between 300-3000 cycles) more
than writing to the registers. The additional time is spend executing
driver code instructions and to perform memory accesses. Optimized
device drivers could reduce the number of instructions executed and
place device driver state information in on-chip memories.

ing cores follow on the subsequent memory pages. Care must

be taken that these mappings are not cached. OnLinux the

/dev/mem device must be opened with the OSYNC flag set.

In our case even this did not work till we patched the kernel

/dev/mem-device driver.

After mapping the necessary registers changing frequencies

becomes a memory store operation:

(unsigned volatile int) freq_ctrl_addr = ifc;

The ifc value is a platform specific and is used to configure

the on-chip frequency divider. Changing the voltage is donein a

similar fashion.

Once we could remap frequency- and voltage-registers suc-

cessfully into user-space, we ported the kernel device driver to

user-space and tested it successfully. In the following section we

compare the performance of our two new power control interfaces

and original one.

5.3 User-Space DFVS-Performance
Figure 4 shows that both our DFVS methods have a much

lower latency than the original Linux DFVS interface via theuser-

spacegovernor. Our user-space device driver performs best. Our

new system call takes longer than can be explained by system call

overhead which accounts only for 3µs. The additional 46µs are

spend in kernel for ”extra” activities.

Closer investigation within theLinux kernel reveals that the

cpufreq driver calls acpufreqnotify transition function that is

invoked before and after every frequency change. The function

notifies kernel sub-systems about processor frequency changes.

The call chain must be synchronized across processors and may

therefore be costly. Theadjust jiffies function - for example - is

called before and after frequency changes to adjust time keeping

in theLinux kernel. Besides this function there are no other sub

modules that need notification on RPX.

However, for more complex SoCs such as those mentioned in

the introduction the situation is often more complex. Frequency-

and voltage changes may affect multiple on-chip components and

kernel drivers. Through the notification call chain otherwise inde-

pendentLinux device drivers can act upon changes in shared in-

frastructure - such as clocks or voltage regulators. The cost of this

flexibility is however, that changes must be synchronized across

multiple processors. Thus potentially diminishing the power sav-

ing capabilities of modern chips for ”short” time periods. In the

following section we try to make clock- and power gating acces-

sible to user-space applications.

6. Case Study: Clock- and power-gating

In addition to DFVS we wanted to make clock- and power-

gating accessible to our OSCAR-compiled applications. On our

prototype platform RPX clock- and power-gating can be initiated

by issuing the privilegedsleep instruction with different flags.

Unfortunately, the instruction is only accessible if the processor

is in privileged mode. This is especially annoying since clock

gating requires just a few nanoseconds but system calls at least

3µs. Executing applications in privileged mode would allow in-

structions such assleepto be accessible by applications.

TheLinux-kernel supports clock- and power gating indirectly

through theidle threads.Idle threads are invoked whenever (per-

processor) scheduler’s run-queues are empty. Eventually,idle

threads will cause processors to transition to certainsleep-modes

which deploy clock- or power-gating.

For user-space applications we have implemented a new pair

of system calls which (1) invoke the kernelidle functionality di-

rectly, or (2) wake idling threads up. The following code frag-

ment was taken from theLinux idle-function and integrated into

our newidle system call:

if (cmd == SYSFREQ_IDLE) {

..

tick_nohz_stop_sched_tick(1);

while (!need_resched())

idle();

tick_nohz_restart_sched_tick();

...

}

The code disables the periodic scheduler tick to avoid unnec-

essary wake-ups. As long as the scheduler does not require re-

scheduling theidle task wfunctionill invoke the platform specific

idle function. Theidle function calls low-level device drivers for

clock- and power-gating.

Our newidle system call allows OSCARcompiler-generated

power control code to directly callidle for clock- and power-

gating - while keeping caches hot.

For applications that have not been compiled with OSCAR,

we have developed an experimentalautoidle- function that can

be enabled at run-time. If the kernelautoidle-flag is set, a pro-

cessor will immediately switch to lower frequencies and/or clock

c© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

(a) Auto-Idle
Our newauto-idle enabledLinux-kernel exploits the low-latency clock- and power-gating
capabilities of the RPX-SoC. Whenidle-threads are activated then we immediately power-
gate processors. If an application thread is activated we ramp-up DFVS to pre-specified
values. For latency sensitive applications that perform their activities in bursts - for ex-
ample in sensor networks - this behaviour may be better suited than the standardLinux
governors.

