
Reducing Parallelizing Compilation
Time by Removing Redundant Analysis

Jixin Han Rina Fujino
Ryota Tamura Mamoru

Shimaoka Hiroki Mikami
Waseda University, Japan

{kalfazed,rfujino,r tamura,shimaoka,hiroki}
@kasahara.cs.waseda.ac.jp

Moriyuki Takamura Sachio
Kamiya Kazuhiko Suzuki

Takahiro Miyajima
OSCAR TECHNOLOGY
CORPORATION, Japan

{takamura,kamiya,suzuki,miyajima}
@oscartech.jp

Keiji Kimura Hironori
Kasahara

Waseda University, Japan
{keiji,kasahara}

@waseda.jp

Abstract
Parallelizing compilers employing powerful compiler opti-
mizations are essential tools to fully exploit performance
from today’s computer systems. These optimizations are
supported by both highly sophisticated program analysis
techniques and aggressive program restructuring techniques.
However, the compilation time for such powerful compilers
becomes larger and larger for real commercial application
due to these strong program analysis techniques. In this pa-
per, we propose a compilation time reduction technique for
parallelizing compilers. The basic idea of the proposed tech-
nique is based on an observation that parallelizing compil-
ers apply multiple program analysis passes and restructuring
passes to a source program but all program analysis passes
do not have to be applied to the whole source program. Thus,
there is an opportunity for compilation time reduction by
removing redundant program analysis. We describe the re-
moving redundant program analysis techniques considering
the inter-procedural propagation of analysis update informa-
tion in this paper. We implement the proposed technique into
OSCAR automatically multigrain parallelizing compiler. We
then evaluate the proposed technique by using three propri-
etary large scale programs. The proposed technique can re-
move 37.7% of program analysis time on average for basic
analysis includes def-use analysis and dependence calcula-
tion, and 51.7% for pointer analysis, respectively.

Categories and Subject Descriptors D.3.4 [Software]:
Programming Language-compilers

Keywords parallelizing compiler; program optimizations;
program analysis.

1. Introduction
The performance of a computer system strongly depends
on the capability of its compiler optimizations. A number
of sophisticated program analysis techniques and restructur-
ing techniques have been developed to realize powerful op-
timizations especially for parallelizing compilers. However,
these powerful optimization techniques require much compi-
lation time to attain higher performance on a target machine.

Program developers may avoid using time consuming
compiler optimizations to improve the program productiv-
ity even they can introduce higher performance to their pro-
grams. In order to reduce compilation time especially for
large scale programs, several researches have tackled the
large compilation time problem. Mehta et al. tries to reduce
the number of statements in a source program by combin-
ing several statements, which have data dependence each
other, into one statement to reduce the information for pro-
gram analysis [1]. Nick et al. propose an efficient computa-
tion technique for a directed acyclic graph (DAG) of strongly
connected components (SCC) [2]. A DAG of SCC contains
fundamental information for program analysis techniques,
thus this contributes to the compilation time. Yu et al. pro-
pose a precompilation technique that remove the false de-
pendencies among the files to reduce the total build time of
a target program [14].

In this paper, we propose a compilation time reduction
technique by removing redundant program analysis espe-
cially for parallelizing compilers that usually apply aggres-
sive program restructuring techniques to a target program.
We also implement the proposed technique into the OSCAR
automatically multigrain parallelizing compiler [4, 7].

OSCAR compiler can exploit parallelism from the whole
program by applying multigrain parallel processing. In or-
der to exploit parallelism and improve efficiency of paral-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

SEPS’16, November 1, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4641-2/16/11...$15.00

http://dx.doi.org/10.1145/3002125.3002129

1

lel execution at runtime, the compiler applies program re-
structurings multiple times according to the compiler op-
tions given by the user. After each program restructuring,
the compiler must apply program analysis for the whole pro-
gram again since the program restructuring may change a
control flow graph (CFG) and a call-graph, add new vari-
ables, and so on. This means the compilation time increases
as the program size increases when the compiler applies pro-
gram analysis and restructuring multiple times. For instance,
a program with 51,799 lines spends 2 hours for compilation.
However, those restructuring passes do not always change
the whole part of the program. Some functions (modules or
procedures) may keep the original structure after a program
restructuring.

