
Languages and compilers for parallel computing 
Where do we go from here? 
Research directions at mid-century 
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The problem 
•  At some point it seemed like the promise of parallelism was 

never going to happen 
•  But finally parallelism is now ubiquitous in hardware like 

never before 
–  Vector extensions 
–  Instruction level parallelism 
–  Multicores 
–  Clusters 

•  In time, more applications must take advantage of parallelism 
–  Parallelism will be main source of improvement in speed and 

power consumption. 
•  Parallel programming must become the norm. 

–  But we are far from it. 
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The challenge 
•  Make parallel programming the norm. 
•  We would like to build on the achievements of ~50 years of research. 
•  Specific challenges: 

–  Notations: Parallel programming introduces additional complexities. 
A dip in productivity is expected. We need to reduce its magnitude by 
providing easy to use / accept notations. 

–  Portability: Want performance portable programs across classes of 
parallel machines. 

–  Optimization: Parallel programming introduces new challenges when 
programming for performance. And hardware parallelism is mainly 
about performance. 

–  Correctness: New classes of defects 
•  Unwanted non-determinacy  
•  Deadlocks 

•  The pages of LCPC proceedings a filled with proposals along these 
lines, but the problem is fairly much unresolved. 
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Strategies to address the challenges 

•  Address the Notation problem: 
–  Want parallelism to become standard in all popular forms of 

programming – not the case today. 
•  CS courses use sequential notation 
•  Programmers often ignore performance/scalability issues 
•  Standards are beginning to evolve, but this seems to have little effect. 

•  Address Automation 
–  Optimization for performance.  

•  Autotuners 
•  Compilers 
•  Not widely used to attain parallelism. Lack of effectiveness 

–  Defect detection and avoidance 
•  Some tools/static analysis ideas (e.g. DPJ) 
•  Not clear how useful 
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Whither are we bound ? 

•  Some say that the problem cannot be solved 
in a radical form and are content with today’s 
solutions 
– Nothing better than MPI 
– Automation is impossible. Paraphrasing : ”Grad 

students: Don’t work on that problem it will 
destroy your careers!” . 

•  What is our position? 
– We don’t want to sound too much as visionaries. 

The failures of the past hang on our backs. 
•  HPF, Autovectorization, UPC?,… 
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PARALLEL PROGRAMMING 
NOTATIONS 
1.  Dynamic languages: No real parallelism 
2.  Extensions for conventional languages: 

•  Hierarchically Tiled Arrays 
•  Abstractions for stencil computations 

3.  Very high-level notation:  
•  Hydra 
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Dynamic Languages 
•  Dynamic languages are for 

–  Productivity. They “Make programmers super 
productive”. 

–  Not performance 
•  DLs are typically slow. 

–  10-100 (1000 ?) times slower than corresponding C or 
Fortran 

•  Sufficiently fast for many problems and excellent 
for prototyping in all cases 
–  But must manually rewrite prototype if performance 

is needed. 
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Parallel Programming with 
Dynamic Languages 

•  Not always accepted by the DL community 
–  Hearsay: javascript designers are unwilling to add parallel 

extensions. 
–  Some in the python community prefer not to remove GIL – serial 

computing simplifies matters. 
–  In CPython, the global interpreter lock, or GIL, is a mutex that 

prevents multiple native threads from executing Python 
bytecodes at once. This lock is necessary mainly because 
CPython's memory management is not thread-safe.  

•  Not (always) great for performance 
–  Not much of an effort is made for a highly efficient, effective 

form of parallelism. 
•  For example, Python’s GIL and its implementation. 
•  In MATLAB, programmer controlled communication from desktop to 

worker. 
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•  Not (always) great to facilitate expressing parallelism 
(productivity) 
–  In some cases (e.g. MATLAB) parallel programing 

constructs were not part of the language at the beginning. 
–  Sharing of data not always possible. 

•  Python it seems that arrays can be shared between processes, 
but not other classes of data. 

•  In MATLAB, there is no shared memory. 
–  Message passing is the preferred form of communication. 

•  Process to process in the case of Python. 
•  Client to worker in the case of MATLAB 
•  MATLAB’s parfor has complex design rules 
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•  There are reasons to improve the current situation 
•  Parallelism might be necessary for dynamic languages to have 

a future in the multicore era. 
–  Lack of parallelism would mean no performance improvement 

across machine generations. 
–  DLs are not totally performance oblivious. They are enabled by 

very powerful machines. 
•  When parallelism is explicit 

–  For some problems it helps productivity 
–  Enable prototyping of high-performing parallel codes. 
–  Super productive parallel programming ? 

•  Can parallelism be used to close the performance gap with 
conventional languages ? 
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Whither are we bound ? 

•  Need to address the problem of 
performance. 

•  Difficult and unresolved for general 
languages like Python. 

•  Easier for MATLAB/R, but not 
implemented either. Why ? 
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Extensions for parallelism 

•  Many notations developed. 
•  None widely used for programming 
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•  Much has been accomplished  
•  Widely used parallel programming notations  

– Distributed memory (SPMD/MPI) and  
– Shared memory (pthreads/OpenMP/TBB/

Cilk/ArBB). 