(b) On-demand governor
TheLinux on-demand-governor adapts DFVS to system load. Like theauto-
idle enabledLinux-kernel it quickly ramps up DFVS but does not immedi-
ately reduce power if load drops.

(c) Conservative governor
The Linux conservative-governor is slower in its response to load changes
than the two previous approaches. Furthermore, it oscillates if the system is
unloaded.

Fig. 5 Operating-system Power Control - Auto-Idle, On-Demand, Conservative
The three graphs show power [W] over time as the system transitions from unloaded to loaded and
back again to unloaded. We conducted the measurements usingthe Renesas RPX-prototype board
which supports inductive power measurements of the SoC.

gate the processor - when the kernelidle task is scheduled. If the

kernelidle task relinquishes control, then the previous frequency

will be restored immediately. The initial base frequency isfixed

but configurable.

On the power scope auto-idle has a binary ”on/off” pattern,

whereas theLinux on-demand- or conservative-governors need

more time to track application activity - see Figure 5.

We think that our experimentalautoidle-mode may be useful

to save power in event-triggered applications. In the following

section we introduce a power-adaptive kernel interface forbarrier

synchronization.

c© 2012 Information Processing Society of Japan 5

IPSJ SIG Technical Report

7. Adaptive and power aware kernel barrier

We have implemented a barrier-system call within theLinux-

kernel similar to thegcc-OpenMP barrier*1:

Threads that arrive at our kernel barrier spin for some time be-

fore blocking inidle. As described earlier, inidle-mode proces-

sors are either clock- or power gated. The last thread to arrive at

the barrier will wake-up all waiting threads and reset the barrier.

Our adaptive power optimizations adaptively set the frequen-

cies of the first threads to arrive at the barrier to reduced values

while they spin. Reducing the frequency also helps other threads

on RPX for example - since the voltage controller is shared - thus

voltages can only be dropped if all threads fall below certain fre-

quency levels.

If all but one threads have arrived at the barrier, then we boost

the frequency of the last thread in order to finish the barrier

quicker. This behaviour may be beneficial if static power is high

and excessive waiting burns power.

Since the barrier is implemented within the kernel it is possi-

ble for processes to synchronize and not only for threads. Ideally,

OSCAR applications will not need the power-adaptive features of

our kernel barrier - since the static task schedule will automati-

cally issue near-optimal power control commands. However,on

some hardware architectures with complex memory architectures

and interference from other unrelated tasks it may be possible

that the static schedule is disturbed. Our adaptive barriercan help

to dynamically fix such situations until the threads synchronize

again. In the next section we discuss how we try to keep interfer-

ence from unrelatedLinux applications to a minimum.

8. Task-processor binding

OSCAR applications assume processors to be under their full

control in respect to scheduling and power control. OnLWOS
- see Section 3 - only one application is running at the time and

this assumption holds. OnLinux - however - the situation may be

very different. It is up to theLinux scheduler to decide when and

what tasks to execute and migrate among available processors.

Therefore, we have devised a kernel modification which keeps

all Linux background tasks on processor zero. Thus the remain-

ing processors are ”free” for OSCAR-applications.

In Linux each process has ataskstruct. We extended this

task structwith an OSCAR-flag and patched all places where the

Linux scheduler may migrate threads. Thus at run-time we can

ensure thatLinux application will never be spawned or migrated

to processors under OSCARs control.

The following source code fragment shows how our new sys-

tem call binds OSCAR processes via ourSF BIND command -

before executing theschedsetaffinity call.
cpu_set_t set;

CPU_ZERO(&set);

CPU_SET(core, &set);

*1 Seelibgomp source fromhttp://gcc.gnu.org/ for the barrier implementa-
tion.. Currently two targets are supportedLinux andPOSIX. TheLinux
target uses thefutex-system call for fast synchronization.

// mark as OSCAR task

syscall(CPUFREQ, SF_BIND, core);

int rv = sched_setaffinity(

getpid(), sizeof(cpu_set_t), &set);

....

To test our approach we have written a small test application

that binds to processors other than processor zero and callsour

new idle system call - see Section 6. Thanks to our kernel mod-

ifications we were able to stay inidle for up to 30 seconds with-

out any interruptions. On processor zero where all background

tasks and daemons are located this would be impossible. On pro-

cessors 1-3 our modified RPX-Linux faces few disturbances and

therefore provides a suitable environment for statically scheduled

OSCAR applications. In the next section we introduce our new

kernel system calls for taking processors completely offline.

