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Abstract—Assuring the reliability of the OS boot process is
essential to realize reliable computer systems. Secure Boot enables
it by introducing the verification of the boot image with digital
signature and hash values. This can be the basis for various
security mechanisms. However, Secure Boot requires a long
boot time due to their expensive computation costs, resulting in
extended downtime. In this paper, we first implement Secure Boot
in an ordinary RISC-V boot process on U-Boot, a representative
open-source bootloader, and clarify the overhead introduced by
the verification process. Based on the insight obtained above, we
propose a parallelization of the verification process on a multi-
core in Secure Boot. It accelerates the boot process while securely
authenticating the boot image. We implement the proposed
parallel verification process on U-Boot. The evaluation on a
HiFive Unmatched RISC-V board shows that the parallelized
hash computation on four cores achieves 3.96 times better
performance than the original.

Index Terms—Parallelization, Multi-Core Processing, RISC-V,
Secure Boot

I. INTRODUCTION

With the spread of Internet of Things (IoT) technology and
edge computing, security on edge devices and near-edge re-
sources becomes important [1]–[3]. In edge computing-based
IoT systems, gateways and computation nodes are located near
the end users in addition to end devices [4]. Unlike centrally
controlled systems like cloud servers, devices and servers
near the end users may not be tightly managed. Therefore,
they often have security issues, such as insecure placement,
either physically or in terms of network, and unaddressed
vulnerabilities in the system [5], [6]. In such cases, adversaries
can attack not only through remote access but also through
physical access to the devices easily. This means it is easy to
take control of the system by tampering with the firmware or
the OS kernel on the off-chip memory. Nevertheless, devices
and servers at the edge may also handle sensitive data, such
as machine learning models that contain personal information.
Sensitive data must be processed securely, and devices and
servers should have a mechanism to protect the computation
process.

Secure Boot provides a security mechanism that assures the
reliability of a system boot process and can be a counter-
measure against tampering attacks on firmware and an OS
kernel. Moreover, some security mechanisms, such as remote
attestation for code integrity, require Secure Boot as a trusted
basis [7]–[9]. In general, a system boots through multiple
boot stages, including initializing hardware and peripherals,
loading firmware, and executing the bootloader. Therefore,

Secure Boot should ensure the reliability of the entire boot
stages. It verifies the boot images of each stage by hash value
and digital signature at the booting time. Its sequence begins
with the trusted root, called Root of Trust (RoT). RoT is the
trusted, unmodifiable data like a verification key for signature
verification. Based on the data in the RoT, each boot stage
verifies the subsequent boot image in a chain, constructing the
Chain of Trust (CoT). The CoT provides proof of the reliability
of the entire boot process.

There are various implementations of Secure Boot [10].
For security reasons, RoT should be hardware-protected and
immutable. Therefore, in a typical implementation, the reliable
part of the system, such as On-chip ROM, is often selected as
RoT, and the subsequent process is configured in hardware or
software.

Secure Boot schemes based on hardware typically use
additional hardware resources or hardware-dependent func-
tions, such as cryptographic engines, Trusted Platform Module
(TPM), and so on [11]–[13]. The system boot state may be
controlled by hardware. Hardware-based schemes are more
secure and lightweight in terms of computation than software-
based schemes. However, these schemes have restrictions on
implementation targets and difficulties in modification.

Regarding the software-based schemes, the verification pro-
cess is typically implemented in the bootloader [14]. Each boot
stage in the boot process loads and verifies each boot image.
However, expensive computation costs for signatures and hash
values introduce significant boot overhead in such schemes.
Additional hardware modules, such as cryptographic engines
and accelerators, have sometimes been used with the software
to mitigate this overhead.