Our proposed technique consists of two phases. At the
restructuring time, the compiler records functions whose in-
formation including program structure is changed by the re-
structuring. Then, at the following analysis time, the com-
piler applies program analysis only to the recorded functions
at the restructuring time to update the program analysis in-
formation. The previous analysis information of remained
functions do not need to be updated since there is no change
at the restructuring time.

One of the important points of this technique is we must
take care of the propagation of the modification effects by
a restructuring for inter-procedural analysis such as pointer
analysis [9, 10]. For an inter-procedural analysis, the anal-
ysis information is propagated among functions. Therefore,
the compiler must detect the functions that the analysis up-
date is propagated, then the compiler also applies the anal-
ysis to these functions in addition to restructured functions.
This paper describes how to deal with such inter-procedural
update of analysis information in the proposed technique.

The main contributions of this paper are as follows:

• We investigate the organization of the parallelizing com-
piler and the time consumption for each part in the com-
piler.

• We then propose a compilation time reduction technique
by removing redundant program analysis considering
the propagation of analysis information among functions
based on the above investigation result.

• We show the evaluation result of the proposed technique
by using the large scale real applications.

The rest of this paper is organized as following: Section
2 provides the overview of the OSCAR compiler and its or-
ganization from the point of the restructuring and analysis in
it. Section 3 investigates the analysis passes in the compiler.
Section 4 describes the proposed compilation time reduction
technique based on the investigation of Section 3. Section 5
shows the performance evaluation results. Section 6 intro-
duces some related works. Section 7 finally concludes this
paper.

2. OSCAR Automatically Parallelizing
Compiler

We provide an overview of OSCAR compiler in this section.
Then, we briefly describe several restructuring passes in the
compiler. We also explain the relationship between restruc-
turing passes and analysis passes in the compiler to show the
motivation of this work.

2.1 Overview of OSCAR Compiler [4, 7]
OSCAR compiler parallelizes input C or Fortran77 pro-
grams by the multi-grain parallel processing, which con-
sists of coarse grain task parallel processing among loops
and function calls, near fine grain parallel processing among
statements inside a basic block in addition to ordinary loop
iteration level parallel processing.

In coarse grain task parallel processing, a source pro-
gram is decomposed into three kinds of blocks, namely BB,
SB and RB. Here, BB is a basic block, SB is a subrou-
tine call, and RB is a repetition block, or an outer-most
loop, respectively. These blocks are defined as macro-tasks
(MTs). The compiler analyzes control flow and data depen-
dence among MTs. The analysis result is represented as a
macro-flow-graph (MFG). Then, the compiler exploits the
parallelism among MTs from an MFG by applying the ear-
liest executable condition analysis [7] and represents it as a
macro-task-graph (MTG). Finally, macro-tasks are assigned
to cores statically when there is no conditional branches
among macro-tasks. Otherwise, the compiler embeds dy-
namic scheduling code inside the parallelized program. If
an RB or an SB has coarse grain task parallelism inside it,
the compiler hierarchically decomposes the body of it into
macro-tasks and generate an MTG for them. Those SB and
RB applied coarse grain task parallel processing are called
as “parallel processing layers” [5].

2.2 Restructuring and Analysis in OSCAR Compiler
OSCAR compiler tries to exploit coarse grain task paral-
lelism from the whole program. Therefore, it globally ap-
plies the program analysis to the source program. In addi-
tion, the compiler applies several restructuring in order to
exploit more parallelism among macro-tasks and also to re-
duce the runtime overhead. Here, we explain two of restruc-
turing in the compiler as examples: inline expansion and
macro task fusion. They may dramatically change the pro-
gram structure and information of modules such as CFG,
number of variables, the points-to information of pointer
variables, and so on.

2.2.1 Inline Expansion
Inline expansion is one of conventional and popular com-
piler optimizations. It reduces the function call overhead by
embedding the body of the callee function at the call-site.

