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Abstract. Leveraging Loop Level Parallelism (LLP) is one of the most
attractive techniques for improving program performance on emerging
multi-cores. Ordinary programs contain a large amount of parallel and
DOALL loops, however emerging multi-core designs feature (a) a rapid
increase in the number of on-chip cores and (b) the ways such cores share
on-chip resources - such as pipeline and memory hierarchy, leads to an
increase in the number of possible high-performance configurations. This
trend in emerging multi-core design makes attaining peak performance
through the exploitation of LLP an increasingly complex problem.

In this paper, we propose a new iteration scheduling technique to
speedup the execution of DOALL loops on complex multi-core systems.
Our technique targets the execution of DOALL loops with a variable cost
per iteration and exhibiting either a predictable or an unpredictable be-
havior across multiple instances of the loop. In the former case our tech-
nique implements a quick run-time pass - to identify chunks of iterations
containing the same amount of work - followed by a static assignment of
such chunks to cores. If the static parallel execution is not profitable, our
technique can decide to run such a loop either sequentially or in parallel,
but using dynamic optimization to select an appropriate chunk size to
optimize performance.

We implemented our technique in GNU GCC/OpenMP and demon-
strate promising results on three important linear algebra kernels - ma-
trix multiply, Gauss-Jordan elimination and adjoint convolution - for
which near-optimal speedup against existing scheduling techniques is at-
tained. Furthermore, we demonstrate the impact of our approach on the
already parallelized program 470.lbm from SPEC CPU2006, implement-
ing the Lattice Boltzman Method. On 470.lbm, our technique attains a
speedup up of to 65% on the state-of-the-art 4-cores, 2-way Symmetric
Multi-Threading Intel Sandy Bridge architecture.

1 Introduction

Parallel loops are the largest source of parallelism in ordinary programs - the
coverage of parallel DOALL loops in SPEC CFP2000 and CFP2006[1, 2] contain
inherently parallel or DOALL loops [3]. For parallel loops without dependencies
across iterations, e.g., DOALL loops, the execution of such loops in parallel
can significantly speedup ordinary programs. Several dynamic [4–9] and static
[10] techniques have been proposed for scheduling iterations of parallel loops on
parallel machines. However, scheduling DOALL loops on modern multi-cores -
with complex memory hierarchy organizations and multiple levels of parallelism,
such as instructions level parallelism, vector units, symmetric multi-threading
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etc. - may not deliver the peak performance[11]. On one hand, while free of run-
time overheads, static techniques are either too simple ( e.g., the OpenMP[12]
implementations in GNU GCC [13] and Intel ICC [14]) to cope with cases where
the cost per iteration is variable, or too complex, e.g., profile-based techniques
[10], to be implemented as part of run-time systems. The complexity of such
techniques grows with the number of iterations and the loop bounds. Dynamic
techniques, on the other hand, may reduce the benefit of the parallel execution
when, for example, the run-time synchronization overhead is relatively large
compared with the execution time (cost) of the serial loop.

This paper proposes a new scheduling technique to speedup the execution
of DOALL loops on modern complex multi-core systems. Our technique targets
the execution of DOALL loops with a variable cost per iteration - e.g., loops
performing triangularization, that constitutes a fundamental step for many linear
algebra solvers. The proposed technique relies on the assumption that parallel
loops are invoked multiple times during the execution of an ordinary program,
as exemplified by the number of instances of hot loops in SPEC OMP2001[15,
16] (> 50 per hot loop) and NAS parallel benchmarks (from 100 to > 1000 times
per hot loop). At run-time, our technique first attempts to find a static schedule
such that the work is ”optimally” distributed among cores. If such a schedule is
not profitable and/or unattainable - because the behavior of present instances of
the loop is not predictive of the behavior of future instances - our technique can
decide to run such a loop either sequentially or in parallel, but using dynamic
scheduling techniques with an appropriate selection of the number of iterations
to schedule at each time - referred to as a chunk size.

Specifically, our technique implements a quick pass at run-time, which at-
tempts to determine chunks of iterations - that are expressed as a percentage of
the total number of iterations - such that each chunk contains an equal part of
the total cost of the loop - which is expressed in cycles and corresponds to the
pth fraction of the total cost of the loop, where p is the number of available cores.
Such chunks are subsequently statically assigned to the p cores. Given that the
assignment of chunks of iterations to cores is static, at this stage the proposed
technique does not have run-time synchronization overheads, which can be a
performance bottleneck for dynamic scheduling techniques.