In this paper, we focus on software-based schemes. We pro-
pose a parallelization method of the Secure Boot verification
process as another acceleration technique. An ordinary hash
calculation used in Secure Boot has difficulty in parallelization
since it operates through the whole boot image from the
beginning to the end in order, resulting in data dependency
among operations. On the other hand, our approach divides
the boot image into multiple chunks and calculates the hash
value for each chunk with its location id to ensure the integrity
of the whole image. The final hash value is calculated from
the hash values of the chunks. Thus, multiple chunks can be
calculated in parallel. The verification process in the boot time
uses the newly calculated hash value. We implemented the
parallelized Secure Boot to U-Boot, a representative open-
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source bootloader [15]. Then, we evaluated the parallelization
performance on a HiFive Unmatched RISC-V development
board with four application cores [16].

The contributions of this paper are summarized as follows:
• We implement Secure Boot on U-Boot for RISC-V sys-

tems and clarify its overhead.
• We propose a parallelization method of hash calculation

in the Secure Boot process.
• We implement the proposed parallel hash calculation in

U-Boot.
• We evaluate the proposed parallel boot image verification

technique on a HiFive Unmatched RISC-V board.
The rest of the paper is organized as follows: Section

II reviews related works about implementations of Secure
Boot, then Section III states the threat model, and Section
IV presents the measurement result that motivates this paper.
Section V proposes the parallelization method of verification.
Section VI explains the implementation of parallelized Secure
Boot to the bootloader. Section VII presents the performance
evaluation results. Finally, Section VIII concludes this paper.

II. RELATED WORKS

Implementations of Secure Boot can fall into two types:
hardware-based and software-based [17]. There are also hybrid
methods that introduce both of them in the verification.

Hardware-based Secure Boot methods for RISC-V SoC
were proposed in [11], [12]. They reduce the Secure Boot time
by introducing hardware cryptographic modules to calculate
hash values and signatures. While they are more lightweight
in computation and robust in terms of security, they also have
many hardware limitations.

Hardware TPM is also used as a hardware-based implemen-
tation [13]. TPM is a hardware co-processor that can be used
as RoT and has a strictly protected register called Platform
Configuration Register (PCR) [18]. The PCR value can be
updated only with the hash value of the combination of the
current PCR value and the input value and cannot be deleted
and replaced. This can build the CoT and assure the reliability
of the entire boot process. However, the overheads of the TPM
initialization and the PCR operation can be highly significant,
delaying the entire boot process [13].

A Hybrid Secure Boot method, which uses hardware-
specific features and software-based verification, is proposed
in [8]. This method uses ARM TrustZone, the isolation tech-
nology implemented in the ARM processors [19], to protect
the verification process and provide Trusted Execution Envi-
ronment (TEE). Secure Boot proceeds on the Secure World
(SW), a physically isolated secure execution environment. In
addition, Secure Boot is used as a trusted base for remote
attestation of the OS and the filesystem image used in Normal
World (NW). Although TrustZone makes this approach more
secure than software-only implementations, the performance
problems are remaining because the verification of Secure
Boot is still a software implementation.

The wolfBoot is a bootloader that implements software-
based verification [14]. It provides a simple verification pro-

cess for boot images and firmware updates. The main target
of the wolfBoot is microcontrollers (MCUs), and it uses
wolfSSL, a lightweight cryptography library for embedded
systems [20]. Such software-based Secure Boot can be applied
by simply installing the bootloader, making it easy to deploy
on several devices. However, the verification can introduce a
considerable boot overhead without hardware acceleration. In
this paper, we make a simple implementation of verification
based on the wolfBoot in U-Boot and accelerate the software-
level verification by parallelization. Note that though the
proposed method is software-based, it is orthogonal to the
hardware-based methods. We can expect further performance
by combining it with the hardware cryptographic modules.

III. THREAT MODEL

This paper assumes that edge devices and near-edge re-
sources, such as IoT devices, edge servers, and IoT gateways,
are the target of attacks. The assumed attacks are the tampering
attacks targeting firmware and OS kernel in the following two
cases. In both cases, the component selected as the RoT is
assumed to be immutable and implicitly trusted.

In the first case, adversaries have physical access to the
target device. They can physically access non-volatile storage
for firmware, tamper with it, and install malicious programs.
This attack is expected to be performed while the device is
down or before the device is deployed.