Accomplishments of the last 
decades in programming notation 
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•  OpenMP constitutes an important advance, but 
its most important contribution was to unify the 
syntax of the 1980s (Cray, Sequent, Alliant, 
Convex, IBM,…).  

•  MPI has been extraordinarily effective. 
•  Both have mainly been used for numerical 

computing. Both are widely considered as “low 
level”.  

Languages 



The future 

•  Higher level notations 
•  We may want to avoid changes in 

programming style.  
– Sequential programming style? 

•  The solution is to use abstractions. 

15 



Array operations in MATLAB 
•  An example of abstractions are array operations. 

•  They are not only appropriate for parallelism, but also to 
better represent computations. 

•  In fact, the first uses of array operations does not seem to be 
related to parallelism. E.g. Iverson’s APL (ca. 1960). Array 
operations are also powerful higher level abstractions for 
sequential computing 

•  Today, MATLAB is a good example of language extensions for 
vector operations 
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Array operations in MATLAB 

Matrix addition in scalar mode 

for i=1:m, 
   for j=1:l, 
  c(i,j)= a(i,j) + b(i,j); 
   end 
end 

Matrix addition in array notation 

c = a + b; 
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An important generalization: 
Hierarchically Tiled Arrays 

Ganesh Bikshandi, James Brodman, Basilio Fraguela, Maria 
Garzaran, Jia Guo, Christoph von Praun, David Padua  

•  Recognizes the importance of blocking/
tiling for locality and parallel 
programming.  

•  Makes tiles first class objects.  
– Referenced explicitly.  
– Manipulated using array operations such as 

reductions, gather, etc.. 
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Locality 

Locality 

Distributed 
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A hierarchically tiled array 



Tiled Sets 

•  The mapping function places the data in a 
set into tiles 

•  Trivial for Arrays 
•  More difficult for Irregular data structures 
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Tile 1 

2 

3 
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Compact code 

•  Overall, code quality 
much better than that 
of conventional 
notations 

•  James C. Brodman, G. Carl Evans, Murat 
Manguoglu, Ahmed H. Sameh, María Jesús 
Garzarán, David A. Padua: A Parallel 
Numerical Solver Using Hierarchically Tiled 
Arrays. LCPC 2010: 46-61 
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Ongoing and future work 

•  Developing graph algorithms for distributed 
memory machines. Next step: identify API for 
this type of problems. 

•  Also, looking into linear algebra solutions to 
graph algorithms. Reordering. 

•  Study of effectiveness of high-level notations 
for portability, exascale system 
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Whither are we bound ? 

•  Need to popularize this approach. 
•  So far, many failures in the parallel realm 

– HPF 
– ArBB 

•  But successes in the conventional world 
– MATLAB 
– R 

•  What is the future of Fortran array 
extensions/Cilk array extensions? 
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Very high level notation 

•  The perennial promise: 
– Very high level notation 
– Domain-specific notations 

•  Some progress: e.g. SPIRAL 
– Still a promise 
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Hydra 
Denis Barthou, Alexandre Duchateau 

•    

Jointlab INRIA-UIUC 25 



Description Language - Operands 

•  All operands 
•  (Type inference) 

•  Status 
–  Known, Unknown 

•  Shape 
–  Triangular, diagonal 

•  Type 
–  Matrix,  (vector, scalar) 

•  Modi!ers (transpose) 
•  (Sizes) 
•  (Density) 

%% Operands 
X: Unknown Matrix 
L: Lower Triangular Square Matrix 
U: Upper Triangular Square Matrix 
C: Square Matrix 

%% Equation 
L*X-X*U=C 
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Description language - Equation 

•  Base for decomposition 

•  Simple equations 
–  Assignments 

•  X = A*B 

•  Solvers 
–  LU 
–  Triangular Sylvester 
–  L*X=B 
–  Cholesky 
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%% Operands 
X: Unknown Matrix 
L: Lower Triangular Square Matrix 
U: Upper Triangular Square Matrix 
C: Square Matrix 

%% Equation 
L*X-X*U=C 



Valid Blockings – DTSY  

Jointlab INRIA-UIUC 28 

xA = yA = xX = 2 
xB = yB = yX = 2 

xA = yA = xX = 2 
xB = yB = yX = 1 

xA = yA = xX = 3 
xB = yB = yX = 3 

A*X*B – X = C | A lower triangular, B upper triangular 



Derivation example 

T(0,0) = A(0,0)*X(0,0) + A(0,1)*X(1,0) 
T(0,1) = A(0,0)*X(0,1) + A(0,1)*X(1,1) 
T(1,0) = A(1,0)*X(0,0) + A(1,1)*X(1,0) 
T(1,1) = A(1,0)*X(0,1) + A(1,1)*X(1,1) 

T(0,0) = A(0,0)*X(0,0) + A(0,1)*X(1,0) 
T(0,1) = A(0,0)*X(0,1) + A(0,1)*X(1,1) 
T(1,0) =                 A(1,1)*X(1,0) 
T(1,1) =                 A(1,1)*X(1,1) 

blocking 

Sym. Exec. 

