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Abstract. Deep Neural Networks (DNNs) are indispensable for AI robots
and autonomous driving vehicles. Low power and high performance of
DNN processors are critical to realize long battery life and long-term
reliable controller operations, keeping their actions flexible. In addition,
high program productivity is also essential for their cost-effective prod-
uct development. We have been developing the OSCAR parallelizing and
power-reducing compiler and its co-designed homogeneous and hetero-
geneous multicore processor chips. In this paper, the TVM, an open-
source deep learning compiler, is utilized with the OSCAR compiler to
automatically parallelize various DNN inference models. However, the
current TVM does not generate a C program compatible with vectoriza-
tion. In this paper, we propose a code generation method for TVM to
generate vectorization-friendly code by transforming the memory layout
of tensors to keep a long vector length at an innermost vectorized loop.
The parallelized coarse grain task parallelization program is translated
into NEC machine code with vector instructions by the NEC compiler.
The execution performance of the proposed method with pre-trained
DNN inference models is evaluated on NEC SX-Aurora TSUBASA vec-
tor multicore. The evaluation result shows that the proposed method
achieves 31.3× speedup on seven cores with a ResNet model and 37.6×
speedup with a VGG model, compared with the compilation flow that
does not include the proposed method.

Keywords: Vector multicore · Parallelization compiler · Vectorization
· Deep neural network · TVM.

1 Introduction

Emerging AI robots and autonomous driving vehicles rely on sophisticated deep
neural network (DNN) technologies, such as image and voice recognition [1].
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They utilize these DNN technologies to recognize the surrounding environment
and decide the most suitable action in the future.

These DNN processes require high-clock frequency, many computational re-
sources, and high memory bandwidth, particularly for convolutional neural net-
work (CNN) processing in image recognition. However, these requirements lead
to high-energy dissipation and high-heat dissipation. This is a problem for AI
robots and vehicles since they need large battery and cooling modules to handle
the energy and heat dissipation. These modules can reduce the flexibility of their
actions. Thus, low-power processors are expected to enable the necessary DNN
calculations for AI robots and autonomous vehicles on a limited energy budget.

To overcome this problem, parallel processing along with controlling the pro-
cessor’s clock frequency and voltage is one of the promising approaches. If a
target program has a real-time deadline, parallel processing with more process-
ing elements (PEs) can satisfy it with a lower clock frequency and voltage, re-
sulting in lower power dissipation since the power dissipation is proportional
to the cube of the clock frequency [2]. Appropriately scheduling the number of
PEs and clock frequency according to the required amount of computation can
realize high-performance and low-power AI processors.

Based on this approach, we have developed the OSCAR automatically par-
allelizing compiler cooperative OSCAR vector multicore [3–5]. Each core in the
OSCAR vector multicore consists of a CPU (RISC-V), a vector accelerator, a
data transfer unit (DTU), local data memory (LDM), and distributed shared
memory (DSM). The OSCAR compiler controls the OSCAR vector multicore
by performing vectorization, parallelization, memory usage optimization, and
power optimization [6]. The vector accelerator module is suitable for processing
DNN applications, taking into consideration memory access overhead.

While the OSCAR compiler can automatically employ parallelization and
power control for C and Fortran programs, DNN models are usually developed
on DNN frameworks such as TensorFlow [7] and PyTorch [8]. To deal with many
existing DNN inference models created by these frameworks on the OSCAR vec-
tor multicore, we incorporate the deep learning compiler stack TVM [9] into the
compilation flow. TVM takes a DNN model represented in the standard DNN
exchange format ONNX [10] and generates a C program. Then, the OSCAR
compiler performs the optimization above and develops the parallelized C pro-
grams for CPU and vector cores. Finally, the backend compilers for the target
CPU and the accelerator core generate the executable binary. Fig. 1 depicts this
compilation flow.

