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Cell Phones: 
Samsung Galaxy S III April 2012 

Samsung Exynos Quad:
- quad-core A9 
- 1GB DDR2 (low power)
- Multimedia processor
- ...

16GB 
NAND flash

power consumption <1mW
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Cell Phones: Intel’s Penwell
Announcement January2012

Many specialized 
complex blocks

750 mWatt
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Where does the power go
Display
 turn it on as little as possible

Radios
 Many different radios – GSM, Wimax, ... Only some 

are turned on simultaneously
 Energy consumption increases with data-rates, 

distance, moving radios, occlusions, ..  
Computation/Application
 power consumption varies a lot from application to 

application 
 power hogs: H.264, Graphics, …

4



Power/Energy issues are the main 
driver in design:        e.g. H.264

Computation intensive
 Complex predictions, IMDCT Conversions, Image 

smoothing
To fit in a 3 W power budget, it has to be run 
mostly in specialized hardware 
 100X power advantage over software

A good Implementation requires design 
exploration
Reusable IP requires parameterizations to 
support various frame rates and sizes
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Modern SoCs: Power savings 
require special purpose hardware

Most SoCs employ HW acceleration for 
important compute intensive applications
Software stacks on top of special purpose HW  
 Efficient interaction is a first-order concern

Implementing algorithms to use both HW and 
SW is challenging – exploring many design 
alternatives is practically impossible 

Why is exploring design alternatives difficult?
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Example: Ogg Vorbis
An audio compression 
format similar to MP3

Front-end is naturally 
done in SW, back-end in 
HW

IMDCT takes the most 
computation

Is this the best 
partitioning choice?

Stream 
Parser 

Windowing

PCM Output

Bits

Floor 
Decoder 

Residue 
Decoder 

IMDCT

software hardware
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Actual Data-Flow for 
Vorbis back-end 

Edge traffic and 
computational intensity 
vary greatly

Many options for 
partitioning these 
modules

IMDCT + Windowing
Data Input 

PCM 
Output

IFFT

functionality
interface
state
module
data-flow

FSM

pre

postconfig

config win

IMDCT

Windowing
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Partitioning Dictates 
Interface definition (Ifc)

IFFT
FSM

pre

postconfig

config win

IFFT
FSM

pre

postconfig

config win

IMDCT

Windowing Windowing

IMDCT

If you fix the ifc first then very little choice is left for 
partitioning
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many more choices...

IFFT Core

IMDCT FSMs

Parameter 
Tables

Windows adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

Each partitioning results in vastly different amounts of 
data transfer across the HW-SW boundary which may 
over shadow computational acceleration 10



Why exploring partitioning 
is so difficult

Inflexible interface definitions
Entirely different languages for expressing HW 
(e.g., Varilog) and SW (e.g., C, C++)
 different programming/design cultures in the two 

worlds
Complicated debugging environment

Solution: Express both HW and low-level SW 
in the same language, 
e.g., Bluespec Codesign Language (BCL)
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Outline
Need for special purpose HW 
Bluespec and compiling rules into HW and SW
Partition Program into Computational Domains
Automatically synthesize the Interface to 
connect the domains
Evaluation
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Bluespec

Bluespec is a transactional system;
All behavior is expressed in terms of 
guarded atomic actions, known as 
Rules

Rule :: Guard  Action

T1

T2

t

t

Transactional Memory

Bluespec

Database

Transactions is proven model 
of parallel computation
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Expressing computation 
using rules

Instantiate state elements
Reg#(Bit#(32)) s <- mkRegU();
Reg#(Bit#(6))  i <- mkReg(32);

Rules define how state is to be 
transformed atomically

rule step if (i < 32);
s <= f(s);
i <= i+1;

endrule

Methods define the interface
method start(s0) if (i==32);

s <= s0;
endmethod

make a 6-bit 
register with 
initial value 32

the rule can 
execute only when 
its guard is true

actions to be 
performed when 
the rule executes

int s = s0;               C-code
for (int i = 0; i < 32; i = i+1)

{s = f(s);} return s;              
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Compiling BCL
BCL is an extension of  Bluespec 
SystemVerilog (BSV) for expression efficient 
SW and partitioning

How do we generate efficient SW?

optimizing
compilerDSEL in Haskell

Bluespec 
Inc.