In the second case, adversaries can access the targets
through the network. If the target system has potential security
vulnerabilities, such as Remote Code Execution (RCE) and
Privilege Escalation, adversaries can exploit these vulnera-
bilities remotely via the network. The exploitation enables
adversaries to execute malicious code for tampering with
firmware. These devices may also have the function to update
the firmware over the network. If this feature is not imple-
mented securely, adversaries can use a malicious image for
update [21], [22].

Secure Boot assures integrity and authenticity of binary
images at a booting time, thus cannot protect from tampering
with unprotected memory sections at run-time. To protect
against tampering at the application’s run-time, we can use
TEE such as RISC-V Keystone [23] and the methods that
provide Remote Attestation (RA) [7]. In this paper, we use
the OpenSBI [24], which implemented the security monitor
of RISC-V Keystone though we do not use Keystone here.
Therefore, the protection of tampering at run-time is out of
the scope.

IV. MOTIVATION

The computation cost of software-based verification is ex-
pensive, resulting in an extended downtime at the system
reboot. This becomes a critical problem for systems that
require high availability. To clarify the actual effects of the
verification during Secure Boot, we implemented a simple
image verification process in U-Boot by referring wolfBoot
[14], then evaluated it on the HiFive Unmatched board [16].
The detail of this board is described in Section VI.
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TABLE I
PERFORMANCE EVALUATION OF SECURE BOOT

Boot Stage Verification [ms] Stage total [ms] Ratio [%]
U-Boot SPL 1286 3051 42.14

OpenSBI - 211.0 -
U-Boot Proper 4492 6625 67.81

Total 5778 9888 58.44

Originally, the HiFive Unmatched board boots Linux
through four boot stages: Zeroth-Stage Bootloader (ZSBL), U-
Boot SPL, OpenSBI [24], and U-Boot Proper. Among these
boot stages, ZSBL, U-Boot SPL, and U-Boot Proper act as
bootloaders to load the images, and OpenSBI is an open-
source implementation of RISC-V Supervisor Binary Interface
(SBI) [25]. ZSBL has special features: it cannot be modified
and runs at an entirely slow clock frequency. Therefore, ZSBL
is outside this evaluation’s scope, and the Secure Boot process
begins at U-Boot SPL. The binary images loaded by each
bootloader are as follows:

• U-Boot SPL
– OpenSBI
– U-Boot Proper
– Flattened Device Tree (FDT) [26]

• U-Boot Proper
– Initial RAM Filesystem (initramfs)
– Linux Kernel
– FDT

The original boot process does not have Secure Boot or
equivalent functionality. Thus, we introduce Secure Boot to the
HiFive Unmatched by implementing the verification process
in U-Boot.

We measure the time taken for verification and the total
processing time for each boot stage. The time taken for each
detailed verification process is also measured. The booting tar-
get is Ubuntu Server 22.04. We conducted the measurements
five times and took the average times. Details of the evaluation
environment are shown in Section VII.

The results shown in Table I indicate that the bootloader’s
verification process can be an overhead. In particular, approx-
imately 4.5 seconds are consumed for verification with the
U-Boot Proper, which is a significant factor in increased boot
time. Furthermore, Table II shows that the hash calculations for
initramfs and kernel are the most significant cause of overhead
of the U-Boot Proper and the overall boot process (underlined
in the table). One of the direct factors of that is the large
size of these images. The initramfs is 97MiB zstd compressed
image, and the kernel is 29MiB bzimage.

According to these results, we consider accelerating hash
calculation performed in the Secure Boot. On a multi-core
machine, parallelization is a fundamental method to acceler-
ate computation at the software level. However, the original
implementation of the hash calculation cannot be parallelized
as it is. Therefore, we propose a parallelizable hash calculation
method presented in Section V.