9. Processor hot-plugging from user-space

The Linux kernel supports processor hot-plugging from user-

space via an ”online” pseudo-file. Applications can open this file

and read- and write to it similar to the default DFVS user-space

pseudo file mentioned earlier. The standard kernel includesmany

unnecessarywait-statements that we could remove safely for the

RPX-SoC. We were able to reduce the transition times from 2 sec-

onds down to a few milliseconds. On RPXLinux however - the

processor hot-plug device driver is not yet able to exploit power-

or clock gating if processors are taken offline. Nonetheless, it

was important to see that we were also able to speed up these

operations after careful analysis of kernel- and platform specific

driver code. In the following section we discuss security issues

of user-space power control.

10. Security

The Linux kernel requires root status to let user-space ap-

plications write to pseudo-files that provide interfaces todevice

drivers. Our system call has currently no security checks which

is fine for prototyping, testing and closed embedded systems. In

the future we may include checks based on group permissions.

OSCAR compiled applications could - for example - belong to an

OSCAR group to automatically gain access to user-space power

control. On the hardware side security is rather coarse grained.

Privileged instructions for clock-gating - for example - can usu-

ally not be made accessible to selected applications but only to

the kernel. For user-space device drivers it will be necessary to

define fine-grained security models in order to provide safe access

to hardware settings. In the next section we discuss the challenge

of synchronizing state between the kernel- and user-space device

drivers.

11. Synchronizing state between kernels and
user-space device drivers

All kernel based interfaces for power control drivers - suchas

our new system call for DFVS maintain a correct view of hard-

ware states within the kernel. User-space device drivers - how-

ever - may cause inconsistencies between user-space- and kernel-

c© 2012 Information Processing Society of Japan

IPSJ SIG Technical Report

device drivers. During testing we avoided inconsistenciesby con-

figuring theuser-spacegovernor ofLinux. Theuser-spacegov-

ernor does not actively change frequencies- or voltages. Further-

more, our user-space device driver restores frequencies- and volt-

ages - so before- and after executing OSCAR-applications.

For smart phones- and tablet PC- operating systems such as

Android this approach may be to static. It may be necessary

to switch between different governors depending on active ap-

plications. Many applications may be suitable for execution with

theondemand, conservativeor interactive-governors thatAndoid
andLinux provide. OSCAR applications - however - always re-

quire theuser-spacegovernor. A power management middle-

ware that automatically switches among governors is still missing

on those operating systems. In the following section we reflect

upon some user-space power control issues - that we have been

faced with in the previous sections - more deeply.

12. Experiences from the user-space power
control front-line

There are several challenges surroundinguser-space power

control ranging from hardware issues to security which we have

discussed in the previous sections. Currently, existing SoCs have

to be carefully analyzed and possibly changes must be made to

kernels in order to work around hardware limitations. Unfortu-

nately, user-space power control is not even an after thought in

architecture and operating systems.

RPX - our prototype processor - allowed us to re-map

frequency- and voltage-registers into user-space. Other architec-

tures may require privileged instructions to set register values. On

RPX - for example - clock gating requires privileged instructions.

To fully exploit clock gating on RPX we would need to run our

applications in privileged-mode along side with the kernel.

Another, easily overseen aspect is if processors can configure

DFVS only for themselves, or also for other processors*2. On

some architectures certain processor specific registers can only

be changed reliably if instructions execute on the target proces-

sors. For RPX underLWOS - for example - it is necessary to wait

1µs after writing to a frequency register of another processor. On

Linux - however - the RPX processor is configured differently

and only local processors can reliably change their own frequen-

cies. The low-level RPXLinux device driver migrates itself to

the target processor if necessary. However, task migrationcan be

very costly - on RPX>100µs for example. TheLinux eSPARC
DFVS device driver - in comparison - must execute a minimum

number of NOPs on the target processor after frequency changes.

This can only be guaranteed if interrupts are disabled - something

which is normally not possible from user-space. The next section

concludes our paper.

13. Conclusion

In this paper we have proposed to use auto-parallelizing com-

*2 For OSCAR compiled applications it is generally sufficient if underly-
ing drivers respect specified hardware behaviours. The OSCAR power
control functions are specified in the official OSCAR-API which can be
downloaded from our website.

pilers to generate task- andpower-control schedules. The gener-

ated schedules can be configured for very high time resolutions

down to nanoseconds. Upcoming- and existing research proces-

sors already offer low latency DFVS, clock- and power-gating

However, current applications and operating systems cannot ex-

ploit these capabilities fully. Our DFVS-case study showedthat

existing overheads can be reduced to negligible amounts - ifhard-

ware and operating systems are flexible enough. Furthermore,

operating systems and hardware must ensure that staticallysched-

uled applications are not disturbed by unrelated applications, or

kernel-threads that can be migrated, postponed or deactivated. In

this paper we have made contributions to this area. We want to

raise awareness among processor architects and hope they will

enable us to exploit low-latency compiler-controlled power con-

trol in parallel applications.