Removal of 0-computation 
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Generator 
Equation  

Dependence Graph 

Set Equations 
Dependence Graph 

Dependence Graph 

Final Graph 

Derivation 

Identi!cation 

Termination 

Se
lec

tio
n 
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Simple graph example  
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Whither are we bound ? 

•  Need to popularize these notations. 
•  Need to incorporate them in conventional 

languages.  
•  Robust implementations 
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COMPILER EVALUATION 

Evaluation of vectorization 
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Purpose of compilers 

•  Bridge the gap between programmer’s world and 
machine world. Between readable/easy to 
maintain code and unreadable high-performing 
code. 

•  The idiosyncrasies of multicore machines, 
however interesting in our eyes, are more a 
problem than a solution. 

•  In an ideal world, compilers or related tools 
should hide these idiosyncrasies. 

•  But, what is the hope of this happening today ? 
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How well do compilers work ? 

•  Evidence accumulated for many years show that 
compilers today do not meet their original goal.  

•  Problems at all levels: 
–  Detection of parallelism 
–  Vectorization 
–  Locality enhancement 
–  Traditional compilation 

•  I’ll show only results from our research group. 
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How well do they work ?  
Automatic detection of parallelism 

R. Eigenmann, J. Hoeflinger, D. Padua On the Automatic Parallelization  
of the Perfect Benchmarks. IEEE TPDS, Jan. 1998. 

Alliant FX/80 
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How well do they work ?  
Vectorization 

G. Ren, P. Wu, and D. Padua: An Empirical Study on the 
Vectorization of Multimedia Applications for Multimedia 
Extensions. IPDPS 2005 
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Intel MKL �
(hand-tuned assembly) �

Triply-nested loop+ �
icc optimizations�

60X �

Matrix Size �

Matrix-matrix multiplication �
on Intel Xeon�

0

How well do they work ?  
Locality enhancement 

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill.  
Is Search Really Necessary to Generate High-Performance BLAS?  
Proceedings of the IEEE. February 2005. 
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How well do they work ?  
Scalar optimizations 

J. Xiong, J. Johnson, and D Padua. SPL: A Language and Compiler for DSP  
Algorithms. PLDI 2001 
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What to do ? 

•  We must understand better the 
effectiveness of today’s compilers.  
– How far from the optimum ? 

•  One thing is certain: part of the problem is 
implementation. Compilers are of uneven 
quality. Need better compiler development 
tools. 

•  But there is also the need for better 
translation technology. 
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What to do ? 

•  One important issue that must be addressed is 
optimization strategy. 

•  For while we understand somewhat how to 
parse, analyze, and transform programs. The 
optimization process is poorly understood.  

•  A manifestation of this is that increasing the 
optimization level sometimes reduces 
performance. Another is the recent interest in 
search strategies for best compiler combination 
of compiler switches. 
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What to do ? 

•  The use of machine learning is an 
increasingly popular approach, but 
analytical models although more difficult 
have the great advantage that they rely on 
our rationality rather than throwing dice. 
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Obstacles 

•  Several factors conspire against progress 
in program optimization 
– The myth that the automatic optimization 

problem is solved or insurmountable. 
– The natural desire to work on fashionable 

problems and “low hanging fruits” 



Evaluation of autovectorization 
Saeed Maleki, Seth Abraham, Bob Kuhn,         

Maria J. Garzaran, and David Padua. 

•  Initiated as part of the Blue Waters Project. 
•  How effectively can compilers compile 

conventional C code onto microprocessors 
vector extensions ? 

•  Saeed Maleki, Yaoqing Gao, Maria J. Garzaran, Tommy Wong and David Padua. An Evaluation of 
Vectorizing Compilers. In Proc. of the International Conference on Parallel Architectures and 
Compilation Techniques, October 2011. 
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•  Evaluation based on 
– Callahan, Dongarra, Levine loops (translated 

into C) 
– PACT (Petascale Application Collaboration 

Team) codes 
•  DNS 
•  MILC 

– Media Bench II 
•  Consider ICC, XLC, GCC 
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S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing Compilers. PACT. 2011. 
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Perfectly auto vectorized ≡ speedup > 1.15 



•  Overall, the compilers vectorize few cases 
of the loops in the applications in PACT 
and Media Bench II. Out of 33 loops 
– XLC vectorized 6 (18.18%),  
– ICC vectorized 10 (30.30%)  
– GCC vectorized 3 (10.0%). 
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Ongoing work 

•  Developing vector seeker to automate 
(partially)  identification of compiler 
limitations. 

•  Another academic push on 
autovectorization ? 
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Autovectorization impossible ? 

•  It is not a matter of yes or no, but of 
degrees. 

•  ALL compilers autovectorize and much 
effort goes into that. 
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Why not ? 
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Conclusion 

•  Programming systems for parallelism still 
evolving. Much more to do. 

•  The problem has proved to be more 
complex than expected, but much progress 
has been made. 

•  Can only hope for a much better picture at 
the 50th LCPC 
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