Though introducing TVM can handle many existing DNN models, it does
not generate innermost loops whose length is sufficiently long for efficient vector-
ization. Therefore, this paper proposes a code generation method for TVM that
transforms the tensor layout in a learning model to generate code whose inner-
most loops have sufficient loop length suitable for vectorization. We implement
the proposed method in TVM and evaluate it on the NEC vector multicore per-
sonal supercomputer SX-Aurora TSUBASA instead of the currently developing
OSCAR vector multicore. The OSCAR compiler parallelizes the TVM-generated
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Fig. 1. Compilation flow of deep learning models using TVM and OSCAR

code, and the NCC vectorizes the OSCAR-parallelized code in this evaluation.
The main contribution of this paper can be summarized as follows:

– We propose a vector accelerator-friendly TVM code generation method.
– We construct a vector multicore compilation flow consisting of the extended

TVM, the OSCAR parallelizing compiler, and NCC.
– We evaluate the proposed method on a real vector multicore, NEC SX-

Aurora TSUBASA.

The rest of this paper is organized as follows: Section 2 describes OSCAR
automatically parallelizing compiler. Section 3 explains an overview of TVM,
followed by the description of the proposed code generation method in Section
4. Section 5 reports the evaluation result. Finally, Section 6 concludes this paper.

2 OSCAR Compiler

The OSCAR automatically parallelizing compiler is an automatic parallelizing
compiler for C and Fortran programs. It works as a source-to-source compiler.
It generates a parallelized C or Fortran program by inserting OSCAR API di-
rectives, an OpenMP-compatible parallelizing API [11]. The compiler performs
multi-grain parallel processing [12]. Multi-grain parallel processing includes three
kinds of parallel processing as follows:

– Coarse-grained task parallel processing for parallelism among basic blocks,
loops, and function calls.

– Loop-iteration level parallel processing.
– Near-fine-grain parallel processing for parallelism among statements within

a basic block.
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The OSCAR compiler consists of three modules: Frontend, Middle pass, and
Backend. First, the Frontend translates a source C or Fortran program into the
compiler’s intermediate representation (IR) through lexical and syntax analysis.
Next, the Middle pass decomposes the obtained IR into basic blocks, repeti-
tion blocks, and subroutine blocks, each of which is a parallelization unit of
coarse-grain task parallel processing, and they are called macro tasks (MTs).
The Middle pass analyzes control flow and data dependence among MTs and
represents them as a macro flow graph (MFG). Then, it employs the earliest
executable condition analysis to exploit coarse grain parallelism from MFG and
represents its result as a macro task graph (MTG). In addition, the Middle path
performs cache, memory, and low-power optimization based on the MTG and
generates an optimized IR. Finally, the Backend generates a parallelized C or
Fortran program by inserting OSCAR API directives.

In this paper, we integrate TVM before the OSCAR compiler to deal with
existing pre-trained DNN models, as in Fig. 1. TVM translates a model into a
sequential C program; then, the OSCAR compiler performs the parallelization
and corresponding optimization techniques.

3 TVM

TVM (Tensor Virtual Machine) is an open-source deep learning compiler and
inference runtime. It optimizes the pre-trained deep-learning models developed
by multiple deep-learning frameworks such as PyTorch, TensorFlow, and Keras.
Code generation supports multiple target hardware, such as CPUs, GPUs, and
DSPs. TVM optimizes the input model at the graph and operator levels, gen-
erating efficient code tailored to the target hardware backend. Graph-level opti-
mization includes operator fusion, which combines multiple operations to reduce
memory access to intermediate results, and constant folding, which pre-computes
values that can be determined statically to save execution costs. Operator-level
optimization includes schedule transformations determining execution details
such as loop structure and parallel patterns. Fig. 2 depicts the overall structure
of TVM.

The figure shows that the TVM frontend translates the model into a graph-
level intermediate representation named Computational Graph. The outline of
the Computational Graph is depicted in Fig. 3.

The Computational Graph is an abstract syntax tree (AST) and can be ex-
pressed as Python code or text, as depicted in the lower left of Fig. 3. TVM
performs graph-level optimization on this intermediate representation, such as
the fusion of convolutional operations and activation function calculations. It
then performs the operator-level optimization followed by the code generation.
Operator-level optimization is performed using an intermediate representation
called Tensor Expression, represented in the form depicted in Fig. 4. This inter-
mediate representation is described based on the output shape of tensors and
operation rules. Operator-level optimization includes optimization such as the
fusion of multiple loops in a multi-loop and sorting loop nests.
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Fig. 2. Structure of TVM [13]