It can be also used for exploiting more coarse grain task
parallelism by merging parallelism inside the function body

2

Figure 1. Exploiting parallelism by Inline Expansion.
There are MT1 and MT2 in the same parallel processing
layer. MT2 also has MT2_1 and MT2_2 and there are no
dada dependence among MT1, MT2_1and MT2_2. Before
inline expansion (a), only parallelism between MT1 and
MT2 can be exploited. By applying inline expansion to
MT2, all parallelism among MT1, MT2_1 and MT2_2 can
be exploited.

into the parallelism at the call-site [11]. For instance, assume
that there are MT1 and MT2 inside a program and MT2 is
a SB (function call), and they can be processed in parallel
(Figure 1). In addition, MT2_1 and MT2_2 also exist in-
side MT2, and there are no data dependence among MT1,
MT2_1 and MT2_2. When inline expansion is not applied
to MT2, only parallelism among MT1 and MT2 is available
since each core is assigned onto one core. In contrast, the
parallelism among MT1, MT2_1 and MT2_2 is available by
applying inline expansion since they can be placed on the
same parallel processing layer and assigned to distinguished
cores simultaneously.

When inline expansion is processed, OSCAR compiler
traverses the call-graph of the source program and checks
each call-site in the graph whether its body can be expanded,
or not. All blocks and variables in an expanded function are
merged into the call-site, then the compiler regenerates the
call-graph.

2.2.2 Macro Task Fusion [12]
Macro task fusion is a restructuring technique for coarse
grain task parallel processing. It merges multiple macro-
tasks into one macro-task to minimize scheduling overhead.

As described in Section 2.1, OSCAR compiler applies
dynamic scheduling to an MTG when it has conditional
branches among macro-tasks. However, the granularity of
macro-tasks tend to be relatively smaller than the dynamic
scheduling overhead especially for the cases of control appli-
cations [12]. The efficiency of parallel processing becomes
worse for such a situation. By applying macro task fusion,
conditional branches inside an MTG can be hidden inside
macro-tasks. Thus, static scheduling can be applied to the
MTG and the scheduling overhead becomes minimal.

The compiler processes macro task fusion as the follow-
ing steps: First, the compiler traverses macro-tasks inside
an MTG to check conditional branches. When a conditional
branch is found, the compiler checks post-dominated macro-
tasks by this branch. These macro-tasks are recorded as a
group to be merged into one macro-task. Then, macro-tasks
inside this group is merged into a new macro-task. This re-
structuring modifies CFG of a source program. Therefore,
the compiler generates an MTG again after macro task fu-
sion.

2.2.3 Ordering of Analysis-passes and
Restructuring-passes

OSCAR compiler applies multiple kinds of restructuring to
a source program to fully exploit coarse grain parallelism.
Each restructuring requires program analysis information.
If the compiler applies restructuring and modifies program
structure, it must also applies program analysis again.

Figure 2 shows an example compilation flow including
multiple restructuring passes and analysis passes. In this
flow, the compiler applies inline expansion firstly to exploit
coarse grain task parallelism from a source program as de-
scribed in Section 2.2.1. After inline expansion, the compiler
applies a sequence of program analysis.

Then, the compiler generates MTGs for RBs and SBs by
utilizing program analysis information, and determines par-
allel processing layers by evaluating parallelism of generated
MTGs [5].

Next, the compiler applies macro task fusion to each
MTG. A sequence of program analysis follows it since it
may modify the program structure. Finally, the compiler
generates MTGs by using updated program analysis infor-
mation, then generates the parallelised program.

Note that the compiler applies a sequence of program
analysis to the whole program even at the second time af-
ter macro task fusion to update the analysis information.
This is because the structure of the program may be changed
in different extent after macro task fusion. However, some
functions do not include MTGs when they do not have
enough coarse grain task parallelism. Furthermore, the com-
piler does not change an MTG when it does not have any
conditional branches. It means we have an opportunity to
reduce program analysis time by skipping program analysis
for functions that is not modified by the previous program
restructuring.

3. Investigation into Analysis-passes
3.1 Time consumption of Analysis-passes
Table 1 show the compilation time of OSCAR compiler for
three real proprietary large scale programs: Control Program
A, Control Program B and Image Processing Program. The
detail information of these programs will be shown in Sec-
tion 5.2.

3

Figure 2. An example of an order of analysis passes and
restructuring passes in OSCAR compiler.

Figure 3. Example of interprocedural effect of program re-
structuring. Before restructuring (a), FuncB() defining (mod-
ifying) a global variable ‘GV’ is called by FuncA() us-
ing it. After restructuring (b), FuncB’() defines a variable
‘GVtmp’ instead of ‘GV’. The analysis result of FuncA must
be ‘useGVtmp’ to reflect the restructuring result.