TABLE II
PERFORMANCE DETAILS OF EACH VERIFICATION PROCESS

Loader Load Target Calculation Time [ms]

U-Boot SPL

OpenSBI Hash 29.16
Signature 384.4

U-Boot Hash 100.7
Signature 384.4

FDT Hash 2.840
Signature 384.4

U-Boot Proper

initramfs Hash 3268
Signature 90.38

kernel Hash 952.8
Signature 90.31

FDT Hash 0.3392
Signature 90.34

Hash…

Data Blocks …

Finalize

Fig. 1. Model of general cryptographic hash function

V. PARALLELIZATION APPROACH

In this section, we describe our approach to parallel hash
calculation. We parallelize it by dividing the entire data into
multiple chunks. Then, we calculate a sub-hash value for each
chunk and obtain the total hash value by accumulating sub-
hash values. This is a variant of Merkle tree-based calculation.

A. Ordinary Hash Calculation

Typically, a hash value is calculated by inputting the entire
file directly into a hash function. This means that a hash
value calculation of a file accumulates data by sequentially
accessing the file from the top to the end (Figure 1). While
this calculation order of the hash value ensures file integrity, it
introduces data dependency among operations. Thus, the orig-
inal hash calculation cannot be parallelized without changing
its calculation method. To parallelize a hash calculation, we
need a method that allows data decomposition and independent
decomposed data calculation while ensuring data integrity.
Therefore, we focused on Merkle tree, which can verify the
whole object from data split into chunks using a tree structure
[27].

B. Merkle Tree

Merkle tree [27] is a hash-based tree structure mainly used
to verify the integrity of distributed data efficiently. It is usually
constructed with a binary tree or an n-ary tree. In a Merkle
tree, the whole data is split into chunks. A tree has leaves,
each of which has a hash value obtained from a chunk of the
data. Similarly, a non-leaf node in the tree has a hash value
obtained from its children nodes. The value of the top node
of the tree is called Root Hash, representing the entire data.
Only Root Hash must be stored securely for verification.

Figure 2 depicts an example structure of a Merkle tree
constructed as a binary tree with eight leaves. In this figure,
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Data Blocks

Root Hash

Fig. 2. Merkle hash tree constructed from data blocks

Hi,j represents a hash value of the j-th node at the i-th level.
A leaf node at the bottom of the tree has a hash value, H3,j ,
obtained from the corresponding data block Bj . For the other
nodes than leaves, the hash value Hi,j is calculated with the
hash function h as follows:

Hi,j = h(Hi+1,2j ||Hi+1,2j+1)

(|| : string combination)

If the values of all children nodes are known, the node’s
value can be calculated independently from other nodes at the
same level. Finally, Root Hash, the value of the tree’s root, is
calculated from its leaves.

When one data block is modified, it changes the value of
the parent node, and the change propagates up to the tree’s
root through intermediate nodes. Thus, verifying a partial
modification of the data can be done by properly tracking back
to the root node. This is less expensive than recalculating the
hash value of the entire data and is one of the advantages of
utilizing the Merkle tree for integrity verification. This feature
is particularly effective in distributed systems.

Merkle tree is built from a chain of hash functions, and
its security proof is equivalent to that of the hash function
itself [28]. Therefore, its security strength depends on the hash
function used.

For parallel processing of hash calculation, it is important
that the original data is split into chunks and their hash values
are independently calculated each other. This resolves the data-
wide dependence of ordinary hash calculation.

C. Our Approach

As described above, Merkle Tree enables parallel hash
calculation by dividing the input data into multiple chunks
and lightweight hash recalculation at a partial data update
by constructing a hash tree. The parallelization of a hash
calculation at Secure Boot does not require hash recalculation
since it must always verify the entire binary image every boot
time. It just needs parallelism at the bottom of the tree instead
of constructing a multi-level tree. Therefore, we introduce a
one-level n-ary tree for parallel hash calculation in our Secure
Boot as depicted in Figure 3.