Python Code

x  = relay.var(“x”)
v1  = relay.log(x)
v2  = relay.add(v1, v1)
f  = relay.Function([x], v2)

Text Form

fn (%x) {
%1 = log(%x)
%2 = add(%1, %1)
%2

}

AST Structure

Fig. 3. Computational Graph [14]

m, n, h = t.var(‘m’), t.var(‘n’), t.var(‘h’) 
A = t.placeholder((m, h), name=‘A’)
B = t.placeholder((n, h), name=‘B’)
k = t.reduce_axis((0, h), name=‘k’)
C = t.compute((m, n), lambda y, x:

t.sum(A[k, y] * B[k, x], axis=k))
result shape

computing rule

Fig. 4. Tensor Expression [9]
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We extend the TVM’s compilation flow to achieve faster DNN inference ex-
ecution on vector multicores.

4 Proposed TVM Extension for Vector Multicores

This section describes the proposed TVM code generation extension for DNN
inference acceleration on vector multicore chips.

4.1 Tensor Layout Transformation

When vectorizing a DNN program that includes loops, tensors in the program
must have a data layout that allows for efficient vectorization by ensuring con-
tinuous data element placement along a vectorizing dimension (axis) as long as
possible. This feature can improve the vector pipeline’s computation throughput
since the data can be continuously provided to its functional units with fewer
stall cycles.

Here, we focus on convolution calculation, a fundamental calculation in con-
volutional neural networks (CNN) used in image recognition. Fig.5 depicts how
to vectorize a convolutional calculation. A convolution calculation takesN batches
of an input tensor consisting of C ′ channels of H × W feature maps and a
C ′ ×C × k × k (C is the number of output channels) kernel tensor, then gener-
ates an output C channels of H ×W feature maps. An output tensor along the
channel can be calculated by multiplying an input feature map point and kernel
tensor along the output channel elements, which can be vectorized. We can keep
a long vector length if we continuously locate the output channel dimension and
process it at the innermost loop.

Fig. 5. Vectorization in convolutional calculation
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However, the current TVM does not ensure it. Some DNN frameworks, such
as PyTorch, use the NCHW layout. Its data structure is as Fig. 6, where the
order of dimensions is the batch size (N), number of channels (C), heights (H),
and width (W ).

Instead of the NCHW layout, we set the tensors as the NCHWc layout to
vectorize the innermost loop efficiently. Fig. 7 depicts the data structure of the
NCHWc layout. This is a data layout for 5-dimensional tensors, where the order
of dimensions is NCHWc and “c” stands for “channel-block”. This layout divides
the C (channel) dimension of the NCHW layout into channel-blocks.

Fig. 6. Overview of NCHW Lay-
out Fig. 7. Overview of NCHWc Layout

As discussed above, convolution operations in CNNs can be vectorized in the
dimension of the output channel (“C” in Fig. 6) direction. In addition, laying
out tensors, each of which has its innermost dimensions at channel-block, enables
contiguous memory access [15]. However, the channel-block size of the program
generated by the current TVM is not sufficiently long. Therefore, we expand the
channel-block size to increase the vector calculation. We also transformed the
layout of kernels accordingly.

5 Experimental Evaluation

5.1 Evaluation Environment

This section evaluates the proposed code generation method for vector multicore
chips like the NEC SX-Aurora TSUBASA personal vector multicore supercom-
puter. The configuration of the NEC SX-Aurora TSUBASA used for evaluation
is shown in Table 1.

This table shows that SX-Aurora TSUBASA used in the evaluation has eight
vector processing elements (PEs) with an operating frequency of 1.4GHz and a
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Table 1. Specifications of NEC SX-Aurora TSUBASA Vector Engine

Vector PE 8cores
Operating Frequency(VE) 1.4GHz
Memory Capacity 24GiB
L1d Cache 32KiB / PE
L1i Cache 32KiB / PE
L2 Cache 256KiB / PE
L3 Cache (LLC) 16MiB
Vector Registers 64 (per PE)
Vector Length 256 entries

maximum vector length of 256 entries. It also has a 16MiB last-level cache (LLC).
We used NEC’s compiler NCC version 3.5.1 as a backend compiler to generate
executable binaries and both the OSCAR compiler and NCC for parallelization.
After parallelization by the OSCAR compiler, vector binary codes were generated
using NCC.

