
Programming in the Brave New
World of Systems-on-a-chip

Arvind
Computer Science & Artificial Intelligence Lab
Massachusetts Institute of Technology

The 25th International Workshop on Languages and
Compilers for Parallel Computing (LCPC)
Tokyo, Japan

September 11, 2012
1

Cell Phones:
Samsung Galaxy S III April 2012

Samsung Exynos Quad:
- quad-core A9
- 1GB DDR2 (low power)
- Multimedia processor
- ...

16GB
NAND flash

power consumption <1mW

2

Cell Phones: Intel’s Penwell
Announcement January2012

Many specialized
complex blocks

750 mWatt
3

Where does the power go
Display
 turn it on as little as possible

Radios
 Many different radios – GSM, Wimax, ... Only some

are turned on simultaneously
 Energy consumption increases with data-rates,

distance, moving radios, occlusions, ..
Computation/Application
 power consumption varies a lot from application to

application
 power hogs: H.264, Graphics, …

4

Power/Energy issues are the main
driver in design: e.g. H.264

Computation intensive
 Complex predictions, IMDCT Conversions, Image

smoothing
To fit in a 3 W power budget, it has to be run
mostly in specialized hardware
 100X power advantage over software

A good Implementation requires design
exploration
Reusable IP requires parameterizations to
support various frame rates and sizes

5

Modern SoCs: Power savings
require special purpose hardware

Most SoCs employ HW acceleration for
important compute intensive applications
Software stacks on top of special purpose HW
 Efficient interaction is a first-order concern

Implementing algorithms to use both HW and
SW is challenging – exploring many design
alternatives is practically impossible

Why is exploring design alternatives difficult?

6

Example: Ogg Vorbis
An audio compression
format similar to MP3

Front-end is naturally
done in SW, back-end in
HW

IMDCT takes the most
computation

Is this the best
partitioning choice?

Stream
Parser

Windowing

PCM Output

Bits

Floor
Decoder

Residue
Decoder

IMDCT

software hardware

7

Actual Data-Flow for
Vorbis back-end

Edge traffic and
computational intensity
vary greatly

Many options for
partitioning these
modules

IMDCT + Windowing
Data Input

PCM
Output

IFFT

functionality
interface
state
module
data-flow

FSM

pre

postconfig

config win

IMDCT

Windowing

8

Partitioning Dictates
Interface definition (Ifc)

IFFT
FSM

pre

postconfig

config win

IFFT
FSM

pre

postconfig

config win

IMDCT

Windowing Windowing

IMDCT

If you fix the ifc first then very little choice is left for
partitioning

9

many more choices...

IFFT Core

IMDCT FSMs

Parameter
Tables

Windows adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

Each partitioning results in vastly different amounts of
data transfer across the HW-SW boundary which may
over shadow computational acceleration 10

Why exploring partitioning
is so difficult

Inflexible interface definitions
Entirely different languages for expressing HW
(e.g., Varilog) and SW (e.g., C, C++)
 different programming/design cultures in the two

worlds
Complicated debugging environment

Solution: Express both HW and low-level SW
in the same language,
e.g., Bluespec Codesign Language (BCL)

11

Outline
Need for special purpose HW 
Bluespec and compiling rules into HW and SW
Partition Program into Computational Domains
Automatically synthesize the Interface to
connect the domains
Evaluation

12

Bluespec

Bluespec is a transactional system;
All behavior is expressed in terms of
guarded atomic actions, known as
Rules

Rule :: Guard  Action

T1

T2

t

t

Transactional Memory

Bluespec

Database

Transactions is proven model
of parallel computation

13

Expressing computation
using rules

Instantiate state elements
Reg#(Bit#(32)) s <- mkRegU();
Reg#(Bit#(6)) i <- mkReg(32);

Rules define how state is to be
transformed atomically

rule step if (i < 32);
s <= f(s);
i <= i+1;

endrule

Methods define the interface
method start(s0) if (i==32);

s <= s0;
endmethod

make a 6-bit
register with
initial value 32

the rule can
execute only when
its guard is true

actions to be
performed when
the rule executes

int s = s0; C-code
for (int i = 0; i < 32; i = i+1)

{s = f(s);} return s;

14

Compiling BCL
BCL is an extension of Bluespec
SystemVerilog (BSV) for expression efficient
SW and partitioning

How do we generate efficient SW?

optimizing
compilerDSEL in Haskell

Bluespec
Inc.

