
Languages and compilers for parallel computing
Where do we go from here?
Research directions at mid-century

1

The problem
•  At some point it seemed like the promise of parallelism was

never going to happen
•  But finally parallelism is now ubiquitous in hardware like

never before
–  Vector extensions
–  Instruction level parallelism
–  Multicores
–  Clusters

•  In time, more applications must take advantage of parallelism
–  Parallelism will be main source of improvement in speed and

power consumption.
•  Parallel programming must become the norm.

–  But we are far from it.

2

The challenge
•  Make parallel programming the norm.
•  We would like to build on the achievements of ~50 years of research.
•  Specific challenges:

–  Notations: Parallel programming introduces additional complexities.
A dip in productivity is expected. We need to reduce its magnitude by
providing easy to use / accept notations.

–  Portability: Want performance portable programs across classes of
parallel machines.

–  Optimization: Parallel programming introduces new challenges when
programming for performance. And hardware parallelism is mainly
about performance.

–  Correctness: New classes of defects
•  Unwanted non-determinacy
•  Deadlocks

•  The pages of LCPC proceedings a filled with proposals along these
lines, but the problem is fairly much unresolved.

3

Strategies to address the challenges

•  Address the Notation problem:
–  Want parallelism to become standard in all popular forms of

programming – not the case today.
•  CS courses use sequential notation
•  Programmers often ignore performance/scalability issues
•  Standards are beginning to evolve, but this seems to have little effect.

•  Address Automation
–  Optimization for performance.

•  Autotuners
•  Compilers
•  Not widely used to attain parallelism. Lack of effectiveness

–  Defect detection and avoidance
•  Some tools/static analysis ideas (e.g. DPJ)
•  Not clear how useful

4

Whither are we bound ?

•  Some say that the problem cannot be solved
in a radical form and are content with today’s
solutions
– Nothing better than MPI
– Automation is impossible. Paraphrasing : ”Grad

students: Don’t work on that problem it will
destroy your careers!” .

•  What is our position?
– We don’t want to sound too much as visionaries.

The failures of the past hang on our backs.
•  HPF, Autovectorization, UPC?,…

5

PARALLEL PROGRAMMING
NOTATIONS
1.  Dynamic languages: No real parallelism
2.  Extensions for conventional languages:

•  Hierarchically Tiled Arrays
•  Abstractions for stencil computations

3.  Very high-level notation:
•  Hydra

6

Dynamic Languages
•  Dynamic languages are for

–  Productivity. They “Make programmers super
productive”.

–  Not performance
•  DLs are typically slow.

–  10-100 (1000 ?) times slower than corresponding C or
Fortran

•  Sufficiently fast for many problems and excellent
for prototyping in all cases
–  But must manually rewrite prototype if performance

is needed.

7

Parallel Programming with
Dynamic Languages

•  Not always accepted by the DL community
–  Hearsay: javascript designers are unwilling to add parallel

extensions.
–  Some in the python community prefer not to remove GIL – serial

computing simplifies matters.
–  In CPython, the global interpreter lock, or GIL, is a mutex that

prevents multiple native threads from executing Python
bytecodes at once. This lock is necessary mainly because
CPython's memory management is not thread-safe.

•  Not (always) great for performance
–  Not much of an effort is made for a highly efficient, effective

form of parallelism.
•  For example, Python’s GIL and its implementation.
•  In MATLAB, programmer controlled communication from desktop to

worker.

8

•  Not (always) great to facilitate expressing parallelism
(productivity)
–  In some cases (e.g. MATLAB) parallel programing

constructs were not part of the language at the beginning.
–  Sharing of data not always possible.

•  Python it seems that arrays can be shared between processes,
but not other classes of data.

•  In MATLAB, there is no shared memory.
–  Message passing is the preferred form of communication.

•  Process to process in the case of Python.
•  Client to worker in the case of MATLAB
•  MATLAB’s parfor has complex design rules

9

•  There are reasons to improve the current situation
•  Parallelism might be necessary for dynamic languages to have

a future in the multicore era.
–  Lack of parallelism would mean no performance improvement

across machine generations.
–  DLs are not totally performance oblivious. They are enabled by

very powerful machines.
•  When parallelism is explicit

–  For some problems it helps productivity
–  Enable prototyping of high-performing parallel codes.
–  Super productive parallel programming ?

•  Can parallelism be used to close the performance gap with
conventional languages ?

10

Whither are we bound ?

•  Need to address the problem of
performance.

•  Difficult and unresolved for general
languages like Python.

•  Easier for MATLAB/R, but not
implemented either. Why ?

11

Extensions for parallelism

•  Many notations developed.
•  None widely used for programming

12

13

•  Much has been accomplished
•  Widely used parallel programming notations

– Distributed memory (SPMD/MPI) and
– Shared memory (pthreads/OpenMP/TBB/

Cilk/ArBB).