5.2 Evaluation Method

Table 2 shows the evaluation target. For the evaluation, we used a pre-trained
ONNX format model for ImageNet1000 image classification including ResNet50
[16] and VGG19 [17]. VGG is a CNN network model that won the ILSVRC 2015
challenge with a top-5 error rate of 3.57%. The structure of VGG is straight-
forward. It has a feature extraction part consisting of multiple convolutional
layers and a part that performs class classification from the extracted features.
ResNet can have up to 152 layers, much deeper than previous architectures such
as AlexNet and VGG. It uses “skip connections” or “shortcut connections” that
allow the network to bypass some layers. This helps alleviate the vanishing gra-
dients problem, which can occur when training DNNs.

Table 2. Evaluation target

TVM Ver.0.8.0 [18]

model
ResNet50(ImageNet1000 image classification) [19]
VGG19(ImageNet1000 image classification) [20]

input image 224× 224× 3(cat.png) [21]

TVM translated these models into sequential C source code using the pro-
posed method. We also evaluated the performance of the original TVM for com-
parison. After TVM’s code generation, the OSCAR compiler optimized and par-
allelized it. For comparison, we also parallelized the same program with NCC.
Since the number of iterations of the loops for parallel processing in the evalua-
tion programs is a multiple of 7, we generated parallelized code for up to 7PEs,
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which obtains the best load balancing up to 8PEs available in SX-Aurora TSUB-
ASA. In this evaluation, NCC vectorized the programs. In addition to measuring
the execution time per image, we also measured the average vector length and
vector operation rate. We confirmed the equivalency of the parallelized programs’
execution result to that of the sequential program.

5.3 Evaluation Result of The Original TVM

First, we evaluated the execution time of the code obtained from the origi-
nal TVM, which was parallelized by the OSCAR compiler. Table 3 shows the
evaluation result with the speedup compared to the sequential execution. The
execution time of ResNet50 was about 2.1 seconds at 1PE, and the speedup on
7PEs was 2.3× compared to 1PE, and the execution time of VGG19 was about
20.2 seconds at 1PE.

Table 3. Execution time of the C code generated by the original TVM

# of PEs
ResNet50 VGG19

Execution Time [ms] SpeedUp Execution Time [ms] SpeedUp

1 2077.9 — 20157.7 —
2 1489.3 1.4 10253.8 2.0
4 974.7 2.1 5390.1 3.7
7 898.0 2.3 4383.8 4.6

Table 4 shows the evaluation results when parallelizing by NCC instead of
the OSCAR compiler. NCC’s parallelization did not give us speedup even with
multiple PEs.

Table 4. Execution time of the C code generated by the original TVM (NCC only)

# of PEs
ExecutionTime[ms]
ResNet50 VGG19

1 2181.3 5468.6
2 2181.3 5466.1
4 2181.2 5465.6
7 2181.2 5465.5

5.4 Evaluation Result of The Proposed Method

Next, we evaluated the proposed method. Fig. 8 shows the result of ResNet50.
This figure includes parallelizing with OSCAR (OSCAR + NCC) and NCC

(NCC only). As in Fig. 8, the execution time of the original TVM by NCC only
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Fig. 8. Execution time after tensor layout transformation(ResNet50)

was 2181.3 ms for 1PE and 2181.2 ms for 8PEs. Also, the execution time of
the original TVM by OSCAR+NCC was 2077.9 ms for 1PE and 898.0 ms for
7PEs. Next, the execution time of the proposed method was 285.6 ms with 1PE
and 101.3 ms with 7PEs by using NCC only. It was reduced to 173.4 ms with
1PE and 28.7 ms with 7PEs when parallelizing with OSCAR. Therefore, the
proposed method using OSCAR+NCC (28.7 ms) gave us 76.0× speedups for
the same 7PEs compared with the original TVM using NCC only (2181.2 ms).

Fig. 9 shows the result of VGG19.

The execution time of the original TVM using only NCC was 5468.6 ms for
1PE and 5465.5 ms for 8PEs. The proposed method using OSCAR + NCC re-
duced the execution time for 1PE to 728.2 ms and 116.7 ms for 7PEs. Therefore,
the proposed method gave us 46.8× more speedups than the original TVM with
NCC on the same 7PEs.

