klxbrogramming INn the Brave New
World of Systems-on-a-chip

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

The 25th International Workshop on Languages and
Compilers for Parallel Computing (LCPC)

.
Tokyo, Japan b

September 11, 2012

Cell Phones:
Samsung Galaxy S 1 April 2012

N

Exynos 4212

16GB
NAND flash

sung Exynos Quad:

- quad-core A9 :
- 1GB DDR2 (low power) | Power consumption <1lmW

- Multimedia processor

icm r pm——— -

Cell Phones: Intel’'s Penwell
Announcement January2012

G

TI Wifi & BT ‘ ¢, >leKe

H @
2 u3D Grar’. s BN

'

“‘:'CSS‘Z\EO ‘0 I "0\ Y Vecode \ .deo Enrod 170
1080p30 108" .9

Modem MiPl-HSI LPDDR2
SPI))X = eMMC
Ve T Vidr . ‘o, e isplay Ctrl MIPI-DSI

T £ Ya.ce 3 Pipes HDMI 1.3a

MIPI-CSI
Ima” @ “ignal Processor UART

rrogrammable
MSIC VRs,

Audio CODEC I0SF - OCP Bridge

Display Support
Security Programmable Execution
Environment & Cryto Engine

Many specialized 750 mWatt
complex blocks

LPDDR2

SD/MMC

Internal Disp

HDMI Display

Primary Camera:
8MP; 15fps,

1080p

Secondary Camera:
1.3MP, 1080p
3

Where does the power go

N

@ Display
= turn it on as little as possible

® Radios

= Many different radios — GSM, Wimax, ... Only some
are turned on simultaneously

s Energy consumption increases with data-rates,
distance, moving radios, occlusions, ..
@® Computation/Application

m power consumption varies a lot from application to
application

s power hogs: H.264, Graphics, ...

Power/Energy issues are the main
driver in design: e.g. H.264

N

L

@ Computation intensive

s Complex predictions, IMDCT Conversions, Image
smoothing

@ To fit in a 3 W power budget, it has to be run
mostly in specialized hardware
= 100X power advantage over software

@® A good Implementation requires design
exploration

® Reusable IP requires parameterizations to
support various frame rates and sizes

Modern SoCs: Power savings

N

L

require special purpose hardware

#® Most SoCs employ HW acceleration for
Important compute intensive applications

® Software stacks on top of special purpose HW
s Efficient interaction is a first-order concern

® Implementing algorithms to use both HW and
SW is challenging — exploring many design
alternatives is practically impossible

Why is exploring design alternatives difficult?

N

Bits

PCM Output

Example: Ogg Vorbis

@ An audio compression

&

format similar to MP3

Front-end is naturally
done in SW, back-end in
HW

IMDCT takes the most
computation

Is this the best
partitioning choice?

[software [hardware

N
\J

IMDCT + Windowing

Data Input

IMDCT

g’?

Windowing

- B

® Actual Data-Flow for

Vorbis back-end

@ Edge traffic and

computational intensity
vary greatly

¢ Many options for

PCM
Output

partitioning these
modules

A functionality
mmem interface

> | state

~— module
—» data-flow

N

Partitioning Dictates
Interface definition (lfc)

L

If you fix the ifc first then very little choice is left for
partitioning

many more choices...

N

J
y
<-H/

A 4 A 4

4
I |
4

L >

>

Each partitioning results in vastly different amounts of
data transfer across the HW-SW boundary which may
over shadow computational acceleration

Why exploring partitioning
IS so difficult

N

@ Inflexible interface definitions
@ Entirely different languages for expressing HW
(e.g., Varilog) and SW (e.g., C, C++)

» different programming/design cultures in the two
worlds

® Complicated debugging environment

Solution: Express both HW and low-level SW

In the same language,
e.g., Bluespec Codesign Language (BCL)

11

N

Outline

® Need for special purpose HW

® Bluespec and compiling rules into HW and SW
@ Partition Program into Computational Domains
@ Automatically synthesize the Interface to

connect the domains
® Evaluation

12

Bluespec

N

L

(ﬁ%\ﬁ

<3

@@

Database

T1

Bluespec is a transactional system; N\

WA

All behavior is expressed in terms of

guarded atomic actions, known as T2

= N

Rules
Rule :: Guard = Action

t

Transactional Memory

Transactions is proven model

of parallel computation

EXxpressing computation

N

using rules

int s = sO; C-code
for (inti =0; 1 <32;i1=i+1)
{s = f(s);} return s;

® Instantiate state elements
Reg#(Bit#(32)) s <- mkRegU();

® Rules define how state is to be

Reg#(Bit#(6)) 1 <- mkReg(32)%

make a 6-bit
register with
initial value 32

transformed atomically
rule step 1f (1 < 32)+

the rule can
execute only when
its guard is true

s <= T(s);
1 <=-1+1;
endrule

® Methods define the interface

actions to be
performed when
the rule executes

method start(s0) if (i==32);
s <= s0;
endmethod

14

Compiling BCL

@ BCL is an extension of Bluespec
SystemVerilog (BSV) for expression efficient
SW and partitioning

N

Bluespec
BSV BSC Verilog Inc.

BCL front- /'47 —
end
7 \ IR back- C++) ..
(ATS) end optimizing

DSEL in Haskell — 7 compiler

@ Synthesizing the same rule system for both HW and SW
s Parallel vs. Multithreaded sequential substrates

How do we generate efficient SW?