As shown in the table, there are main time consuming
passes in the compiler such as pointer analysis, def-use anal-
ysis, dependence computation and restructuring processes,
though their proportion depends on the applications. As dis-
cussed in Section 2.2.3, there is an opportunity to reduce
analysis time for pointer analysis, def-use analysis and de-
pendence computation. Especially, pointer analysis occupies
50% of the compilation time for the case of Control Program
A. We focus on these three analysis passes in this section.

For these analysis, we must take care of the propagation
of analysis information update among functions in a source
program to remove redundant analysis appropriately. For in-
stance, assume that a function FuncA() calls another func-
tion FuncB() (Figure 3). If FuncB() defines a global vari-
able GV, the information of this variable definition is prop-
agated to the call-site FuncA(). If a restructuring pass modi-
fies FuncB(), that definition information may be changed and
this information update must be propagated to the FuncA().

Thus, the compiler must apply program analysis passes to
FuncA() even when it is not modified by the restructuring
pass.

We briefly review the overview of those three analysis
passes in the rest of this section.

3.2 Def-Use Analysis
Def-use analysis is one of the fundamental analysis passes in
OSCAR compiler. In def-use analysis, the compiler traverses
all statements in a source program and records defined- and
used- variables and arrays for each statement. If a statement
is a function call, def- and use- information inside that func-
tion is merged to that function call statement. The results of
def-use analysis pass are later used in various other program
analysis passes in the compiler, such as data-flow analysis,
array access pattern analysis [6], parallel-loop analysis [3],
and so on.

3.3 Dependence Calculation
In dependence calculation, the compiler calculates data de-
pendencies among macro-tasks for each parallel processing
layer in a source program based on the results of def-use
analysis and other related data access analysis passes. The
compiler checks data dependence between one macro-task
and other all macro-tasks in the same parallel processing
layer in a function. Thus, if there are n macro-tasks in a func-
tion, it takes the cost of O(n2). It means the analysis cost of
dependence calculation becomes larger along with the size
of a source program. Note that the def- and use- informa-
tion within a function called from a macro-task, of course,
affect dependence calculation here. We must also consider
the inter-procedural information propagation.

3.4 Pointer Analysis
The pointer analysis pass calculates points-to information
that represents the relationship between pointer variables
and pointed object from those pointer variables. Flow-
sensitive and context-sensitive pointer analysis [9, 10] is
employed in OSCAR compiler.

In pointer analysis, the compiler firstly makes initial
points-to information for each basic block by checking as-
signment statements for pointer variables. Then, the points-
to information is propagated along with the control flow
graph (CFG) in a source program considering conditional
branches and loop structures by well-known data-flow anal-
ysis manner. The analysis result is recorded as in- and out-
points-to information for each basic block, loop block and
function module. Here, function calls are also taken into ac-
count to propagate the points-to information over functions.
In order to propagate information, invocation graph, which
is constructed from a call-graph of a source program, is used
for context-sensitive pointer analysis [9]. In an invocation
graph, each call-site is represented as a different node to
different call-sites that invokes the same function. The com-
piler integrates the points-to information of caller functions

4

into the call-site along with the invocation-graph. It means
the update of the points-to analysis information in one func-
tion clearly affects the other functions. In addition, the result
of pointer analysis is widely used in other analysis passes
including def-use analysis.

4. Proposed Compilation Time Reduction
Technique

4.1 Overview
As discussed in Section 2.2.3, OSCAR compiler applies
multiple program analysis passes and restructuring passes
to a source program. Even after the second analysis time,
the compiler applies it to the whole program no matter if
all functions are changed by the restructuring passes, or not.
However, if a function is not modified by a restructuring
pass, the compiler does not have to apply a program analysis
to the function again after that restructuring pass. Thus, we
can reduce the compile time by removing such redundant
program analysis.

We introduce a bitvector data structure in the compiler. At
a restructuring pass, the compiler records modified functions
in the bitvector by their ID numbers starting from 1. For
instance, if functions of 2, 3, 5, 7 and 10 are modified in
macro task fusion explained in Section 2.2.2, the compiler
records them as the following:

BitV ector = {0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, ...}

The program analysis passes following the restructuring pass
decide whether re-analysis must be applied or not by check-
ing the bitvector.

