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Cell Phones:
Samsung Galaxy S 1 April 2012

N

Exynos 4212

16GB
NAND flash

sung Exynos Quad:

- quad-core A9 :
- 1GB DDR2 (low power) | Power consumption <1lmW

- Multimedia processor
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Cell Phones: Intel’'s Penwell
Announcement January2012
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Where does the power go
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@ Display
= turn it on as little as possible

® Radios

= Many different radios — GSM, Wimax, ... Only some
are turned on simultaneously

s Energy consumption increases with data-rates,
distance, moving radios, occlusions, ..
@® Computation/Application

m power consumption varies a lot from application to
application

s power hogs: H.264, Graphics, ...




Power/Energy issues are the main
driver in design: e.g. H.264

N
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@ Computation intensive

s Complex predictions, IMDCT Conversions, Image
smoothing

@ To fit in a 3 W power budget, it has to be run
mostly in specialized hardware
= 100X power advantage over software

@® A good Implementation requires design
exploration

® Reusable IP requires parameterizations to
support various frame rates and sizes




Modern SoCs: Power savings
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require special purpose hardware

#® Most SoCs employ HW acceleration for
Important compute intensive applications

® Software stacks on top of special purpose HW
s Efficient interaction is a first-order concern

® Implementing algorithms to use both HW and
SW is challenging — exploring many design
alternatives is practically impossible

Why is exploring design alternatives difficult?
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Bits

PCM Output

Example: Ogg Vorbis

@ An audio compression

&

format similar to MP3

Front-end is naturally
done in SW, back-end in
HW

IMDCT takes the most
computation

Is this the best
partitioning choice?

[ software [ hardware
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IMDCT + Windowing

Data Input

IMDCT

g’?

Windowing

- B

® Actual Data-Flow for

Vorbis back-end

@ Edge traffic and

computational intensity
vary greatly

¢ Many options for

PCM
Output

partitioning these
modules

A functionality
mmem  interface

> | state

~— module
—» data-flow
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Partitioning Dictates
Interface definition (lfc)
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If you fix the ifc first then very little choice is left for
partitioning



many more choices...
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Each partitioning results in vastly different amounts of
data transfer across the HW-SW boundary which may
over shadow computational acceleration



Why exploring partitioning
IS so difficult
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@ Inflexible interface definitions
@ Entirely different languages for expressing HW
(e.g., Varilog) and SW (e.g., C, C++)

» different programming/design cultures in the two
worlds

® Complicated debugging environment

Solution: Express both HW and low-level SW

In the same language,
e.g., Bluespec Codesign Language (BCL)
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Outline

® Need for special purpose HW

® Bluespec and compiling rules into HW and SW
@ Partition Program into Computational Domains
@ Automatically synthesize the Interface to

connect the domains
® Evaluation
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Bluespec

N

L

(ﬁ%\ﬁ

<3

@@

Database

T1

Bluespec is a transactional system; N\

WA

All behavior is expressed in terms of

guarded atomic actions, known as T2

= N

Rules
Rule :: Guard = Action

t

Transactional Memory

Transactions is proven model

of parallel computation




EXxpressing computation
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using rules

int s = sO; C-code
for (inti =0; 1 <32;i1=i+1)
{s = f(s);} return s;

® Instantiate state elements
Reg#(Bit#(32)) s <- mkRegU();

® Rules define how state is to be

Reg#(Bit#(6)) 1 <- mkReg(32)%

make a 6-bit
register with
initial value 32

transformed atomically
rule step 1f (1 < 32)+

the rule can
execute only when
its guard is true

s <= T(s);
1 <=-1+1;
endrule

® Methods define the interface

actions to be
performed when
the rule executes

method start(s0) if (i==32);
s <= s0;
endmethod
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Compiling BCL

@ BCL is an extension of Bluespec
SystemVerilog (BSV) for expression efficient
SW and partitioning

N

Bluespec
BSV BSC Verilog Inc.

BCL front- /'47 —
end
7 \ IR back- C++ ) ..
(ATS) end optimizing

DSEL in Haskell — 7 compiler

@ Synthesizing the same rule system for both HW and SW
s Parallel vs. Multithreaded sequential substrates

How do we generate efficient SW?