…

Data

…

Data Blocks

Hash of data blocks
with location id

Root Hash

Split into chunks

Fig. 3. Hashing scheme using one-level n-ary tree

This scheme constructs only a one-level subtree of an n-ary
Merkle tree, where n is the number of data blocks. First, the
original file image is split into smaller data blocks. Then, the
hash values of the data blocks are calculated in parallel. They
become the leaf nodes of the tree. When an image is split
into blocks, it is possible that the hash values from different
blocks coincidentally become the same, for example, at the
padding. Hash values in different blocks should not collide
from a security perspective; thus, the index number of the
blocks is added to the contents as a location identifier before
hashing. Finally, the Root Hash is calculated sequentially after
calculating all leaf nodes. In the Root Hash calculation, the
input size is a multiplication of the number of blocks and the
length of the hash digest. Since hash digests are short, fixed-
length values, the computational complexity of Root Hash is
less than that of the ordinary sequential processing of the
image. Denoting the content of the i-th block as Bi, the
identifier of i-th block as idi, the hash value of the i-th block
as Hi, and the Root Hash as Hroot, the entire calculation with
the hash function h is expressed as follows:

Hi = h(idi||Bi) (0 ≤ i ≤ n− 1) (1)
Hroot = h(H0||H1|| · · · ||Hn−2||Hn−1) (2)

The hash value calculated by the proposed method differs
from the sequentially calculated original one. It also takes
different values depending on the size of the blocks. Therefore,
after determining the size of data blocks for the target image
to be divided, the hash value and signature of the image by
this hashing scheme must be pre-computed.

It is worth mentioning that the security strength of the
proposed parallel hash calculation is the same as that of Merkle
Tree since it is a one-level Merkle Tree.

VI. IMPLEMENTATION

A. Overview

We implement the proposed Parallel Secure Boot for a
HiFive Unmatched RISC-V board. Table III shows the spec-
ification of the HiFive Unmatched board. It has a Freedom
U740 SoC with a SiFive S7 embedded core and four SiFive
U74 application cores.
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TABLE III
SPECIFICATION OF HIFIVE UNMATCHED

Board SiFive HiFive Unamtched
SoC SiFive Freedom U740

CPU Core 1 x S7 Core 4 x U74 Core
ISA RV64IMAC RV64GC(IMAFDC)

Privileged Mode [29] M-Mode
U-Mode

M-Mode
S-Mode
U-Mode

Frequency 1.2GHz (26MHz before PLL init)
L1-I Cache 16KiB/core 2-way 32KiB/core 4-way
L1-D Cache N/A 32KiB/core 8-way

DTIM 8KiB N/A
L2 Cache 2MiB 16-way
DRAM DDR4 16GiB

As mentioned in Section IV, the Linux boot sequence of a
HiFive Unmatched board consists of four stages: ZSBL, U-
Boot SPL, OpenSBI, and U-Boot Proper. We first implement
the Secure Boot verification process in this boot sequence
by referring wolfBoot. Then, we parallelize a part of the
verification process.

B. Secure Boot

The overall structure of the Secure Boot implemented on
the HiFive Unmatched board is depicted in Figure 4. The
implementation details are described below from three points
of view: Root of Trust, Chain of Trust, and Verification
Process.

1) Root of Trust (RoT): As mentioned in Section IV, the
first bootloader ZSBL is excluded from this Secure Boot
process, and the process begins at U-Boot SPL, the second
bootloader. Therefore, we assume that U-Boot SPL is stored in
unmodifiable memory, such as on-chip ROM, and it is the RoT.
We implicitly trust U-Boot SPL binary and its FDT, including
the public key for verification, and establish the CoT based on
it.

U-Boot SPL is stored in external storage in the evaluation
environment because of its hardware specification. The main
objective of this paper is performance evaluation. Thus we do
not pursue security strictness, assuming that the U-Boot SPL
is trusted.

2) Chain of Trust (CoT): According to the assumption of
the RoT above, the CoT can be established from U-Boot SPL.
As depicted in Figure 4, the prior loader verifies and executes
the successor images in order if each verification passes. The
boot sequence is immediately stopped when the verification
fails, and the invalid program execution is prevented. All target
images to be verified must have hash values and signatures.
Such information used in verification is appended as an image
header (“Sig.” in Figure 4). For signature verification, each
bootloader has a public key. The key is installed in the FDT,
which is implicitly trusted or verified before it is used in the
Secure Boot sequence.