When a parallel loop does not exhibit a variable cost per iteration, our tech-
nique outputs chunks of equal size. For example, while scheduling a parallel loop
with constant cost per iteration - such as the case of a basic implementation of
matrix multiply - on two cores, our technique determines, independently from
the matrix size, that 50% of the iterations must be assigned to one core and the
remaining 50% must be assigned to another core. On the contrary, in the case
of a loop with a decreasing/increasing or exhibiting arbitrary variations in the
cost per iteration, our technique will determine the percentage of iterations to
assign to each cores such that each core will execute the same amount of work.

When the behavior of previous instances of a parallel loop is not predictive
of the behavior of future instances, our technique can decide to execute the
instances of such a loop in parallel, but opting for a dynamic scheduling strategy.
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In this case, an estimation of the number of iterations to schedule at once, i.e.,
the chunk size is attempted. The determination of the chunk size uses a heuristic
based on the average cost per iteration and the cost of synchronization overhead
per iteration. While the average cost per iteration is determined at run-time
by our technique, the cost of synchronization overhead is estimated offline using
micro-benchmarking [17] on the architecture in use. The chunk size is determined
using the cost of synchronization overhead over the average cost per iteration -
refer to Section 2.2. Alternatively, if dynamic scheduling is not profitable, our
technique opts to run the loop sequentially.

We implemented our technique in GNU GCC OpenMP and show promising
results on three important linear algebra kernels - matrix multiply, Gauss-Jordan
elimination and adjoint convolution implemented as in [5] - and 470.lbm from
SPEC CPU2006 on 4-cores, 2-way Symmetric Multi-Threading (SMT) cores In-
tel Sandy Bridge architecture. Specifically, our technique attains nearly optimal
speedup for the three kernels above and up to 65% performance improvement
for 470.lbm against the use of prior scheduling techniques.

The rest of the paper is organized as follows: our technique is detailed in
Section 2; Experimental results are presented in Section 3; Prior and related
work are discussed in Section 4; The conclusion is presented in Section 5.

2 Just in time load balancing
The technique proposed in this paper is motivated by the observation that many
instances of a parallel DOALL loop are usually executed in ordinary programs
[16]. Therefore, a few of these instances can be leveraged to learn properties of
the parallel loop and prepare a schedule which optimizes program performance.
Our initial goal is to prepare a schedule which distributes uniform chunks of
iterations to the available cores. When the threads involved in the parallel exe-
cution start nearly at the same time (this situation typically occur for program
executing parallel loops according to a fork-join execution model) such threads
are also likely to complete their executions nearly at the same time and overall
the number of elapsed cycles of the parallel execution is minimized.

The typical scenario considered in this paper is shown in Listing 1.1, where a
sequence of many instances of a parallel loop - the inner loop - are executed. The
assumption made on Listing 1.1 about the body of the parallel loop are: (a) the
body of the loop must contain re-entrant/thread-safe code; (b) the statements
in the body of the loop are at most a function of the indexes of the loops
surrounding it - in the example the body of the loop depends on the indexes xx
and tt; (c) the loop bounds and the stride are constant (a relaxation of such an
assumption is discussed later on in this section). 1

The basic idea of our technique is to transform - at compile-time - the loop
of Listing 1.1 into that of Listing 1.2. The outermost serial loop is ”distributed”
in three consecutive passes, as shown in Listing 1.2.2 The first two instances of

1 Note that, the assumptions made on the body of the loop admit the presence of
nested (parallel/serial) perfect or multi-way loops with conditional, functions calls,
indirect references, etc.

2 The pseudo-code in Listing 1.2 illustrates a principle implementation.
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the parallel loop are executed sequentially whereas the subsequent instances are
executed with a schedule optimizing performance.

Listing 1.1. Loop model
/∗ Ser ia l loop i t e r a t i n g over time s teps ∗/
for ( t t =0; tt<time max ; t t++)
{

/∗ Para l l e l loop automat ica l l y p a r a l l e l i z e d with OpenMP ∗/
#pragma omp p a r a l l e l for
for ( xx=s t a r t ; xx<end ; x+=s t r i d e )
{

/∗ Body of the loop ∗/
Body(xx , t t ) ;

}
}

Listing 1.2. Transformed, adaptive instrumented loop
. . .
/∗ parameters of the schedu l ing algori thm

where p i s the number of threads ∗/
int ∗ part s ;
int i i ;
long long d , C;
. . .