Myron King, Nirav Dave and Arvind, ASPLOS 2012




Rule Execution in HW

N

J
® \When a rule executes:

= all the registers are read
at the beginning of a
clock cycle

s the guard and
computations to
evaluate the next value
of the registers are
performed

» at the end of the clock
cycle registers are
updated iff the guard is
true

® Muxes are need to
Initialize the registers

Reg#(Bit#(32)) s <- mkRegU();
Reg#(Bit#(6)) 1 <- mkReg(32);
rule step if (i < 32);

s <= f(s);
I <= i+1;
endrule
+1] 0 f sO
sel %' sel
e—n'>i e—n’> s

< 32

l sel = start
notDone en = start | notDone
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Challenges In
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Implementing Rules in SW

@ Unlike hardware we need to make shadow
state (copies) to deal with guard failures

@ Efficient HW rule scheduling and SW rule
scheduling are completely different
= HW scheduling is well understood

@ Optimizations for SW generation
s Sequentialize parallel actions
= Guard lifting for early failure detection
s Partial shadowing of state

17



STM vs. Rules
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® Both modify state atomically and require
linearizability of transactions

® We only schedule non-conflicting transactions
simultaneously = no need to keep track of
read sets and write sets

@ Our Rules (transactions) fail only because of a
guard failure

— shadow state Is required like In STM

18



N

Outline

® Need for special purpose HW

@ Bluespec and compiling rules into HW and SW
@ Partition Program into Computational Domains
@ Automatically synthesize the Interface to

connect the domains
® Evaluation
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Computational Domains:
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Where to partition

Data Input ®

PCM
Output

It Is easy to implement a
FIFO abstraction between
HW and SW

Shared registers/variables
introduce coherence issues
(excessive synchronization)

Group functionality into
computational domains
connected by FIFOS

Design styles which enable
modular refinement
partition naturally

20



N

&

Enforcing Safe Partitions

Data Input

Every rule in a _
computational domain
gets a color

Rules and registers are
mono-chromatic

Domain crossing FIFOs
have two colors

Enforced by the type
system in BCL

21
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Partitioning and Modularity

Data Input

€ Modularity and
Partitioning are
orthogonal. Module
structure may reflect
partitioning requirements

® |FFT interface declaration:

data (IFFT mm e = I1FFT{

input ::
Method m (@ -> Action)
config ::

Method [l (State -> Action)
output ::

Method [ (ActionValue [B)
status ::

Method m (State)

i and[nl are domain type variables; %o be
specified in the implementation
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Outline

® Need for special purpose HW

@ Bluespec and compiling rules into HW and SW v
@ Partition Program into Computational Domains
@ Automatically synthesize the Interface to

connect the domains
® Evaluation
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Bus (PCI Express)

Mapping Domains

Domains form Latency
Tolerant BDN

HW and SW substrates
form a Physical Network
(PN) of partitions

LT-BDN must be mapped
to the PN

FIFO traffic (rate) is not
statically known =
automated dynamic
scheduling
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Multiplexing shared physical
channel

N

@ One Virtual Channel per
FIFO with flow-control
and sufficient buffering

= Dally and Seitz, 1987

® HW/SW connection logic
IS automatically
generated

& All data-types are
automatically marshaled
and translated

Bus (PCI Express)
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Outline

® Need for special purpose HW

@ Bluespec and compiling rules into HW and SW v
@ Partition Program into Computational Domains
@ Automatically synthesize the Interface to

connect the domains
® Evaluation
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Evaluation
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® Benchmarks: many different partitions
= Ogg Vorbis
= Ray Tracing
= EEMBC benchmark suite & many more

@ Xilinx ML507: XC5VFX70T chip

= PowerPC 440 (400 MHz)
s FPGA Fabric (100 MHz)
= 256MB DDR2

27



Partitioning Vorbis back-end

N
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Execution Speed ower s

better

N

3.50 Win+

IFFT

3.00

all SW

g
a
o

N
o
o

IFFT

=
4y
o

time (sec)

=
)
oS

0.50 -~

0.00 -

partitioning choice

the results agree with our intuition

Myron King, Nirav Dave and Arvind, ASPLOS 2012 29
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Related Work

Implementation-agnostic parallel models

= Hoe and Arvind (2000)

= Chandy and Misra (Unity, 1988)

» Dijkstra (Guarded Commands, 1975)
Generation of SW from HW Descriptions

m Chiou et al. (Chinook, 1995)

=  Any optimized RTL simulator
Generation of HW from Seq. SW Description

» CatapaultC, Pico Platform, AutoPilot (commercial)

= Huang et al. (Liquid Metal 2008)
Simulating heterogeneous systems

» Buck et al. (Ptolemy 1994)

= Balarin et al. (Metropolis 2003)
Algorithms for HW/SW Partitioning

= A lot of work in this area...
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Takeaway
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@ Power concerns require special purpose
hardware in all SoCs

® HW/SW Codesign is challenging

s tedious and error prone
= rewriting inhibits design exploration

@ Use a unified language for both HW and SW
= partitioning can be specified in the source code as a
simple coloring scheme
= both HW and SW can be generated from the same
source code
= INnterfaces and communication infrastructure can be
synthesized automatically

Thank you
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