3) Verification Process: The overall signing and verification
flow is depicted in Figure 5. Before deploying the image to the
device, the target image must be signed with the generated key

U-Boot SPL

OpenSBI
(w/ Keystone SM)

FDT                 

U-Boot Proper

Linux Kernel

initramfs

FDT

Verify
Load

Verify
Load

Run Switch Priv. Mode
Jump

Boot

Sig.

Sig.

Sig.

Sig.

Sig.

ZSBL

Out of the scope

PubKey
Sig.

FDT                  PubKey

Estimated
Root of trust

Fig. 4. Structure of Secure Boot

Fig. 5. Image signing and verification flow

pair. The private key is used for signing, and the public key
is stored in the FDT of each bootloader. The pre-calculated
hashes and signatures of the binary images are attached to the
images as image headers. The hash value of the public key
is also attached to the image to detect the appropriate key for
verification.

The verification at boot time proceeds as follows:

1) Calculate and verify the hash value of the image
2) Calculate and verify the hash value of the public key
3) Verify the signature

The image header contains information related to the boot
process and the verification other than hash values and signa-
tures. The hash value is calculated to protect them, including
a part of the image header. Denoting the hash value of the
image header as Hhdr, Equation (2) becomes

Hroot = h(Hhdr||H0||H1|| · · · ||Hn−2||Hn−1). (3)

C. Parallel Processing

In this Secure Boot implementation, hash calculation is
performed in U-Boot SPL and U-Boot Proper. As described
in Section IV, the overhead from the hash calculation of
the initramfs and the Linux kernel, the verification targets
of U-Boot Proper, is significant. Therefore, in this paper,
parallelization is implemented to be performed in U-Boot
Proper.
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STARTED

STOPPED

SUSPENDED

sbi_hart_start()

sbi_hart_suspend()

sbi_hart_stop()

Interrupt
or platform event

Fig. 6. State diagram of the HSM Extension omitting pending states [25]

D. Harts Control

U-Boot Proper runs under S-Mode, one of the RISC-
V Privileged Mode [29]. In S-Mode, all hardware threads
(harts) are controlled by the firmware that implements SBI.
An S-Mode application can control harts via SBI Hart State
Management (HSM) Extension [25]. The HSM Extension
introduces a set of hart states and provides SBI ecall functions
that enable S-Mode applications to control hart states. The hart
states consist of three main states: STARTED, STOPPED, and
SUSPENDED, and four pending states between each of them.
Figure 6 shows the state transitions of the HSM Extension
without pending states. When OpenSBI switches the privileged
mode to S-Mode and jumps to U-Boot Proper, only one hart,
called boot hart, is in the STARTED state, and the others are in
the STOPPED state. The boot hart proceeds the boot process
alone and wakes up other harts after initialization in the Linux
kernel. Non-boot harts must be woken up before Linux booting
and set stack pointer to point to the allocated stack area to
use them for parallel processing in U-Boot. Therefore, U-Boot
Proper needs to wake up non-boot harts to initialize the stack
for each hart and then put non-boot harts on standby.

U-Boot does not have functions to control harts using
HSM Extension because parallel processing is generally not
performed in the bootloader. In addition, Linux kernel 5.6 or
later is fully compatible with HSM Extension and does not
work correctly if the non-boot harts are not in the STOPPED
state at the kernel booting time. Considering the above, we
modify U-Boot to realize parallel processing on multiple harts
as described below.