/∗ Ser ia l loop i t e r a t i n g over time s teps ∗/

/∗ Pass 1 − Compute the t o t a l cos t per i t e r a t i on ∗/
s t a r t p r o b e c o s t (&C) ;
for ( xx=s t a r t ; xx<end ; x+=s t r i d e )
{

Body(xx , 0 ) ;
}
g e t p r ob e co s t (&C) ;

/∗ Pass 2. a − Compute the schedule ∗/
s t a r t d i f f p r o b e c o s t (&d , &i i , p , C, par t s ) ;
for ( xx=s t a r t ; xx<end ; x+=s t r i d e )
{

Body(xx , 1 ) ;
g e t d i f f p r o b e c o s t (&d , &i i , par t s ) ;

}

/∗ Pass 2. b − Configure the schedu ler ∗/
omp set schedu le r (p , par t s ) ;

/∗ Pass 3 − execute the remaining ins tances of the
p a r a l l e l loop in p a r a l l e l ∗/

for ( t t =2; tt<time max ; t t++)
{

/∗ Para l l e l loop automat ica l l y p a r a l l e l i z e d with OpenMP ∗/
#pragma omp p a r a l l e l for
for ( xx=s t a r t ; xx<end ; x+=s t r i d e )
{

/∗ Body of the loop ∗/
Body(xx , t t ) ;

}
}

The first instance of the parallel loop is instrumented to compute the overall
cost of the parallel loop - expressed in terms of the total number of elapsed cycles.
The function start probe cost(·) initializes the variable C, which will contain
the total cost of executing the serial loop, whereas the function get probe cost(·)
reads the elapsed cycles after the execution of the loop and assigns the number
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of cycles to C. This pass also counts the total number of iterations - referred
to as # iterations and derives the average cost per iteration as the total cost
divided by the number of iterations.

The second instance of the loop is instrumented to profile the cost per itera-
tion and to determine the percentages of iterations - taken in lexicographic order
- that contain the 1

p part of the total cost of the loop, where p is the number
of available cores. In particular, the function start diff probe cost(·,·,·,· · ·)
initializes the following counters: (a) d - which, for each iteration, will contain the
cost per iteration; (b) the iteration number ii; and (c) the integer vector parts
- which contains as many entries as the number of threads/cores. For example,
in the case of four threads, the vector parts will be initialized as parts={0, 0,

0, 0}. During the execution of the second instance of the loop, the cost per
iteration d is computed by subtracting the current cycles count from the count
of cycles annotated at the previous iteration - such cycles counts are taken from
the beginning of the loop. For example, let cii−1 be the elapsed cycles from the
beginning of the loop until the iteration ii − 1 and cii be the cost accumulated
from the beginning of the loop until iteration ii. The value of the counter d is
defined according to Equation 1.

d = cii − cii−1 (1)

The function get diff probe cost(·,·,·) implements the steps in Equations
2 and 3. In particular, for each s = 1, 2, · · · , p such a function finds the percentage
of the iteration space containing the pst part of the total elapsed cycles and
assign such percentage to the position s of the array parts (to compensate for

the ceiling operation, for s = p, parts[p] = 100−
∑p−1
s=1 parts[s]):

∀s = 1, 2, · · · , p find iis :

iis∑
ii=iis−1

dii < s× C

p
<

iis∑
ii=iis−1

dii + diis+1 (2)

parts[s] = d iis

#iterations
e × 100 (3)

When a parallel loop exhibits a variable cost per iteration, the fraction of
iterations containing a certain percentage x% of the overall cost of the loop is no
longer proportional to x, as it would be in the case of a loop with uniform cost
per iteration. Furthermore, in the case of a loop with an equal cost per iteration,
the passes in Equations 2 and 3 provide parts to contain the equal elements.
For example, let p = 2 and let us assume that the parallel loop have nearly-
equal cost per iteration, then the array parts will be equal to parts={50, 50}.
Likewise, for p = 4, parts={25,25,25,25} etc.

The next step in our run-time technique is the deployment of the schedule. If
the number of operating threads are allocated to individual cores and nearly start
at the same time, the run-time partitioning technique described above results in
the minimum completion time - such as when iterations of a DO ALL loop are
scheduled using the OpenMP construct parallel for, assuming that there is
no significant relative change from run to run.



6

2.1 Instrumentation and profiling overhead

The definition of d given in Equation 1 is useful in practice. Such a definition
allows (a) measuring the cost per iteration accurately and (b) estimating the
accuracy with which the cost per iteration is measured - refer to Equation 4.

The sum of the measured costs per iteration, measured using the procedure
get diff probe cost(·,·,·), is an estimator of the whole cost of the serial loop.
Therefore, at run-time the total count of elapsed cycles C can be compared with
the quantity

∑#iterations
ii=1 dii to estimate the accuracy of our profiling technique.

Likewise, for such a comparison, the total number of instructions executed (re-
tired in the case of out-of-order cores such can Intel Xeon cores) can be used. We
define the accuracy of the profiling as in Equation 4. The lower is ε%, the lower
is the contribution of the instrumentation overhead to the run-time behavior of
the parallel loop and the more the partitions of the iteration space convey the
same amount of work to each core.