BCL front-
end

BSV

IR 
(ATS)

Verilog

C++

BSC

back-
end

Synthesizing the same rule system for both HW and SW
 Parallel vs. Multithreaded sequential substrates
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Rule Execution in HW

< 32

notDone

+1

sel

0

ien

sel = start
en = start | notDone

f s0

sel

sen

Reg#(Bit#(32)) s <- mkRegU();
Reg#(Bit#(6))  i <- mkReg(32);
rule step if (i < 32);

s <= f(s);
i <= i+1;

endrule

When a rule executes:
 all the registers are read 

at the beginning of a 
clock cycle

 the guard and 
computations to 
evaluate the next value 
of the registers are 
performed

 at the end of the clock 
cycle registers are 
updated iff the guard is 
true

Muxes are need to 
initialize the registers
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Challenges in 
Implementing Rules in SW

Unlike hardware we need to make shadow 
state (copies) to deal with guard failures
Efficient HW rule scheduling and SW rule 
scheduling are completely different
 HW scheduling is well understood

Optimizations for SW generation
 Sequentialize parallel actions
 Guard lifting for early failure detection
 Partial shadowing of state
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STM vs. Rules
Both modify state atomically  and require 
linearizability of transactions

We only schedule non-conflicting transactions 
simultaneously  no need to keep track of 
read sets and write sets

Our Rules (transactions) fail only because of a 
guard failure

 shadow state is required like in STM
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Outline
Need for special purpose HW 
Bluespec and compiling rules into HW and SW
Partition Program into Computational Domains
Automatically synthesize the Interface to 
connect the domains
Evaluation


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Computational Domains: 
Where to partition

It is easy to implement a 
FIFO abstraction between 
HW and SW 

Shared registers/variables 
introduce coherence issues 
(excessive synchronization)

Group functionality into 
computational domains
connected by FIFOS

Design styles which enable 
modular refinement 
partition naturally

Data Input 

PCM 
Output

IFFT
FSM

pre

postconfig

config win
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Enforcing Safe Partitions
Every rule in a 
computational domain 
gets a color

Rules and registers are 
mono-chromatic

Domain crossing FIFOs 
have two colors

Enforced by the type 
system in BCL

PCM 
Output

Data Input 

IFFT
FSM

pre

postconfig

config win
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Partitioning and Modularity
Modularity and 
Partitioning are 
orthogonal.  Module 
structure may reflect 
partitioning requirements
IFFT interface declaration:

Data Input 

IFFT
FSM

pre

postconfig

config win

data (IFFT m n t) = IFFT{
input  :: 
Method m (t -> Action)

config :: 
Method m (State -> Action)

output :: 
Method n (ActionValue t)

status :: 
Method n (State)

}
m and n are domain type variables; to be 
specified in the implementation 22



Outline
Need for special purpose HW 
Bluespec and compiling rules into HW and SW 
Partition Program into Computational Domains 
Automatically synthesize the Interface to 
connect the domains
Evaluation
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Mapping Domains

FPGA/ASIC

Bus (PCI Express)

CPU

Domains form Latency 
Tolerant BDN

HW and SW substrates 
form a Physical Network
(PN) of partitions

LT-BDN must be mapped 
to the PN

FIFO traffic (rate) is not 
statically known 
automated dynamic 
scheduling
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Multiplexing shared physical 
channel

One Virtual Channel per 
FIFO with flow-control 
and sufficient buffering
 Dally and Seitz, 1987

HW/SW connection logic 
is automatically 
generated

All data-types are 
automatically marshaled 
and translatedFPGA 0

Bus (PCI Express)

CPU

FPGA 1

FPGA 0 CPU

FPGA 1
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Outline
Need for special purpose HW 
Bluespec and compiling rules into HW and SW 
Partition Program into Computational Domains 
Automatically synthesize the Interface to 
connect the domains 
Evaluation

26



Evaluation
Benchmarks: many different partitions
 Ogg Vorbis




Xilinx ML507: XC5VFX70T chip

 PowerPC 440 (400 MHz)
 FPGA Fabric (100  MHz)
 256MB DDR2
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Partitioning Vorbis back-end

IFFT Core

IMDCT FSMs

Parameter 
Tables

Windows adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

IFFT Core

IMDCT FSMs

Parameter 
Tables

Window adder/FSM

Backend FSMs

D

C

E

B

F

A
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the results agree with our intuition

all SW

all HWIMDCT
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Related Work
Implementation-agnostic parallel models
 Hoe and Arvind (2000)
 Chandy and Misra (Unity, 1988)
 Dijkstra (Guarded Commands, 1975)

Generation of SW from HW Descriptions
 Chiou et al. (Chinook, 1995)
 Any optimized RTL simulator

Generation of HW from Seq. SW Description
 CatapaultC, Pico Platform, AutoPilot (commercial)
 Huang et al. (Liquid Metal 2008)

Simulating heterogeneous systems
 Buck et al. (Ptolemy 1994)
 Balarin et al. (Metropolis 2003)

Algorithms for HW/SW Partitioning
 A lot of work in this area…
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Takeaway
Power concerns require special purpose 
hardware in all SoCs
HW/SW Codesign is challenging
 tedious and error prone
 rewriting inhibits design exploration

Use a unified language for both HW and SW
 partitioning can be specified in the source code as a 

simple coloring scheme
 both HW and SW can be generated from the same 

source code
 interfaces and communication infrastructure can be 

synthesized automatically
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Thank you


