
Parallel Processing of Sequential
Programs

Some Thoughts

Utpal Banerjee

University of California, Irvine

Given
- A program consisting of a set of operations with a fixed

sequential order of execution
- A machine capable of executing multiple operations
 simultaneously in some fashion

Goal
- Transform the program in such a way that it runs on the
 given machine utilizing its resources to the fullest
 extent possible, while producing the same output as
 the original code.

Method
- Manual program transformation can be extremely time

consuming and does not produce portable performance.
- Programmers should focus on implementation of correct

algorithms and let the compiler transform the code to take
advantage of parallel devices.

Status
- Despite many years of development, even automatic

vectorization is only partially effective today.
- Today's compilers succeed only on about 30% of the loops

from real applications that could be vectorized.

Belief
- We can improve the status of automatic parallelization if we
 put our mind to it.

Basic Steps

- Dependence Analysis
- Program Transformations

Dependence Analysis

- An operation q depends on an earlier operation p in the given

program, if p must be executed before q to ensure that q uses
or stores the right value.

- Find all dependence relations in the program.

- If it cannot be established that an operation q does NOT

depend on an operation p, then it must be assumed that it
does.

- Some dependences may be eliminated by various

transformations of the code.

- The problem of finding dependences is well-understood
when operations deal with array variables in loops, where
the subscripts are linear functions of loop index variables,
known at compile time.

- Since subscripts in real programs are usually simple, one
often gets away with a simple algorithm for dependence
testing.

- The ultimate weapon here is integer programming. If an
algorithm claims to be accurate for the general linear
case, it is probably a variation of a known integer
programming algorithm in disguise.

- Dependence checking is hard when we deal with pointer variables
and other complex data structures.

- Dependence analysis can be performed statically by a compiler or

dynamically during program execution. The fusion and trade-offs
between compiler and run-time approaches are not well
understood.

Program Transformation

- A transformation of the program is valid, if the transformed

program has the same output as the original code. The
program after a valid transformation is equivalent to the
original program.

- A transformation is valid if it respects all dependence
relations.

- Change the given program by a sequence of valid
transformations to a form that displays sets of mutually
independent operations, such that each set can be executed
by the given machine simultaneously.

- Try to maximize the utilization of machine resources.

- Several program transformations have been discovered over
 the years and many of them have been studied extensively.

- Although many transformations have been used by actual

compilers, they are usually applied in an ad hoc way.

- It is not known what a necessary and sufficient set of

transformations would be for a given type of parallelization.

- Cost models used by compilers to determine whether the
transformed code runs faster than the original are often
grossly inaccurate.

- User directives may guide or force the compiler to make the
right decisions, but they can easily become counter
productive.

- Although pattern matching of loops containing recurrences
 etc. is implemented in today's compilers, there is a need for
 more general algorithmic substitutions where the compiler
 recognizes the essence of a given algorithm as being
 embedded in a given code fragment.

Three Classes of Transformations

- Trace Scheduling

- Unimodular Transformations

- Echelon Transformations

Trace Scheduling

- Given: An acyclic graph of operation nodes (assignment and

conditional branch operations)

- Finds: An equivalent acyclic graph of instruction nodes,
where an instruction typically contains several operations
that can be executed simultaneously.

Unimodular Matrix

- Square integer matrix with determinant 1 or -1

- An m X m unimodular matrix takes an m-vector with integer
 components into another m-vector with integer components.

- All identity matrices are unimodular.

- The product of two m X m unimodular matrices is an m X m

unimodular matrix.

- The inverse of a unimodular matrix is also unimodular.

Unimodular Transformation

- Given: A perfect nest L of m sequential loops

- Finds: An equivalent perfect nest L’ of m loops, with the

help of an m X m unimodular matrix U.

- A unimodular matrix U can always be found such that the
outermost loop in L’ is sequential and all of the (m - 1) inner
loops are parallel.

- In the worst possible case, each 'parallel' loop will have just
one iteration.

- There are infinitely many unimodular matrices that will
 work. Ideally, one finds a matrix that minimizes the number
 of iterations of the outermost sequential loop.

- Based on the nature of dependence relations between
 iterations of the loop nest, there may exist a valid unimodular
 transformation L -> L' such that L' has some outermost parallel
 loops, one sequential loop, and then all parallel inner loops.

- Special Unimodular Transformations
 - Wavefront Method (just another name)
 - Loop Interchange
 - Loop Permutation
 - Loop Skewing

- Unimodular Transformations can be precisely described, and
 they can be easily combined. It is not clear how to pick the
 optimal ones and how to combine such transformations with
 more traditional ones for profit.

Echelon Transformation

- Given: A perfect nest L of m sequential loops

- Finds: An equivalent perfect nest L’ of (m + r) loops, where r is

the rank of the distance matrix of L, such that the m outermost
loops are parallel.

General Comment

- It is not clear how echelon transformations interact with other

transformations.

Computer Science and Physics

- Work of M. H. Halstead at Purdue

- Papers dealing with race detection invoke the light cone of

the Special Theory of Relativity and Heisenberg's Uncertainty
Principle.

- Noether's Theorem

Emmy Noether
- Mathematician, born in Germany in 1882, died in US in 1935.

Noether's Theorem (stated for kids):

- In a physical system, a symmetry of some kind usually implies a
 law of conservation.

Examples

- The fact that the laws of physics do not vary with location in
 space translates into the law of conservation of linear
 momentum.

- The fact that the laws are invariant with respect to time gives
 the law of conservation of energy.

Heineken's Uncertainty Principle:

On a Sunday morning, it is impossible to remember exactly how
many beers you had the night before.