ε% =

∣∣∣C−∑#iterations
ii=1 dii

∣∣∣
C

× 100 (4)

2.2 Extension to more variable and non profitable cases

There exist cases that violate the assumptions that we made at the beginning
of this section. For example, the bounds and the stride of the parallel loop can
be functions of the outermost serial loop and/or functions of the input data. A
typical illustration is provided by multi-grid kernels, that improve the resolution
of raster images by varying the size of the image grid. In such a case, we relax
our assumptions of constant bounds and strides and admit the possibility that
the parallel loop bounds and/or stride can vary. However, for our scheme to work
well, it requires that such a variation be slow - that is, given a variation of the
loop bounds and/or stride is of interest for (i.e., is the same or similar) several
subsequent instances of the parallel loop - we refer to such instances with similar
behavior as a phase within which the serial loop is executing and we allow that
instances of the parallel loop can be in different phases. Such phases can either
occur systematically, such as in the case of multi-grid kernels - where phase
changes are triggered by the outermost loop, or in an unpredictable way - e.g.,
the behavior of the body of the loop depends on the input data. In the former
case, our technique can be programmed to be triggered by phase changes, as the
occurrence of a phase change can be predicted. In the latter case our technique
can be re-invoked periodically and attempt to optimize performance.

Either way, admitting a slow variation of the bounds and/or stride of the par-
allel loop implies that the elapsed time of the parallel loop vary across phases.
This means that there can be instances of the parallel loop where the paral-
lel execution is not profitable (e.g., when the body of the parallel loop is too
small compared with the parallelization overhead) and instances of the paral-
lel loop with a large number of iterations and a small uniform cost per itera-
tion, where a dynamic iteration scheduling technique may perform better than a
static technique when the chunk size is selected properly. Furthermore, dynamic
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scheduling techniques are important as they can cope with adversary conditions
of the system underneath - multi-programming conflicts or over/bad utilization
of architectural resource, including under utilization of the memory hierarchy.

The more variable and the unprofitable cases mentioned above are taken into
account in the following extension of our technique, where the source code of
Listing 1.1 is transformed in that of Listing 1.3. Such code extends our tech-
nique with a set of conditions to enable/disable its passes in order to trigger the
exploration of static and dynamic iteration scheduling techniques. The code in
Listing 1.3 has the ability to adapt to different phases in which instances of the
parallel loop can execute. Such an extension allows for the possibility to switch
from the proposed static iteration scheduling schema to a dynamic scheduling
schema, where the determination of the chunk size is fundamental to optimize
performance.

Listing 1.3. Transformed, instrumented loop
/∗ Ser ia l loop i t e r a t i n g over time s teps ∗/
for ( t t =0; tt<time max ; t t++)
{

i f ( c ond i t i on pa s s1 ( t t ) or sw i t ch s chedu l i ng ) {
/∗ Pass 1 − Compute the t o t a l and the average

cos t per i t e r a t i on ∗/
. . .

}
i f ( c ond i t i on pa s s2 ( t t ) or sw i t ch s chedu l i ng ) {

/∗ Pass 2. a − Compute the schedule ∗/
. . .
/∗ Evaluate when to switch or to keep the schedule to :

sequent ia l , p a r a l l e l s t a t i c or dynamic ∗/
. . .
/∗ Pass 2. b − Compute chunk s i z e and conf igure the schedu ler ∗/
. . .

}
i f ( c ond i t i on pa s s3 ( t t ) or sw i t ch s chedu l i ng ) {

/∗ Pass 3 − execute the remaining ins tances of the
p a r a l l e l loop in p a r a l l e l ∗/

. . .
}

}

In this work, the determination of the chunk size is performed by profil-
ing several types of parallelization and synchronization overheads using micro-
benchmarking [17] and having run-time overhead costs factored into our tech-
nique.3 In the cases that dynamic scheduling is adopted, the chunk size is deter-
mined such that the average cost per iteration (which is computed in pass 1 of
Listing 1.3) times the chunk size is greater than the synchronization overhead
(such overhead can be estimated using micro-benchmarking). Such a rule for
selecting the chunk size guarantees that the resulting synchronization overhead
is lower than the cost of the serial loop. Therefore the parallel execution on a
number of cores p ≥ 2 is profitable. Indeed, let n be the number of iterations
and a = C

n the average cost per iteration. Let δ be the cost of synchronization
per iteration. The total cost of executing the parallel version of the loop on a
single core, with a certain chunk size will be equal to C + δ × n

chunk size
- as

the threads will be executed in a serial fashion. Imposing δ × n
chunk size

< C,

3 Note that, run-time overheads are tightly coupled to the architecture underneath.
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Model Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

L1 I/D cache [KB] 32

L2 cache [kB] 256

LLC [MB] 8

Memory [GB] 8

Compilers/linker, options GNU GCC 4.6.2, -O3 -fopenmp

Operating system Linux kernel 3.0.0

Table 1. System level setup

provides the total cost of execution on one core being less than 2C. Therefore,
the total cost of execution on p cores will be less than 2

p ×C, which guarantees a
speedup larger than one when p > 2. Eventually, δ× n

chunk size
< C is equivalent

to C
n ×chunk size > δ, which is equivalent to a×chunk size > δ, or otherwise

chunk size > δ
a .

