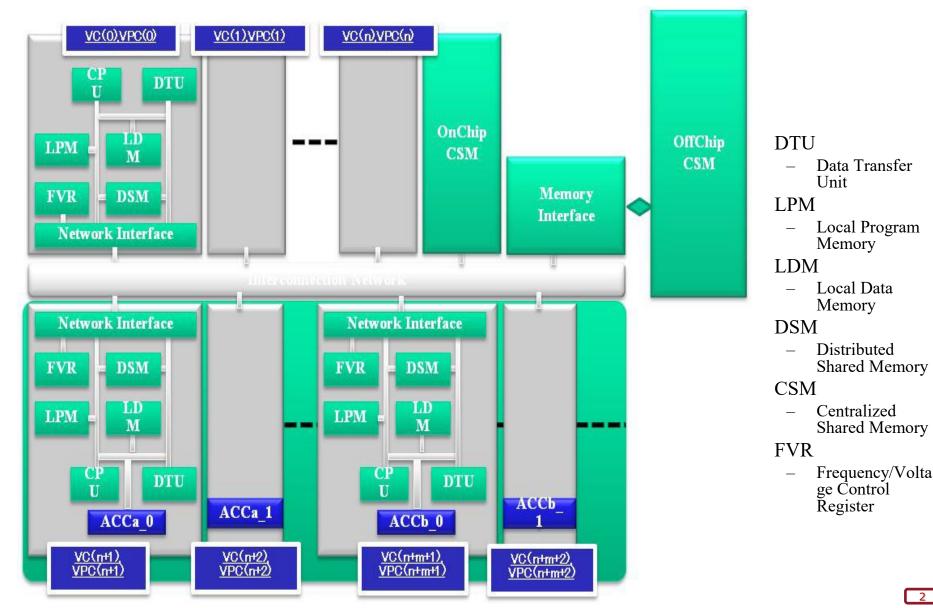
Evolution of Compiler and Multiprocessors with Accelerators

Prof. Hironori Kasahara, IEEE Life-Fellow, IPSJ Fellow Senior Executive Vice President (2018-2022), Waseda University

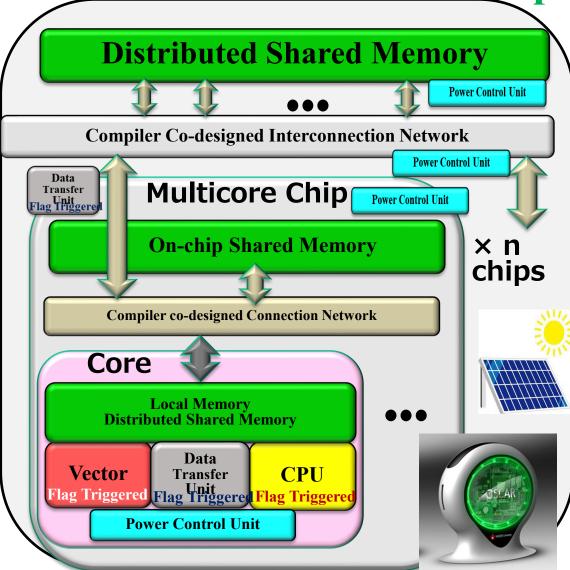
1

IEEE Computer Society President 2018 Board Member: The Academy of Engineering of Japan

URL: http://www.kasahara.cs.waseda.ac.jp/


1980 BS, 82 MS, 85 Ph.D., Dept. EE, Waseda Univ. 1985 Visiting Scholar: U. of California, Berkeley, 1986 Assistant Prof., 1988 Associate Prof., 1989-90 Research Scholar: U. of Illinois, Urbana-Champaign, Center for Supercomputing R&D, 1997 Prof. 2004 Director, Advanced Multicore Research Institute, 2017member: the Engineering Academy of Japan (2020-Board Mem) and the Science Council of Japan **2018 IEEE Computer Society President** Senior Vice President, Waseda Univ. (2018 Nov.-2022 Sept.) **AWARD: 1987 IFAC World Congress Young Author Prize** 1997 IPSJ Sakai Special Research Award, 2005 STARC Academia-Industry Research Award, 2008 LSI of the Year Second Prize, 2008 Intel Asia Academic Forum Best Research Award, 2010 IEEE CS Golden Core Member Award 2014 Minister of Edu., Sci. & Tech. Research Prize 2015 IPSJ Fellow, 2017 IEEE Fellow, Eta Kappa Nu 2019 Spirit of IEEE Computer Society Award, **2020 IPSJ Contribution Award**,

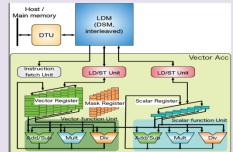
Reviewed Papers: 232, Invited Talks: 230, Granted Patents: 70 (Japan, US, GB, DE, China), Articles in News Papers, Web News, TV etc.: 697