We describe how the compiler removes redundant analy-
sis by utilizing the bitvector in the rest of this section.

4.2 Removing Analysis Considering Call-graph
The compiler traverses functions in a source program at a
program analysis time. The basic idea of the proposed com-
pilation time reduction technique in this paper is skipping
the analysis for unmodified function at the previous restruc-
turing pass by checking the bitvector as described in Section
4.1.

For this bitvector checking, we must take care of the inter-
procedural update of analysis information. The compiler
realizes this by checking a call-graph in addition to the
bitvector as following:

• If the bitvector indicates the processing function is mod-
ified, the compiler applies the analysis for it.

• If the bitvector indicates any child function (callee-
function) of the processing function is modified, the com-
piler also applies the analysis for it.

• Otherwise, the compiler can skip the analysis.

Thus, the compiler can skip the redundant analysis consid-
ering the inter-procedural analysis update.

4.3 Removing Analysis Considering Global Effects by
Global Scope Objects

Objects in a program having global scope, such as global
variables and heap objects [8], may affect multiple func-
tions even when they have no direct relationship in a call-
graph. This must be taken into account for program analy-
sis passes employed by data-flow analysis manner like the
pointer analysis pass. Figure 4 shows an example of such a
case in pointer analysis.

In this figure, a global pointer variable points to some
memory location. This points-to relationship is made in
Block-A of a Function1 and it is used by Block-B of Func-
tion2. In other words, the “out” set of Block-A and Func-
tion1 made by the pointer analysis includes this points-to
information, and the “in” set of Block-B and Functin2 also
includes it, respectively. When this out-set is changed by
the modification of Function1 in the previous restructuring
pass, the in-set is also changed. Therefore, the compiler must
apply analysis passes again on Function2.

Here, assume that Function1 and Function2 are called
by another function, namely Function3, while Function1
and Function2 are neither callee- nor caller- function each
other. Thus, there is no parent-child relationship between
Function1 and Function2 in a call-graph. The rules discusses
in Section 4.2 is not enough since they relies on the parent-
child relatinship in a call-graph. The following rule is added
to deal with global effects caused by global scope objects:

• If the in-set of the processing function has global scope
objects analyzed by the previous analysis pass, the com-
piler checks whether the function generating the out-set
that includes those global scope objects are modified by
checking the bitvector. If modified, the compiler applies
the analysis again for the processing function.

This can be extended to the analysis process of travers-
ing blocks (basic blocks, loops, function call statements),
in a function module to reduce analysis time further. When
the compiler traverses the blocks, the compiler also checks
the global scope objects in the in-set of them. If the in-
set includes the compiler also checks the modification of
functions that generates corresponding out-set. If there is no
modification in them, the compiler skips data-flow calcula-
tion for the processing block.

4.4 Additional Modification for Pointer Analysis Pass
While the modification for the pointer analysis pass is ba-
sically same as that for other analysis passes, we must take
care of construction of an invocation graph for pointer anal-
ysis.

The compiler constructs an invocation graph from a call-
graph before pointer analysis. Different call-sites in a func-
tion are represented as different nodes in an invocation graph
so that the compiler can distinguish different contexts, or

5

Figure 4. Example of global effects among functions by
global scope objects. A global pointer variable modified
in Block-A of Function1 is used in Block-B of Function2.
Assume these two functions have no direct relationship in a
call-graph.

pointer-analysis information, on those call-sites. The pointer
analysis pass uses it to propagate points-to information.

If a restructuring pass like inline expansion modifies the
call-graph, the invocation graph must be totally constructed
again. However, other almost restructuring passes do not
modify the call-graph. Therefore, the compiler can only take
care of modified functions recorded in the bitvector to re-
construct the invocation graph.

5. Experimental Evaluation
We implemented the proposed compilation time reduction
technique in OSCAR compiler. We evaluated it using three
proprietary large scale programs.

5.1 Evaluation Environment
We used Intel Xeon E5-2667 v4 for our evaluation. The
Xeon E5-2667 v4 processor has 16 cores driven at 2.30GHz.
The evaluated machine has 512GB memory. We used Ubuntu
14.04 LTS 64 bit as the operating system.