Finally, during a phase when the total cost of the loop is small compared
to the parallelization overhead - for example because the number of iterations
and the cost of the body of the parallel loop are relatively small, our extended
technique can decide to run the serial version of the loop - refer to the pass 1 in
Listing 1.2.

3 Experiments

We implemented our technique in the GNU GCC compiler as an extension of
its OpenMP implementation [12, 18] - referred to as GOMP. GOMP includes a
static scheduler that distributes equal chunks of iterations to the available cores,
and two dynamic schedulers in each of which an idle core gains exclusive access to
the queue of iterations and fetches the next available chunk of iterations. Fixed
chunk size scheduling and Guided [4] are the two dynamic scheduling strategies
implemented in GOMP. In addition, we implemented two other popular dynamic
scheduling strategies: Factoring [5] and Trapezoid [7].

We use PAPI [19] to access the hardware performance counters to count
elapsed cycles. Our experiments are conducted on the state-of-the art Intel Sandy
Bridge architecture - the system level configuration illustrated in Table 1. The
dynamic frequency scaling was disabled to provide dependable time and counters
measurements.

As benchmarks, we use OpenMP implementations in C[20] of three linear
algebra kernels: Matrix Multiply; Gauss-Jordan elimination; and Adjoint Convo-
lution4 - and the program 470.lbm from SPEC CPU2006[2], which implements
the Lattice Boltzman Method as illustrated in [21] and gives us a more ”full
application” sample program. Fifty instances of matrix multiply and adjoint
convolution were executed for each experiment. The number of times the par-
allel loop in Gauss-Jordan elimination is iterated is a function of its outermost
serial loop [5]. The first few - up to 5 - instances are leveraged by our technique
to find a profitable schedule.

We selected the three kernels above to verify that the profiling method in-
cluded in our technique effectively provides accurate estimates of the cost per

4 Our implementation resembles the parallel form of such kernels as illustrated in [5].
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iteration and therefore our technique can identify partitions of iterations with
equal costs during the training phase. A more in depth description of the run-
time properties per iteration of these kernels is discussed below. Such kernels
are also utilized to verify basic scalability properties in the performance results
attained with our technique against the use of prior scheduling techniques, when
the number of threads increases. Eventually, the program 470.lbm is used as a
real world benchmark for our technique.

Matrix Multiply Gauss-Jordan elimination Adjoint convolution

Average # cycles per iteration 26786087 1936474 9346

Standard deviation 22683 860399 5337

Table 2. Average cost per iteration and standard deviation.

A summary of the variability of the cost per iteration for the the kernels
matrix multiply, Gauss-Jordan elimination and adjoint convolution is shown in
Table 2 - each column reports the average cost per iteration of one instance of
each kernel and the corresponding standard deviation.

For matrix multiply and Gauss-Jordan elimination, we adopted matrices of
type double whose size is 1024× 1024 - a single matrix has the same size as the
last level of cache in our architecture. Matrix multiply exhibits a constant cost
per iteration. The small variability in the cost per iteration is due to the variable
latency in the accesses to memory. Gauss-Jordan elimination exhibits a cost per
iteration that is slightly variable because of a conditional in the body of the par-
allel loop. This kernel executes multiple instance of its innermost parallel loop.
The cost per iteration within each instance of the parallel loop has a trapezoidal
shape, which vary slowly - from nearly rectangular to nearly triangular - across
subsequent instances of the parallel loop. For adjoint convolution, we adopted
vectors of type double whose size of 102400. The cost per iteration decreases
with a constant rate and falls within a large range. More importantly, iterations
with larger cost are not uniformly distributed across the iteration space. Indeed,
most of the whole cost of the loop is concentrated within the first few iterations.
As we will see in this section, such a biased distribution of the cost per iteration
is a limiting factor for dynamic schedulers, such as guided self-scheduling.

The program 470.lbm, using the reference dataset in SPEC CPU2006, calls
frequently (> 100 times) the function LBM performStreamCollide, that ac-
counts for most of the execution time of the program. Such a function includes
a singly nested parallel loop with conditionals - the loop is hand-optimized as
illustrated in [21]. The cost per iteration is constant although very small (each
iteration executes in ≈ 3 ns). The number of iterations in the corresponding
reference input data set [2] is very large (it amounts to 26, 000, 000 iterations).