Accomplishments of the last
decades in programming notation

14

•  OpenMP constitutes an important advance, but
its most important contribution was to unify the
syntax of the 1980s (Cray, Sequent, Alliant,
Convex, IBM,…).

•  MPI has been extraordinarily effective.
•  Both have mainly been used for numerical

computing. Both are widely considered as “low
level”.

Languages

The future

•  Higher level notations
•  We may want to avoid changes in

programming style.
– Sequential programming style?

•  The solution is to use abstractions.

15

Array operations in MATLAB
•  An example of abstractions are array operations.

•  They are not only appropriate for parallelism, but also to
better represent computations.

•  In fact, the first uses of array operations does not seem to be
related to parallelism. E.g. Iverson’s APL (ca. 1960). Array
operations are also powerful higher level abstractions for
sequential computing

•  Today, MATLAB is a good example of language extensions for
vector operations

16

Array operations in MATLAB

Matrix addition in scalar mode

for i=1:m,
 for j=1:l,
 c(i,j)= a(i,j) + b(i,j);
 end
end

Matrix addition in array notation

c = a + b;

17

An important generalization:
Hierarchically Tiled Arrays

Ganesh Bikshandi, James Brodman, Basilio Fraguela, Maria
Garzaran, Jia Guo, Christoph von Praun, David Padua

•  Recognizes the importance of blocking/
tiling for locality and parallel
programming.

•  Makes tiles first class objects.
– Referenced explicitly.
– Manipulated using array operations such as

reductions, gather, etc..

18

Locality

Locality

Distributed

19

A hierarchically tiled array

Tiled Sets

•  The mapping function places the data in a
set into tiles

•  Trivial for Arrays
•  More difficult for Irregular data structures

20

Tile 1

2

3

4

Compact code

•  Overall, code quality
much better than that
of conventional
notations

•  James C. Brodman, G. Carl Evans, Murat
Manguoglu, Ahmed H. Sameh, María Jesús
Garzarán, David A. Padua: A Parallel
Numerical Solver Using Hierarchically Tiled
Arrays. LCPC 2010: 46-61

21

Ongoing and future work

•  Developing graph algorithms for distributed
memory machines. Next step: identify API for
this type of problems.

•  Also, looking into linear algebra solutions to
graph algorithms. Reordering.

•  Study of effectiveness of high-level notations
for portability, exascale system

22

Whither are we bound ?

•  Need to popularize this approach.
•  So far, many failures in the parallel realm

– HPF
– ArBB

•  But successes in the conventional world
– MATLAB
– R

•  What is the future of Fortran array
extensions/Cilk array extensions?

23

Very high level notation

•  The perennial promise:
– Very high level notation
– Domain-specific notations

•  Some progress: e.g. SPIRAL
– Still a promise

24

Hydra
Denis Barthou, Alexandre Duchateau

• 

Jointlab INRIA-UIUC 25

Description Language - Operands

•  All operands
•  (Type inference)

•  Status
–  Known, Unknown

•  Shape
–  Triangular, diagonal

•  Type
–  Matrix, (vector, scalar)

•  Modi!ers (transpose)
•  (Sizes)
•  (Density)

%% Operands
X: Unknown Matrix
L: Lower Triangular Square Matrix
U: Upper Triangular Square Matrix
C: Square Matrix

%% Equation
L*X-X*U=C

Jointlab INRIA-UIUC 26

Description language - Equation

•  Base for decomposition

•  Simple equations
–  Assignments

•  X = A*B

•  Solvers
–  LU
–  Triangular Sylvester
–  L*X=B
–  Cholesky

Jointlab INRIA-UIUC 27

%% Operands
X: Unknown Matrix
L: Lower Triangular Square Matrix
U: Upper Triangular Square Matrix
C: Square Matrix

%% Equation
L*X-X*U=C

Valid Blockings – DTSY

Jointlab INRIA-UIUC 28

xA = yA = xX = 2
xB = yB = yX = 2

xA = yA = xX = 2
xB = yB = yX = 1

xA = yA = xX = 3
xB = yB = yX = 3

A*X*B – X = C | A lower triangular, B upper triangular

Derivation example

T(0,0) = A(0,0)*X(0,0) + A(0,1)*X(1,0)
T(0,1) = A(0,0)*X(0,1) + A(0,1)*X(1,1)
T(1,0) = A(1,0)*X(0,0) + A(1,1)*X(1,0)
T(1,1) = A(1,0)*X(0,1) + A(1,1)*X(1,1)

T(0,0) = A(0,0)*X(0,0) + A(0,1)*X(1,0)
T(0,1) = A(0,0)*X(0,1) + A(0,1)*X(1,1)
T(1,0) = A(1,1)*X(1,0)
T(1,1) = A(1,1)*X(1,1)

blocking

Sym. Exec.