BCL front-
end

BSV

IR
(ATS)

Verilog

C++

BSC

back-
end

Synthesizing the same rule system for both HW and SW
 Parallel vs. Multithreaded sequential substrates

15Myron King, Nirav Dave and Arvind, ASPLOS 2012

Rule Execution in HW

< 32

notDone

+1

sel

0

ien

sel = start
en = start | notDone

f s0

sel

sen

Reg#(Bit#(32)) s <- mkRegU();
Reg#(Bit#(6)) i <- mkReg(32);
rule step if (i < 32);

s <= f(s);
i <= i+1;

endrule

When a rule executes:
 all the registers are read

at the beginning of a
clock cycle

 the guard and
computations to
evaluate the next value
of the registers are
performed

 at the end of the clock
cycle registers are
updated iff the guard is
true

Muxes are need to
initialize the registers

16

Challenges in
Implementing Rules in SW

Unlike hardware we need to make shadow
state (copies) to deal with guard failures
Efficient HW rule scheduling and SW rule
scheduling are completely different
 HW scheduling is well understood

Optimizations for SW generation
 Sequentialize parallel actions
 Guard lifting for early failure detection
 Partial shadowing of state

17

STM vs. Rules
Both modify state atomically and require
linearizability of transactions

We only schedule non-conflicting transactions
simultaneously  no need to keep track of
read sets and write sets

Our Rules (transactions) fail only because of a
guard failure

 shadow state is required like in STM

18

Outline
Need for special purpose HW 
Bluespec and compiling rules into HW and SW
Partition Program into Computational Domains
Automatically synthesize the Interface to
connect the domains
Evaluation



19

Computational Domains:
Where to partition

It is easy to implement a
FIFO abstraction between
HW and SW

Shared registers/variables
introduce coherence issues
(excessive synchronization)

Group functionality into
computational domains
connected by FIFOS

Design styles which enable
modular refinement
partition naturally

Data Input

PCM
Output

IFFT
FSM

pre

postconfig

config win

20

Enforcing Safe Partitions
Every rule in a
computational domain
gets a color

Rules and registers are
mono-chromatic

Domain crossing FIFOs
have two colors

Enforced by the type
system in BCL

PCM
Output

Data Input

IFFT
FSM

pre

postconfig

config win

21

Partitioning and Modularity
Modularity and
Partitioning are
orthogonal. Module
structure may reflect
partitioning requirements
IFFT interface declaration:

Data Input

IFFT
FSM

pre

postconfig

config win

data (IFFT m n t) = IFFT{
input ::
Method m (t -> Action)

config ::
Method m (State -> Action)

output ::
Method n (ActionValue t)

status ::
Method n (State)

}
m and n are domain type variables; to be
specified in the implementation 22

Outline
Need for special purpose HW 
Bluespec and compiling rules into HW and SW 
Partition Program into Computational Domains 
Automatically synthesize the Interface to
connect the domains
Evaluation

23

Mapping Domains

FPGA/ASIC

Bus (PCI Express)

CPU

Domains form Latency
Tolerant BDN

HW and SW substrates
form a Physical Network
(PN) of partitions

LT-BDN must be mapped
to the PN

FIFO traffic (rate) is not
statically known 
automated dynamic
scheduling

24

Multiplexing shared physical
channel

One Virtual Channel per
FIFO with flow-control
and sufficient buffering
 Dally and Seitz, 1987

HW/SW connection logic
is automatically
generated

All data-types are
automatically marshaled
and translatedFPGA 0

Bus (PCI Express)

CPU

FPGA 1

FPGA 0 CPU

FPGA 1

25

Outline
Need for special purpose HW 
Bluespec and compiling rules into HW and SW 
Partition Program into Computational Domains 
Automatically synthesize the Interface to
connect the domains 
Evaluation

26

Evaluation
Benchmarks: many different partitions
 Ogg Vorbis




Xilinx ML507: XC5VFX70T chip

 PowerPC 440 (400 MHz)
 FPGA Fabric (100 MHz)
 256MB DDR2

27

Partitioning Vorbis back-end

IFFT Core

IMDCT FSMs

Parameter
Tables

Windows adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter
Tables

Window adder/FSM

Backend FSMs

D

C

E

B

F

A

28

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

A B C D E F

Execution Speed

the results agree with our intuition

all SW

all HWIMDCT

IFFT

Win

Win+
IFFT

tim
e

(s
ec

)

partitioning choice

lower is
better

29Myron King, Nirav Dave and Arvind, ASPLOS 2012

Related Work
Implementation-agnostic parallel models
 Hoe and Arvind (2000)
 Chandy and Misra (Unity, 1988)
 Dijkstra (Guarded Commands, 1975)

Generation of SW from HW Descriptions
 Chiou et al. (Chinook, 1995)
 Any optimized RTL simulator

Generation of HW from Seq. SW Description
 CatapaultC, Pico Platform, AutoPilot (commercial)
 Huang et al. (Liquid Metal 2008)

Simulating heterogeneous systems
 Buck et al. (Ptolemy 1994)
 Balarin et al. (Metropolis 2003)

Algorithms for HW/SW Partitioning
 A lot of work in this area…

30

Takeaway
Power concerns require special purpose
hardware in all SoCs
HW/SW Codesign is challenging
 tedious and error prone
 rewriting inhibits design exploration

Use a unified language for both HW and SW
 partitioning can be specified in the source code as a

simple coloring scheme
 both HW and SW can be generated from the same

source code
 interfaces and communication infrastructure can be

synthesized automatically

31

Thank you