3.1 Profiling accuracy and micro-benchmarking summary

The iteration cost profiling method proposed for the pass 2 of our technique
(refer to Listing 1.2) provides accurate estimates of the cost per iteration - refer
to Table 3. Indeed, for each benchmark ε% is very small - negligible in the case
of matrix multiply and adjoint convolution. The worse case estimation happens
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in the case of the kernel adjoint convolution, because of the presence of a few
iteration with a large cost followed by plenty of iterations with a small cost. The
profiling the former type of iterations is more accurate than that of the latter
type of iterations, nevertheless ε% < 2%.

Matrix Multiply Gauss-Jordan elimination Adjoint convolution

ε% 0.04 0.03 1.9

Table 3. Relative estimation error - refer to Equation 4.

On the architecture in use - refer to Table 1 - we characterize the over-
head costs involved with the use of the OpenMP constructs for scheduling and
synchronization using the suite of micro-benchmarks EPCC [17]. In the micro-
benchmarking method proposed in [17], the overhead involved in the parallel
execution of a parallel loop on p cores is empirically defined as O(p) = Tp − Ts

p ,
where Ts is the number of cycles needed for the sequential execution and Tp is the
number of cycles need for the parallel execution. Our experimental results - con-
ducted for p = 2, 4, 6, 8 can be summarized as follows: (a) the overhead involved
with static scheduling is ≈ 0.25µs for up to four threads and bumps to ≈ 3µs fore
more than four threads - because of the presence of two hardware threads sharing
the same core in a symmetric multi-threading fashion. Such a overhead is inde-
pendent from the number and the sizes of the chunks; (b) the overhead involved
with dynamic fixed chunk scheduling increases with the number of threads - it
raises from ≈ 0.25 to 17µs. However the overhead drops significantly when the
chunk size increases - the trend is that the overhead decreases as ≈ 1

chunk size
;

(c) the overhead involved with guided scheduling increases with the number of
threads - it raises from ≈ 0.25 to 4.5µs, and decreases nearly linearly when the
chunk sizes increases.

The above results from micro-benchmarking help us in building a heuristic
for our technique to estimate a chunk size for dynamic scheduling to optimize
performance.

3.2 Experimental results

We present a first set of results aimed to compare static and dynamic itera-
tion scheduling schemes, including the one proposed as a part of our technique
- which we refer as nuStatic. nuStatic schedules statically chunks of itera-
tions with equal cost - in terms of elapsed cycles - to cores. We recall that in
nuStatic chunks contains the same number of iterations in the case of loops
with constant cost per iterations, whereas the chunks contain different numbers
of iterations when the cost per iteration vary. In the case of constant cost per
iteration nuStatic is equivalent to the classic scheduler implemented in conven-
tional OpenMP implementations. We refer to the case of classic static scheduling
as nuStatic uniform chunk, whereas we use the term nuStatic non uniform

chunk to refer the case of static scheduling when non uniform chunks are deter-
mined at run-time by our technique.

For matrix multiply all the iteration scheduling techniques attain nearly the
same performance, as the cost per iteration is constant and much larger than the
scheduling overhead. Performance is shown in Figure 1(a). nuStatic uniform
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(a) Matrix multiply (b) Gauss-Jordan elimination

(c) Adjoint convolution (d) Adjoint convolution analysis

Fig. 1. Performance evaluation/analysis of individual scheduling techniques for multi-
ple threads.

chunk and nuStatic non uniform chunk determine the same vectors of parts
and the parts are equal. For example, p = 2 implies that parts={50, 50}.

For Gauss-Jordan elimination - refer to Figure 1(b), we re-execute the de-
termination of the vector parts three times - at the beginning, at 1

3 and at
2
3 of the iterations of the outer-most loop. For example, when p = 4 and dur-
ing each training phase, the following vectors of parts are learned by our tech-
nique: first parts = {25, 25, 25, 25}; subsequently parts = {15, 20, 25, 40}; and
finally parts = {10, 15, 25, 45}. While performance attained by nuStatic non

uniform chunk is slightly lower than that attained with Trapezoid, the former
significantly outperforms the other schedulers, because of its relatively low syn-
chronization overhead. Conceivably, the performance of nuStatic non uniform

chunk size can conceivably approach the performance of Trapezoid by provid-
ing the former with more re-invocations of the pass 1 in our technique.