Myron King, Nirav Dave and Arvind, ASPLOS 2012

Rule Execution in HW

N

J
® \When a rule executes:

= all the registers are read
at the beginning of a
clock cycle

s the guard and
computations to
evaluate the next value
of the registers are
performed

» at the end of the clock
cycle registers are
updated iff the guard is
true

® Muxes are need to
Initialize the registers

Reg#(Bit#(32)) s <- mkRegU();
Reg#(Bit#(6)) 1 <- mkReg(32);
rule step if (i < 32);

s <= f(s);
I <= i+1;
endrule
+1] 0 f sO
sel %' sel
e—n'>i e—n’> s

< 32

l sel = start
notDone en = start | notDone

16

Challenges In

N

Implementing Rules in SW

@ Unlike hardware we need to make shadow
state (copies) to deal with guard failures

@ Efficient HW rule scheduling and SW rule
scheduling are completely different
= HW scheduling is well understood

@ Optimizations for SW generation
s Sequentialize parallel actions
= Guard lifting for early failure detection
s Partial shadowing of state

17

STM vs. Rules

N

® Both modify state atomically and require
linearizability of transactions

® We only schedule non-conflicting transactions
simultaneously = no need to keep track of
read sets and write sets

@ Our Rules (transactions) fail only because of a
guard failure

— shadow state Is required like In STM

18

N

Outline

® Need for special purpose HW

@ Bluespec and compiling rules into HW and SW
@ Partition Program into Computational Domains
@ Automatically synthesize the Interface to

connect the domains
® Evaluation

19

Computational Domains:

N

Where to partition

Data Input ®

PCM
Output

It Is easy to implement a
FIFO abstraction between
HW and SW

Shared registers/variables
introduce coherence issues
(excessive synchronization)

Group functionality into
computational domains
connected by FIFOS

Design styles which enable
modular refinement
partition naturally

20

N

&

Enforcing Safe Partitions

Data Input

Every rule in a _
computational domain
gets a color

Rules and registers are
mono-chromatic

Domain crossing FIFOs
have two colors

Enforced by the type
system in BCL

21

N

Partitioning and Modularity

Data Input

€ Modularity and
Partitioning are
orthogonal. Module
structure may reflect
partitioning requirements

® |FFT interface declaration:

data (IFFT mm e = I1FFT{

input ::
Method m (@ -> Action)
config ::

Method [l (State -> Action)
output ::

Method [(ActionValue [B)
status ::

Method m (State)

i and[nl are domain type variables; %o be
specified in the implementation

22

N

Outline

® Need for special purpose HW

@ Bluespec and compiling rules into HW and SW v
@ Partition Program into Computational Domains
@ Automatically synthesize the Interface to

connect the domains
® Evaluation

23

N

«
R
s [

Bus (PCI Express)

Mapping Domains

Domains form Latency
Tolerant BDN

HW and SW substrates
form a Physical Network
(PN) of partitions

LT-BDN must be mapped
to the PN

FIFO traffic (rate) is not
statically known =
automated dynamic
scheduling

24

Multiplexing shared physical
channel

N

@ One Virtual Channel per
FIFO with flow-control
and sufficient buffering

= Dally and Seitz, 1987

® HW/SW connection logic
IS automatically
generated

& All data-types are
automatically marshaled
and translated

Bus (PCI Express)

25

N

Outline

® Need for special purpose HW

@ Bluespec and compiling rules into HW and SW v
@ Partition Program into Computational Domains
@ Automatically synthesize the Interface to

connect the domains
® Evaluation

26

Evaluation

N

® Benchmarks: many different partitions
= Ogg Vorbis
= Ray Tracing
= EEMBC benchmark suite & many more

@ Xilinx ML507: XC5VFX70T chip

= PowerPC 440 (400 MHz)
s FPGA Fabric (100 MHz)
= 256MB DDR2

27

Partitioning Vorbis back-end

N

€[oo |
v

[window] [addersesm]|

- P
v

[oimion] [osmerron I}

Execution Speed ower s

better

N

3.50 Win+

IFFT

3.00

all SW

g
a
o

N
o
o

IFFT

=
4y
o

time (sec)

=
)
oS

0.50 -~

0.00 -

partitioning choice

the results agree with our intuition

Myron King, Nirav Dave and Arvind, ASPLOS 2012 29

N

&

Related Work

Implementation-agnostic parallel models

= Hoe and Arvind (2000)

= Chandy and Misra (Unity, 1988)

» Dijkstra (Guarded Commands, 1975)
Generation of SW from HW Descriptions

m Chiou et al. (Chinook, 1995)

= Any optimized RTL simulator
Generation of HW from Seq. SW Description

» CatapaultC, Pico Platform, AutoPilot (commercial)

= Huang et al. (Liquid Metal 2008)
Simulating heterogeneous systems

» Buck et al. (Ptolemy 1994)

= Balarin et al. (Metropolis 2003)
Algorithms for HW/SW Partitioning

= A lot of work in this area...

30

Takeaway

N

J - -
@ Power concerns require special purpose
hardware in all SoCs

® HW/SW Codesign is challenging

s tedious and error prone
= rewriting inhibits design exploration

@ Use a unified language for both HW and SW
= partitioning can be specified in the source code as a
simple coloring scheme
= both HW and SW can be generated from the same
source code
= INnterfaces and communication infrastructure can be
synthesized automatically

Thank you

31