5.2 Evaluation Programs
We used three large-scale proprietary applications for the
evaluation. Two of them are control programs for mechanics,
namely “Control Program A” and “Control Program B”, and
the rest one is an image processing program, namely “Image
Processing”. We chose these three because of its long com-
pilation time. At the same time, in order to compare the com-
pilation time and the characteristics of program structure for
them, we gave the same compiler options to the compiler.

Table 1 shows the analysis time and restructuring time
consumption in seconds for the evaluation programs before
implementing the proposed technique. Similarly, Table 2
shows the basic information of program structure for the
programs.

From these tables, Control Program A spends 2519[sec]
for its compilation. The most time consuming part for this

program is the pointer analysis, which spends 1259[sec]
and it is nearly 50% of the total compilation time. About
the def-use analysis, it takes 201[sec] and it is about 8%.
Regarding to the program structure, Control Program A has
83 functions, 3,833 variables, 536 pointer variables and 584
structures.

On the other hand, Control Program B has 675 modules
and 1,046,244 variables, 164 pointers and 95,867 structures.
The total compilation time for it is 104[sec]. Def-use analy-
sis requires 10[sec] and it is about 9%. Pointer analysis uses
12[sec] and it is nearly 10%.

Finally, for Image Processing, it has 173 modules, 12,851
variables, 689 pointers, and 8,873 structures, respectively.
The total compilation time is 16.62[sec]. In this program, the
pointer analysis and def-use analysis will not use so much
time The pointer analysis requires about 2.43[sec] (14%),
and the def-use analysis spends 1.87[sec] (11%).

We can find the program analysis passes consume over
50% of the total the compilation time though the percentage
of them are different depending on the applications. Espe-
cially, three main analysis passes discussed in Section 3 take
at least 30% of the time.

5.3 Evaluation result
Figure 5 shows the evaluated compilation time reduction re-
sults by the proposed technique. In figure5(a), we catego-
rized and evaluated analysis passes into two groups: the ba-
sic analysis pass and the pointer analysis pass. The basic
analysis pass includes the def-use analysis pass and the de-
pendence calculation pass. “Before” and “After” stand for
the OSCAR compiler without and with the proposed tech-
nique, respectively. Each bar in the graph shows the normal-
ized analysis time for each analysis group of each evaluated
program based on OSCAR compiler without proposed tech-
nique. Figure5(b) shows the changes of the total compilation
time.

For all programs and program analysis groups, the anal-
ysis time can be reduced by the proposed technique. Com-
pared with the compiler without the proposed technique, the
proposed technique attains 35% of time reduction for the ba-
sic analysis and 43% for the pointer analysis, respectively,
for the case of Control Program A. Similarly, 41% and 59%
time reduction are achieved for the basic analysis and the
pointer analysis, respectively, for Control Program B. 37%
and 53% time reduction are also obtained for Image Pro-
cessing program.

The proposed technique in this paper aims at reduc-
ing compilation time with preserving same optimization
strength. Therefor, the generated parallelised programs by
the compiler with proposed technique are totally same as
those by the compiler without the technique.

We discuss the evaluation result here focusing on the time
reduction results of the pointer analysis for Control Program
A.

6

Total Pointer Def-use Dependence Other Restructuring
compilation time analysis analysis calculation analysis

Control 2,519 1,259 201 251 377 428.23
Program A (100%) (50%) (8%) (10%) (15%) (17%)

Control 104 12 10 9 21 53
Program B (100%) (12%) (9%) (9%) (18%) (51%)

Image 16.62 2.43 1.87 3.86 3.15 5.48
Processing (100%) (14%) (11%) (23%) (19%) (33%)

Table 1. Analysis time and restructuring time for each program in seconds.

Num. of Num. of Num. of Num. of Num. of
lines functions variables pointers structures

Control 334,297 83 3,833 536 584
Program A

Control 1,720,919 675 1,046,244 164 95,867
Program B

Image 173,596 173 12,851 689 8,873
Processing

Table 2. Information of evaluated programs.

The sequence of the analysis in this evaluation includes
the pointer analysis, the def-use analysis, the dependence
calculation, and an ordinary control-flow analysis. The re-
structuring process includes the inline expansion and the
macro task fusion explained in Section 2. The macro task fu-
sion consists of pre-process for finding conditional branches
and the fusion process itself.