Next, we examined the speedup on each core against the sequential execution
to investigate how much parallelism had been achieved. The results are shown
in Fig. 10.

When using the original TVM with OSCAR, the speedup on 7PEs was 2.3×
when executing ResNet50 and 4.6× when executing VGG19, respectively. On
the other hand, the proposed method achieved 6.1× for ResNet50 and 6.2× for
VGG19. In the case of using OSCAR, the speedup of the proposed method was
higher than that of the original TVM. Fig. 11 depicts the number of executed
instructions (when processing on 7PEs).

The original TVM parallelized by NCC (Original TVM (NCC only) in Fig.
11) executed 82.8 billion instructions for ResNet50 and 199.5 billion instructions
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Fig. 11. Total number of executed instructions

for VGG19. In comparison, that parallelized by OSCAR (Original TVM (OS-
CAR + NCC) executed 32.5 billion instructions for ResNet50 and 131.1 billion
instructions for VGG19, respectively. On the other hand, the proposed method
parallelized by OSCAR (Proposed Method (OSCAR + NCC) in Fig. 11) exe-
cuted only 7.6 billion instructions for ResNet50 and performed only 23.6 billion
instructions for VGG19, indicating a significant reduction in the number of ex-
ecuted instructions. Reducing the number of executed instructions is one factor
contributing to the reduction in execution time. In addition, when comparing
“OSCAR + NCC” and “NCC only”, the OSCAR compiler’s parallelization can
suppress the number of executed instructions even on 7PEs. One of its reasons
is increasing the vector operation ratio and average vector length. Fig. 12 shows
the percentage of vector instructions in the programs.

The percentage of vector instructions was between 73.3% and 86.5% when
using the code generated by the original TVM. On the other hand, the proposed
method increased them to more than 96.0%. Also, Fig. 13 depicts the average
vector length and the execution time of vector operation.

The average vector length by the original TVM was about 15 for ResNet50
and about 26 for VGG19, respectively. The proposed method increased it to
more than 147.9 for ResNet50 and 161.6 for VGG19, respectively, indicating
that the vector length has increased by more than seven times. In addition, when
parallelizing with OSCAR, the proposed method reduces the total execution time
of vector load instructions. Fig. 14 shows the execution time of the vector load
instructions.

The proposed method reduces the time for vector load instructions from
1736.6 ms to 55.8 ms for ResNet50 and from 19164.2 ms to 347.5 ms for VGG19.
Even without OSCAR, the execution time of vector load instructions was de-
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creased. From these results, it can be said that the efficiency of the vector pipeline
has been improved by transforming the memory layout of the tensors, resulting
in the execution time reduction.

6 Conclusion

This paper has proposed a vectorization-friendly code generation method for
a deep learning compiler TVM. The proposed method transforms the memory
layout of tensors to increase the length of the innermost loop for efficient vector-
ization. The output of TVM is parallelized by the OSCAR parallelizing compiler
and vectorized by the vector accelerator compiler NCC.

The proposed method extended TVM and evaluated it on NEC SX-Aurora
TSUBASA vector multicore supercomputer. Although the execution time of in-
ference processing of ResNet50 without the proposed method was 2077.9 ms
with 1PE and 898.0 ms with 7PEs, the proposed method reduced the execution
time to 173.4 ms with 1PE and 28.7 ms with 7PEs. That is to say, it was 12.0×
faster with 1PE and 31.3× faster with 7PEs for ResNet50. It also accelerated
VGG19. The execution time was 27.7× faster from 20157.7 ms to 728.2 ms with
1PE and was 37.6× faster from 4383.8 ms to 116.7 ms with 7PEs. In addition,
when using the proposed method, the speedup ratio between the sequential exe-
cution and 7PEs multi-core execution increased from 2.3 to 6.1 compared to the
original TVM for ResNet50 and from 4.6 to 6.2 for VGG19, respectively. These
results confirmed that deep learning models can be automatically parallelized by
analyzing them with the OSCAR compiler after translating them into C source
code using TVM. Furthermore, by transforming the tensor layout of the C source
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code generated by TVM so that the innermost loop length of convolution be-
comes larger, it was confirmed that the execution efficiency of vector processors
improved, resulting in a faster execution time.
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