Committees in Societies and Government 287 IEEE Computer Society: President 2018, Executive Committee(2017-2019), BoG(2009-14), Strategic Planning Committee Chair 2018, Multicore STC Chair (2012-), Japan Chair(2005-07), **IPSJ** Chair: HG for Magazine. & J. Edit, Sig. on ARC. [METI/NEDO] Project Leaders: Multicore for **Consumer Electronics, Advanced Parallelizing Compiler**, Chair: Computer Strategy Committee **[Cabinet Office]** CSTP Supercomputer Strategic ICT PT, Japan Prize Selection Committees, etc. [MEXT] Info. Sci. & Tech. Committee, Supercomputers (Earth Simulator, HPCI Promo., Next Gen. Supercomputer K) Committees JST Moonshot Project G3 Robot & AI Vice Chair, [COCN] Board Member in Council of Competitiveness Nippon, etc.

The 36th LCPC2023, Panel: Evolution of Parallel Architecture Targets, Oct. 12, 2023, Univ. of Kentucky

Heterogeneous Multicore Architecture targeted by OSCAR API

OSCAR Green Vector Multicore and Compiler for AI Robots, Automobile, and Smartphone to Data Center and Supercomputer Target:


- **Solar Powered**
- **Compiler power reduction.**

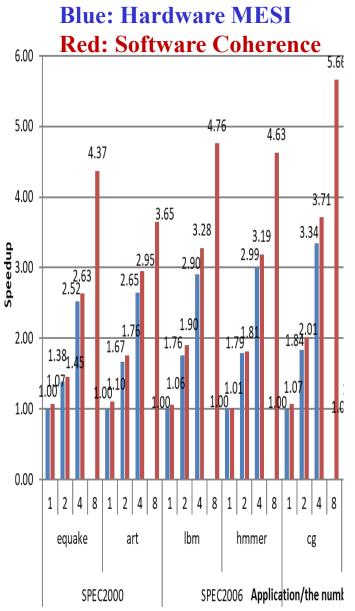
>Fully automatic parallelization and vectorization including local memory management and data transfer.

Vector Accelerator

Features

- Attachable for any CPUs (Intel, ARM, IBM)
- Data driven initiation by sync flags

Function Units [tentative]

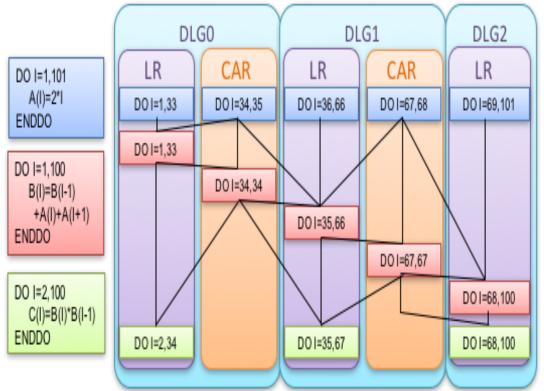

- **Vector Function Unit**
 - 8 double precision ops/clock
 - 64 characters ops/clock
 - Variable vector register length
 - Chaining LD/ST & Vector pipes
- **Scalar Function Unit**

Registers[tentative]

- Vector Register 256Bytes/entry, 32entry
- Scalar Register 8Bytes/entry
- Floating Point Register 8Bytes/entry
- Mask Register 32Bytes/entry

Software Cache Coherence Control

- Software Coherence for Specific Purpose Multicore Chips:
 - Hardware coherence control is getting expensive.
 - Directory Based CC-Numa is very effective, however overhead is large. Software Coherence is effective for specific purpose machines.
 - OSCAR Compiler experiences showed software coherence control gave us efficient execution for some applications than hardware coherence
 - We can use software coherence for specific applications by power gating hardware coherence controller for low power and faster execution.


Automatic Local Memory Management by Compiler

Data Localization: Loop Aligned Decomposition

> Hard Realtime Applications: Automobile, AI-Robot, etc.

Re-producibility is also required. So, automobile companies need software task scheduling and efficient use of a limited size **Block Replacement Policy** of local memory.

Single dimension Decomposition

by OSCAR Compiler

- **Compiler Control Memory block** Replacement
 - using live, dead and reuse information of each variable from the scheduled result
 - different from LRU in cache that does not use data dependence information

Block Eviction Priority Policy

- 1. (Dead) Variables that will not be accessed later in the program
- 2. Variables that are accessed only by other processor cores
- 3. Variables that will be later accessed by the current processor core
- 4. Variables that will immediately be accessed by the current processor core 5

Back to the Future Control