Figure 7 depicts the harts control flow implemented in U-
Boot Proper. In the initialization phase, the boot hart calls the
ecall function sbi_hart_start() to wake up the non-boot
harts, and each hart initializes its stack region. Then, the non-
boot harts wait for interrupts with the wfi instruction. This
enables the boot hart to control the non-boot harts utilizing
Inter-Processor Interruption (IPI). The S-Mode applications
can generate IPI calling the ecall sbi_send_ipi(). Upon
receiving IPI, the non-boot hart executes the given task
and waits for another interrupt. Before booting Linux, the
boot hart sends IPI, and the non-boot harts call the ecall
sbi_hart_stop() to become the STOPPED state.

E. Parallel Task Control

In parallelized block hashing, the hash value calculation
for each block is defined as a parallel task. Since there is
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Fig. 7. Harts control flow using HSM Extension

no significant difference in the calculation of each block, the
number of blocks handled by each thread is allocated evenly.

Task execution control is implemented simply. The boot hart
acts as a master, and non-boot harts act as workers. The master
allocates tasks to workers, executes its tasks, and then monitors
whether the workers have finished the tasks. Task allocation is
performed by utilizing IPI; the master stores task information
in RAM and generates IPI to the workers. It is impossible
to pass any arguments via IPI, and the location of task
information must be pre-defined. When the workers receive
interrupts, they execute the IPI handler, designed to collect
task information and jump to tasks. After the worker complete
tasks, they mark the flags indicating the status of their tasks
located pre-defined position in RAM as completed. The master
monitors these flags and waits to calculate Root Hash until all
threads finish their tasks. These flags read/write instructions
are performed atomically, using fence instructions.

Figure 8 depicts an example of 4-harts task control flow.
Before hash calculation, the master prepares parallel task
information to pass to the workers, and all the workers are
waiting for interruption by executing wfi instruction. After
the master sends IPI to the workers and the workers receive it,
hash calculation is started on all harts. In this example, for N
data blocks B0 . . . BN−1, the master and worker 1-3 perform
hash calculations of B0 . . . Bi−1, Bi . . . Bj−1, Bj . . . Bk−1,
Bk . . . BN−1, respectively (0 < i < j < k < N). The
master waits until all workers have finished their task, and
the workers wait for another interruption again. Finally, the
master calculates Root Hash and verifies the signature.
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Fig. 8. Example of 4-threads parallel hash calculation flow

TABLE IV
SOFTWARE USED FOR EVALUATION

Firmware OpenSBI v1.1 (w/Keystone SM)
Bootloader U-Boot v2022.07 (Modified)
Crypto Lib. wolfSSL v5.5.0-stable

Algorithm (Hash/Signature) SHA3-384 / ED25519

Boot Target Ubuntu Server 22.04
Linux 5.15.0

OS for pre-evaluation Freedom U SDK 2022.12.00
Linux 5.19.14

VII. EXPERIMENTAL EVALUATION

In this section, we first describe the preliminary evaluation
of the parallelized hash calculation. Then, we demonstrate
the performance of the parallelized Secure Boot. Table IV
shows a set of software used for the evaluation. SHA3-384
and ED25519 are selected as hash and signature algorithms,
respectively. Parallelization is configured to use four U74
application cores shown in Table III, and initramfs and Linux
kernel are selected as parallelization target images. All results
are the averages of five times measurements.

A. Preliminary Evaluation

First, we implement the parallelized hash calculation as a
Linux user application to determine the appropriate size of the
data blocks (block size). We evaluate the execution time for
hash calculation, varying the block size from 1KiB to 160KiB.

Table V shows the measurement results of our parallelized
hash calculation. The top row is the result of the original im-
plementation for sequential calculation. The computation time
decreases as block size increases, and almost converges around
80KiB (initramfs: 885 ms, kernel: 260 ms). Compared to the
original sequential one, the computation times of initramfs and
kernel are 3.96 and 3.92 times faster, respectively, in the 80KiB
blocks (initramfs: 3503 ms → 885.0 ms / kernel: 1018 ms →
259.9 ms).

Although we have no clear criteria for determining block
size, several observations exist. The improvement of compu-
tation time between larger blocks is negligible. In addition,
larger blocks can significantly differ in computational com-
plexity for a single block, which can worsen parallelization
efficiency. However, smaller blocks can increase memory
consumption. In this implementation, the hash values of all
blocks are stored in the memory until the Root Hash is
calculated. We need to consider the available resources and
computing performance to choose an appropriate block size.