Among the three kernels considered in this paper, the most interesting is
adjoint convolution. For adjoint convolution, none among static and dynamic
scheduling strategies are able to deliver good performance - refer to Figure 1(c)



12

for the performance results. The issue with dynamic scheduling is either that
synchronization costs are large and/or severe load imbalance occurs because
iterations with large cost fall in large initial chunks for both Factoring and
Guided. Unfortunately, an increase of the chunk size does not help reduce the
size of the first few chunks for both Factoring and Guided. On the contrary,
the fact that the first few chunk sizes are smaller in Trapezoid determines its
success when compared with the other techniques. Nevertheless, to learn at run-
time the parameters of Trapezoid for any kind of loop would be expensive. On
the contrary, nuStatic provides equal or better performance than Trapezoid

and the training phase of nuStatic is simple and efficient. Note that on an
alternative implementation of adjoint convolution, when the cost per iteration
increases, Trapezoid would have been unable to deliver best performance.

For adjoint convolution, an analysis of the capabilities of nuStatic compared
with classic static and dynamic scheduling is presented in Figure 1(d). In the
case of static scheduling, when equal chunks of iterations are distributed among
the cores, performance is reduced because of load imbalance. For example, when
p = 2, the thread assigned with the first chunk of iterations executes much
more work than the other thread - because 50% of the whole cost of the loop
is contained in the first 30% of the iterations. Likewise, when a smaller chunk
size is used, threads are assigned multiple chunks of iterations in a round robin
fashion. For example, the first threads will execute 60% of the iterations in two
chunks, whereas the second thread will execute 40% in two chunks. However,
independently from the cost associated with re-scheduling chunks on threads,
60% of the iterations containing much more than 50% of the total cost of the
loop. The issue with dynamic fixed chunk scheduling is that the synchronization
overhead becomes large when the number of threads increases - refer to Figure
1(d). Indeed, while performance of dynamic fixed chunk scheduling is comparable
with that of nuStatic on two threads - giving the appearance that dynamic
scheduling could cope with all the cases nuStatic can, nuStatic significantly
outperforms dynamic on four threads.

Overall, Figure 1(c) shows that nuStatic performs as well as Trapezoid and
outperforms other iteration schedulers. For different number of threads nuStatic
determines the following parts of the iterations space: {30, 70} when p = 2;
{13, 16, 21, 50} when p = 4 and {6, 7, 8, 9, 11, 15, 36} when p = 8.

Finally, we present an analysis of the program 470.lbm - Figure 2. We fo-
cus our attention on the performance of the parallel section in the function
LBM performStreamCollide - within which the program spends a significant
percentage of its execution cycles (> 90%). Our technique selects dynamic
scheduling with a chunk size of 40, which is determined as follows. From the
micro-benchmarking experiments, the minimum synchronization overhead is at-
tained for 8 threads - this overhead is ≈ 0.12µs. 3 × 10−9 × chunk size =
0.12 × 10−6, which corresponds to a chunk size=40. Such a chunk size repre-
sents a conservative choice for a lower number of threads. In the case of two
threads, Guided 40 is selected, whereas when the number of threads increases
to four and eight, our technique switches to Fixed chunk, with a chunk size
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equal to 40, and attains significant speedups over the baseline. Note that, in the
case of Fixed chunk, a chunk size equal to 40 means that idle threads attempt
to fetch 40 iterations at a time. In the case of Guided, a chunk size equal to 40
indicates the minimum number of iterations that can be fetched. Figure 2 shows
performance improvements up to 65% for 470.lbm. In Figure 2, the baseline is
the sequential execution time. When p = 2, Guided 40 is selected by our tech-
nique as it outperforms both Dynamic 40 and nuStatic 5. For p > 2, Dynamic
40 is selected by our technique. For p > 2, Dynamic 40 significantly outperforms
the other techniques.

Fig. 2. Speedup 470.lbm

3.3 Future work on the determination of the number of threads

The determination of the number of threads is also a fundamental point for
improving the performance of a DO ALL loop and must be combined to the
problem addressed in this paper. That is, given a number of threads, find a
schedule that given the number of iterations, optimizes performance of the DO
ALL loop. While the determination of the number of threads could be attempted
using corollaries of Amdahl’s law, e.g., [22], such corollaries do not account for the
complex system/software interactions happening on real systems - an example
is provided by the case of 470.lbm explained above, where a combination of the
number of threads, the scheduling technique and an appropriate selection of the
chunk size are both necessary to attain a significant speedup. We plan to extend
the technique proposed in this paper to select at run-time both the number of
threads and the iteration schedule for speeding up the performance of parallel
loops.