References

[1] T. D. Burd and R. W. Brodersen, “Design issues for dynamicvoltage
scaling,” inProceedings of the 2000 international symposium on Low
power electronics and design, ser. ISLPED ’00. New York, NY,
USA: ACM, 2000, pp. 9–14.

[2] G. Gammie, A. Wang, M. Chau, S. Gururajarao, R. Pitts, F. Jumel,
S. Engel, P. Royannez, R. Lagerquist, H. Mair, J. Vaccani, G.Baldwin,
K. Heragu, R. Mandal, M. Clinton, D. Arden, and U. Ko, “A 45nm
3.5g baseband-and-multimedia application processor using adaptive
body-bias and ultra-low-power techniques,” inSolid-State Circuits
Conference, 2008. ISSCC 2008. IEEE, feb. 2008

[3] G. Delagi, “Harnessing technology to advance the next-generation
mobile user-experience,” inSolid-State Circuits Conference ISSCC,
2010 IEEE International, feb. 2010

[4] H. Mair, A. Wang, G. Gammie, D. Scott, P. Royannez, S. Gurura-
jarao, M. Chau, R. Lagerquist, L. Ho, M. Basude, N. Culp, A. Sadate,
D. Wilson, F. Dahan, J. Song, B. Carlson, and U. Ko, “A 65-nm mo-
bile multimedia applications processor with an adaptive power man-
agement scheme to compensate for variations,” inVLSI Circuits, 2007
IEEE Symposium on, june 2007, pp. 224 –225.

[5] H. Esmaeilzadeh, E. Blem, R. Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Com-
puter Architecture (ISCA), 2011 38th Annual International Symposium
on, june 2011, pp. 365 –376.

[6] R. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming moore’s law
through energy efficient integrated circuits,”Proceedings of the IEEE,
vol. 98, no. 2, pp. 253 –266, feb. 2010.

[7] S. Jain, S. Khare, et al., and S. Borkar, “A 280mv-to-1.2vwide-
operating-range ia-32 processor in 32nm cmos,” inSolid-State Cir-
cuits Conference (ISSCC), 2012 IEEE International, feb. 2012, pp. 66
–68.

[8] L. K. 2.6.27, “Documentation/cpu-freq/,” www.kernel.org, 2008.
[9] V. Pallipadi, S. Li, and A. Belay, “cpuidle?Do nothing, efficiently. . .”

Proceedings of the Linux Symposium, vol. 2, 2007.
[10] S. Siddha, V. Pallipadi, and A. V. D. Ven, “Getting maximum mileage

out of tickless,”Proceedings of the Linux Symposium, vol. 2, 2007.
[11] IEEE International Solid-State Circuits Conference, ISSCC 2010, Di-

gest of Technical Papers, San Francisco, CA, USA, 7-11 February,
2010. IEEE, 2010.

[12] K. Uchiyama, , F. Arakawa, H. Kasahara, T. Nojiri, H. Noda,
Y. Tawara, A. Idehara, K. Iwata, and H. Shikano, “Heterogeneous
Multicore Processor Technologies for Embedded Systems,”Springer
New York, 2012.

[13] Y. Wada, A. Hayashi, T. Masuura, J. Shirako, H. Nakano, H. Shikano,
K. Kimura, and H. Kasahara, “A parallelizing compiler cooperative
heterogeneous multicore processor architecture,”T. HiPEAC, vol. 4,
pp. 215–233, 2011.

[14] A. Hayashi, Y. Wada, T. Watanabe, T. Sekiguchi, M. Mase,J. Shirako,
K. Kimura, and H. Kasahara, “Parallelizing compiler framework and
api for power reduction and software productivity of real-time hetero-
geneous multicores,” inLCPC, 2010, pp. 184–198.

[15] K. Kimura, M. Mase, H. Mikami, T. Miyamoto, J. Shirako, and
H. Kasahara, “Oscar api for real-time low-power multicoresand its
performance on multicores and smp servers,” inLCPC, 2009

c© 2012 Information Processing Society of Japan 7