Removal of 0-computation

Jointlab INRIA-UIUC 29

Generator
Equation

Dependence Graph

Set Equations
Dependence Graph

Dependence Graph

Final Graph

Derivation

Identi!cation

Termination

Se
lec

tio
n

Jointlab INRIA-UIUC 30

Simple graph example

Jointlab INRIA-UIUC 31

Whither are we bound ?

•  Need to popularize these notations.
•  Need to incorporate them in conventional

languages.
•  Robust implementations

32

COMPILER EVALUATION

Evaluation of vectorization

33

34

Purpose of compilers

•  Bridge the gap between programmer’s world and
machine world. Between readable/easy to
maintain code and unreadable high-performing
code.

•  The idiosyncrasies of multicore machines,
however interesting in our eyes, are more a
problem than a solution.

•  In an ideal world, compilers or related tools
should hide these idiosyncrasies.

•  But, what is the hope of this happening today ?

35

How well do compilers work ?

•  Evidence accumulated for many years show that
compilers today do not meet their original goal.

•  Problems at all levels:
–  Detection of parallelism
–  Vectorization
–  Locality enhancement
–  Traditional compilation

•  I’ll show only results from our research group.

36

How well do they work ?
Automatic detection of parallelism

R. Eigenmann, J. Hoeflinger, D. Padua On the Automatic Parallelization
of the Perfect Benchmarks. IEEE TPDS, Jan. 1998.

Alliant FX/80

37

How well do they work ?
Vectorization

G. Ren, P. Wu, and D. Padua: An Empirical Study on the
Vectorization of Multimedia Applications for Multimedia
Extensions. IPDPS 2005

38

Intel MKL �
(hand-tuned assembly) �

Triply-nested loop+ �
icc optimizations�

60X �

Matrix Size �

Matrix-matrix multiplication �
on Intel Xeon�

0

How well do they work ?
Locality enhancement

K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, P. Stodghill.
Is Search Really Necessary to Generate High-Performance BLAS?
Proceedings of the IEEE. February 2005.

39

How well do they work ?
Scalar optimizations

J. Xiong, J. Johnson, and D Padua. SPL: A Language and Compiler for DSP
Algorithms. PLDI 2001

40

What to do ?

•  We must understand better the
effectiveness of today’s compilers.
– How far from the optimum ?

•  One thing is certain: part of the problem is
implementation. Compilers are of uneven
quality. Need better compiler development
tools.

•  But there is also the need for better
translation technology.

41

What to do ?

•  One important issue that must be addressed is
optimization strategy.

•  For while we understand somewhat how to
parse, analyze, and transform programs. The
optimization process is poorly understood.

•  A manifestation of this is that increasing the
optimization level sometimes reduces
performance. Another is the recent interest in
search strategies for best compiler combination
of compiler switches.

42

What to do ?

•  The use of machine learning is an
increasingly popular approach, but
analytical models although more difficult
have the great advantage that they rely on
our rationality rather than throwing dice.

43

Obstacles

•  Several factors conspire against progress
in program optimization
– The myth that the automatic optimization

problem is solved or insurmountable.
– The natural desire to work on fashionable

problems and “low hanging fruits”

Evaluation of autovectorization
Saeed Maleki, Seth Abraham, Bob Kuhn,

Maria J. Garzaran, and David Padua.

•  Initiated as part of the Blue Waters Project.
•  How effectively can compilers compile

conventional C code onto microprocessors
vector extensions ?

•  Saeed Maleki, Yaoqing Gao, Maria J. Garzaran, Tommy Wong and David Padua. An Evaluation of
Vectorizing Compilers. In Proc. of the International Conference on Parallel Architectures and
Compilation Techniques, October 2011.

44

•  Evaluation based on
– Callahan, Dongarra, Levine loops (translated

into C)
– PACT (Petascale Application Collaboration

Team) codes
•  DNS
•  MILC

– Media Bench II
•  Consider ICC, XLC, GCC

45

S. Maleki, Y. Gao, T. Wong, M. Garzarán, and D. Padua. An Evaluation of Vectorizing Compilers. PACT. 2011.

46

47

Perfectly auto vectorized ≡ speedup > 1.15

•  Overall, the compilers vectorize few cases
of the loops in the applications in PACT
and Media Bench II. Out of 33 loops
– XLC vectorized 6 (18.18%),
– ICC vectorized 10 (30.30%)
– GCC vectorized 3 (10.0%).

48

Ongoing work

•  Developing vector seeker to automate
(partially) identification of compiler
limitations.

•  Another academic push on
autovectorization ?

49

Autovectorization impossible ?

•  It is not a matter of yes or no, but of
degrees.

•  ALL compilers autovectorize and much
effort goes into that.

50

Why not ?

51

Conclusion

•  Programming systems for parallelism still
evolving. Much more to do.

•  The problem has proved to be more
complex than expected, but much progress
has been made.

•  Can only hope for a much better picture at
the 50th LCPC

52