The compiler carries out all analysis to all functions in a
source program at the first sequence of the analysis. Then, as
discussed in Section 4, the compiler can re-use the analysis
results at the rest of the analysis sequences if the functions
related to the processing function are not modified. Here, the
analysis time for other analysis sequences than the first anal-
ysis clearly depends on the number of functions modified by
the restructuring passes.

For the case of the pointer analysis pass, the compiler ap-
plies it to a source program five times in this evaluation. The
first analysis is carried out to 94 functions for Control Pro-
gram A while the second analysis after the inline expansion
pass is applied to zero function since the inline expansion is
not applied to any function in this case. The fourth and fifth
analysis passes are applied after the pre-process of the macro
task fusion and the body of the macro task fusion, respec-
tively. The number of modified functions by these restruc-
turing passes is 53. Therefore, nearly half of the functions
are not modified and the compiler can skip the analysis for
them. Thus, the proposed technique can reduce 43% of the
analysis time for the pointer analysis for Control Program A.

6. Related Works
Several literature have dealt with the issues related to the re-
duction of compilation time and the scalability of compilers

for large scale programs. Some past works focused on tack-
ling the compilation time by exploiting the data dependency
or bundle properties from the program.

Mehta et al. [1] tried to reduce the number of valid state-
ments by combining consecutive multiple statements and
their data and control dependency as a super statement.
Among these super statements, the statement condensation
is executed to combine the areas of the same iteration to-
gether. In most of the cases, because the dependence dis-
tance among the statements in the large scale programs is
very short and close to the shape of dependent vector, it is
possible to reduce the amount of dependencies needed to be
focused by applying statement condensation.

Nick et al. proposed another approach to this topic by
mainly generating the dependence graph in different way
[2]. When the compiler is exporting the highly analysis to
the program, it is common to use Directed Acyclic Graph
of Strongly Connected Components (DAGscc) based on the
Program Dependence Graph (PDG). The amount of infor-
mation stored in DAGscc is much smaller than PDG. There-
fore, there is an opportunity to reduce the computation cost.
However, it is general to make DAGscc after the complete
PDG is generated. To reduce the computation time of mak-
ing DAGscc, they tried to eliminate the redundant value of
no affecting to the DAGscc while the PDG is being gener-
ated. At the same time, because the analysis is implemented
with Demand-Driven, only the necessary parts but not the
whole source program will be analyzed.

Besides the researches above, a fine-grain redundancy re-
moval precompilation technique for accelerating the compi-
lation time of large C/C++ programs was proposed by Yu
et al. [14]. This technique aims for removing the multiple

7

(a) Time reduction in analysis

(b) Time reduction in total

Figure 5. Time reduction of the program analysis passes for
evaluated programs. Basic analysis includes def-use analysis
and dependence calculation. Each bar shows the normalized
analysis time for each analysis group based on OSCAR
compiler without the proposed technique.

falsely declaration in the header files when they are used in
different compilation units (e.g. ‘.c file’) but not all of the
declarations are useful. Although the functionality of a sys-
tem is not affected, redundancies and false dependencies in
the precompilation units affect the efficiency of the devel-
opment process and the total build time. This technique ex-
tract the compilation units firstly into a sequence of program
units (PU), which means the declaration of each variable,
then remove the redundancy based on the abstract syntax
tree. Finally, partition and regroup the necessary PU’s into
the header and compilation units to reduce the unnecessary
header files.

Different from these previous works, our technique fo-
cuses on the organization of the parallelizing compilers, es-
pecially multiple program analysis passes and restructuring
passes. Furthermore, our technique takes care of the global
structure of a source program such as the caller-callee rela-
tionship and the global effects by global scope objects.

7. Conclusion
In this paper, we address the key compilation time prob-
lem at the powerful optimization especially for paralleliz-
ing compilers, namely OSCAR compiler, which usually ap-
ply aggressive program restructuring to the target program.
However some of the functions may remain the structure
before the program is restructured because a restructuring
pass does not always affect the whole part of the program.
We therefor proposed the technique of removing redundant
program analysis considering inter-procedural propagation
of analysis update information. In this technique, the com-
piler records the functions whose structure is changed af-
ter restructuring the program, then the compiler analysis the
functions recorded to update the information of each anal-
ysis. For the remained functions whose structure are not af-
fected by the restructuring, the previous analysis information
can be used again.