4 Related work
Parallel loops and in particular DOALL loops are pervasive in ordinary pro-
grams, e.g., ≈ 90% [10] of the loops present in SPEC CPU2000[1] are parallel
loops or can be restructured to expose such a parallelism [23, 24]. As implemented
in the OpenMP pass of modern compilers, scheduling techniques for executing
DOALL loops can be roughly divided in two categories: static - where the sched-
uler is responsible to assign chunks of iterations to the available cores; dynamic

5 In this particular case, where the cost per iteration is constant, we remark that
nuStatic is equivalent to classic static scheduling.
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(fixed chunk or self-scheduling) - where idle cores first use synchronization (mu-
tex/locks) to earn an exclusive access to the queue of iterations and second
fetch a chunk of iteration to execute [4, 5, 7]. The time spent by idle threads
to acquire/release the queue of iterations multiplied by the number of exclusive
accesses and times the average number of cores attempting to fetch iterations
concurrently constitutes the synchronization overhead for dynamic scheduling
strategies. Such an overhead can either reduce significantly or annihilate the
benefits of a parallel execution. Several dynamic scheduling techniques allow the
cores to fetch chunks with a progressively small chunk size [4, 5, 7, 25] to reduce
the overhead. Polychronopoulos and Kuck in [4] proposed Guided, a technique
whose synchronization overhead is proportional to the number of cores times
the natural logarithm of the number of iterations. Hummel and Flynn in [5] pro-
posed Factoring, whose synchronization overhead is proportional to the natural
logarithm of the number of iterations. Tzen and Ni in [7] propose Trapezoid,
whose synchronization overhead is proportional to the number of cores. Yue and
Liljia in [8] proposed the generation of chunking heuristics using genetic algo-
rithms and show performance improvements against self-scheduling techniques.
However, performance attained using dynamic and in particular self-scheduling
techniques is shown to be negatively impacted by the presence of a relatively
large standard deviation in the cost per iterations [8]. Under the assumption
that iterations with large cost are distributed according to well known statisti-
cal distributions, e.g., normally, there exist dynamic scheduling techniques [6, 9]
aimed to improve performance of parallel loops. The technique proposed in this
paper addresses the case of variability of the cost per iteration independently
from the distribution of such costs. This is especially important for such cases
when iterations with large cost occur in bursts.

Kejariwal et al. in [10] proposed profile-based iteration space partitioning
techniques. Such profile-based techniques are computationally expensive. In-
deed, partitioning the iteration space requires storing the sequence of cost per
iterations - which can be arbitrarily large depending on the input size, sub-
sequently interpolating such a sequence and finally performing the partitioning
using numerical integration. The technique proposed in this work is fairly simple
to implement and execute at run-time. Furthermore, expressing the partitions
in terms of percentages of the iteration space releases the partitions from the
particular instance of a parallel loop. This is particularly useful in the case of
parallel loops with a fixed geometry of the iteration space, such as the case of
the kernel adjoint convolution. Indeed, once the number of threads is assigned,
the partitioning found for a given input size can be applied for any input size
and still provides optimal work sharing. Similarly to Just-in-Time compilation
[26], our technique attempts to optimize code execution from past observations.
Differently from such techniques, past observations are utilized to determine a
schedule able to optimize performance of DOALL loops. Rauchwerger et al. [27]
proposed a technique for finding an optimal schedule to execute partially par-
allel loops. That is, loops whose parallel execution requires synchronization to
ensure the correct execution order of the iterations of the loop. Our technique is
a run-time technique that focuses on speeding up the execution of DOALL loops.
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While iterations of DOALL loops can be executed in any order and yet produce
correct results, different schedules can attain significantly better performance
than others on modern multi-core systems.

Thus, in this work, we acknowledge the importance of both static and dy-
namic scheduling techniques, and propose a new run-time technique that (a)
accurately profiles the iteration space; (b) partitions the iteration space in non
uniform chunks of iterations containing equal portions of the execution time; (c)
attempts to schedule such chunks of iterations or to find the dynamic schedule
that is more suitable for the particular instances of the loop on a given architec-
ture.

5 Conclusion
We proposed a new scheduling technique to speedup DOALL loops in ordi-
nary programs on modern complex multi-core systems. Our technique targets
the execution of DOALL loops with variable cost per iterations and exhibiting
either a predictable or an unpredictable behavior across multiple instances of
the loop. In the former case our technique implements a quick run-time pass
to determine chunks of iterations containing the same amount of work to cores,
which is followed by a static assignment of such chunks to core. At run-time,
the performance of such a static schedule is compared with the performance of
both the sequential execution and the parallel execution using dynamic schedul-
ing techniques - with a nearly optimal selection of the chunk size to optimize
performance. The best scheduling technique is subsequently used for executing
subsequent instances of the parallel loop.

We implemented our technique in GNU GCC OpenMP and show promising
results on the linear algebra kernel adjoint convolution and the program 470.lbm

from SPEC CPU2006 - implementing the Lattice Boltzman Method - on the
state-of-the-art 4, 2-way SMT cores Intel Sandy Bridge architecture. Specifically,
our technique attains nearly optimal speedup for the adjoint convolution and up
to 65% performance improvement for 470.lbm.
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