TABLE V
PERFORMANCE EVALUATION OF BLOCK HASHING

Block Size
[KiB]

Time [ms]
initramfs kernel

Sequential Parallel Sequential Parallel
- 3503 - 1018 -
1 4335 1281 1262 374.1
2 3935 1086 1145 317.9
4 3659 968.9 1065 284.2
8 3601 931.3 1048 272.6

16 3530 903.2 1027 264.8
32 3516 894.5 1023 261.7
64 3502 889.9 1019 260.5
80 3500 885.0 1019 259.9
96 3497 888.0 1018 261.3
112 3497 884.3 1018 260.0
128 3495 889.0 1018 261.2
144 3495 886.5 1017 261.8
160 3493 881.4 1017 262.4

B. Parallelized Secure Boot

Based on the preliminary evaluation results above, we set
the block size to 80KiB and measure the entire parallelized
Secure Boot process.

The performance evaluation in the bootloader is performed
using Hardware Performance Monitor (HPM) [30]. The HPM
has Control and Status Register (CSR) that counts executed
cycles in each hart. We can measure elapsed cycle simply
by reading mcycle (M-Mode) register and cycle (other
privilege modes) register. After measuring elapsed cycles,
the elapsed time can be calculated from the clock frequency
(1.2GHz). The measurement is performed on the boot hart,
which monitors the worker harts.

Table VI shows the measurement result of the overall boot
stages, and Table VII shows the measurement result of each
verification process. Comparing Table VI with Table I, the
total verification time becomes 2.24 times faster (5778 ms
→ 2625 ms), and the overall time taken for boot becomes
1.41 times faster (9888 ms → 6987 ms). The ratio of the
verification process in the boot sequence has also been reduced
to 37.57% from 58.44%, which means that the overhead has
been reduced.

Concerning the verification details, both the initramfs and
kernel hash calculation, which applied parallelization, are less
than a second (underlined in Table VII). This indicates a
speedup of 3.96× (3268 ms → 824.9 ms) and 3.92× (952.8
ms → 242.8 ms), respectively, compared to the simple sequen-
tial implementation measured before. The acceleration ratios
are almost equal to the results obtained in the preliminary
evaluation and are also close to the number of threads (four).
This means that the effect of parallelization is sufficient, as
the impact of the sequential Root Hash calculation and other
overhead is minimal.

VIII. CONCLUSION

In this paper, we have proposed a parallelization method of
hash calculation in Secure Boot and implemented the method
on a HiFive Unmatched RISC-V board with four application
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TABLE VI
PERFORMANCE EVALUATION OF PARALLELIZED SECURE BOOT

Boot Stage Verification [ms] Stage total [ms] Ratio [%]
U-Boot SPL 1286 3024 42.52

OpenSBI - 211.3 -
U-Boot Proper 1339 3752 35.69

Total 2625 6987 37.57

TABLE VII
PERFORMANCE DETAILS OF PARALLELIZED VERIFICATION PROCESS

Loader Load Target Calculation Time [ms]

U-Boot SPL

OpenSBI Hash 29.16
Signature 384.3

U-Boot Hash 100.8
Signature 384.4

FDT Hash 2.840
Signature 384.5

U-Boot Proper

initramfs Hash(Parallel) 824.9
Signature 90.27

Kernel Hash(Parallel) 242.8
Signature 90.43

FDT Hash 0.3405
Signature 90.25

cores. This method divides the target images into multiple
blocks, each of which has an independent hash value. The hash
calculation for each divided block includes its id number and
body to ensure the integrity of the target image. This makes it
possible to calculate the hash value of each block in parallel.

The evaluation of four-thread parallelization on a HiFive
Unmatched board confirmed that the hash calculation could
be up to 3.96 times faster, and the overall boot process could
be 1.41 times faster than the original implementation.
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