The proposed technique is employed in OSCAR auto-
matically mutltigrain parallelizing compiler. We evaluate our
proposed technique in three proprietary large scale real ap-
plications. For image processing, the time cost in the pointer
analysis and the basic analysis are reduced by 43% and 35%
separately. For Control Program B, they are 59% and 41%,
and finally for the Control Program A, they are 53% and
37%.

Acknowledgments
This paper is based on results obtained from a project com-
missioned by the New Energy and Industrial Technology
Development Organization (NEDO).

References
[1] S. Mehta and P-C. Yew. Improving Compiler Scalability:

Optimizing Large Programs at Small Price. Proceedings of the
36th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’15), pp. 143–152, 2015.

[2] N. P. Johnson, T. Oh, A. Zaks and D. I. August. Fast Conden-
sation of the Program Dependence Graph. Proceedings of the
34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’13), pp. 39–50, 2013.

[3] U. K. Banerjee. Dependence Analysis for Supercomputing.
Kluwer Academic Publishers, Norwell, MA, USA, 1988.

[4] K. Ishizaka, T. Miyamoto, J. Shirako, M. Obata, K. Kimura
and H. Kasahara. Performance of OSCAR Multigrain Paral-
lelizing Compiler on SMP Servers. Language and Compilers
for High Performance Computing, 17th International Work-
shop, LCPC 2004, west Lafayette, USA, pp 319–331, 2005.

[5] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka and H.
Kasahara. Hierarchical Parallelism Control for Multigrain
Parallel Processing. Language and Compilers for High
Performance Computing, 15th International Workshop, LCPC
2002, college Park, USA, pp 31–44, 2005.

[6] Y. Peak, J. Hoeflinger and D. Padua. Efficient and Precise
Array Access Analysis. ACM Transactions on Programming

8

Languages and Systems (TOPLAS), Vol. 24, Issue 1, pp.
65–109, January 2002.

[7] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara
and S. Narita. A multi-grain parallizing compilation scheme
on OSCAR (optimally scheduled advanced multiprocessor).
Proc. 4th Workshop on Language and Compilers for Parallel
Computing (LCPC91), pp. 283–297, 1992.

[8] E. M. Nystrom, H.-S. Kim and W. W. Hwu. Importance of
heap specialization in pointer analysis. Proceedings of the 5th
ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering (PASTE 2004), pp. 43–48,
2004.

[9] M. Emami, R. Ghiya and L. J. Hendren. Context-sensitive
interprocedural points-to analysis in the presence of function
pointers. Proceedings of the ACM SIGPLAN 1994 conference
on Programming language design and implementation (PLDI
’94), pp. 242–256, June 1994.

[10] M. Hind, M. Burke, P. Carini and J.-D. Choi. Interprocedural
Pointer Alias Analysis. ACM Transactions on Programming
Languages and Systems (TOPLAS) Volume 21 Issue 4, pp.
848–894, July 1999

[11] J. Shirako, K. Nagasawa, K. Ishizaka, M. Obata, H. Kasahara.
Selective Inline Expansion for Improvement of Multi Grain
Parallelism. The IASTED International Conference on
PARALLEL AND DISTRIBUTED COMPUTING AND
NETWORKS, 2004.

[12] D. Umeda, T. Suzuki, H. Mikami, K. Kimura and H.
Kasahara. Multigrain Parallelization for Model-based Design
Applications Using the OSCAR Compiler. Language and
Compilers for Parallel Computing (LCPC2015), pp. 125–139,
2016

[14] Y. Yu, H. Dayani-Fard, J. Mylopoulos and P. Andritsos.
Reducing build time through precompilations for evolving
large software. 21st IEEE International Conference on
Software Maintenance (ICSM’05), pp. 59–68, September
2005.

[14] Y. Yu, H. Dayani-Fard, J. Mylopoulos and P. Andritsos.
Reducing build time through precompilations for evolving
large software. 21st IEEE International Conference on
Software Maintenance (ICSM’05), pp. 59–68, September
2005.

9

