
Rephrasing Polyhedral Optimizations with Trace
Analysis

Hugo Thievenaz
Laboratoire de l’Informatique du

Parallélisme
CNRS, ENS de Lyon, Inria, UCBL,

Université de Lyon
Lyon, France

Hugo.Thievenaz@inria.fr

Keiji Kimura
Department of Computer Science and

Engineering
Waseda University

Tokyo, Japan
keiji@waseda.jp

Christophe Alias∗
Laboratoire de l’Informatique du

Parallélisme
CNRS, ENS de Lyon, Inria, UCBL,

Université de Lyon
Lyon, France

Christophe.Alias@inria.fr

ACM Reference Format:
Hugo Thievenaz, Keiji Kimura, and Christophe Alias. 2022. Rephras-
ing Polyhedral Optimizations with Trace Analysis. In Proceedings of
12th International Workshop on Polyhedral Compilation Techniques
(IMPACT’22). ACM, New York, NY, USA, 3 pages.

1 Introduction
Compilers must restructure the application to use as best
as possible computing and storage resources. In general,
compiler optimizations are fragile and highly depend on
the shape of the source code. The polyhedral model [5, 6,
9, 10] provides the mathematical foundations to develop
domain-specific compiler optimizations focusing on compute-
intensive scientific kernels with affine loop kernels manip-
ulating arrays. If polyhedral optimizations are precise and
powerful, they often lack of scalability. For instance, max-
fusion loop tiling [4] freezes when applied directly to large
loop nests, like those implementing deep learning algorithms
[7]. Also, array contraction [1] do not scale when applied
to HLS, where hundreds of buffers needs to be allocated [2].
An attentive analysis show that most of the time is spent in
static polyhedral operations – projections, parametric ILP,
subtractions or combinations of piecewise affine mappings.

In this paper, we defend the iconoclast idea that polyhedral
optimizations might be computed without those operations,
simply by applying a lightweight analysis on a few off-line
execution traces. The main intuition being that, since polyhe-
dral transformation are expressed as affine mappings, only a
few points are required to infer the general mapping. Our
hope is to compute those points from a few off-line execu-
tion traces. We focus on array contraction, a well known
technique to reallocate temporary arrays thanks to affine
mappings A[®i] 7→ Â[σA(®i, ®N)] so the array size is reduced.
Our contributions to this problem are the following:

∗Corresponding author

IMPACT’22, June 20, 2022, Budapest, Hungary
2022.

• We outline an off-line trace analysis to infer a contrac-
tion mapping of the form σA(®i, ®N) = ®i mod ®b(®N), re-
producing the results of the successive minimamethod
[8].
• In particular, we describe a liveness algorithm from an
execution trace, and another to compute the maximum
number of variables alive alongside a dimension, from
which we get our scalar modular mappings. We show
that a simple interpolation allow to infer the modulo
mapping ®N 7→ ®b(®N).

This paper is structured as follows. Section 2 illustrates
the array contraction problem. Section 3 outlines our trace
analysis approach. Section 4 presents our preliminary results.
Finally, Section 5 concludes this paper and draws future
research directions.

2 Focus: array contraction
Array contraction consists in finding a mapping A[®i] 7→

Â[σA(®i, ®N)] reducing the size of A, where ®N is the vector of
structure parameters. We illustrate array contraction on the
Blur filter kernel:

f o r (y =0 ; y <2 ; y++)
f o r (x =0 ; x<N ; x++)
blurx [x , y] = in [x , y] + in [x+1 , y] + in [x+2 , y] ;

f o r (y =2 ; y<N ; y++)
f o r (x =0 ; x<N ; x++) {
blurx [x , y] = in [x , y] + in [x+1 , y] + in [x+2 , y] ;
out [x , y] = blurx [x , y−2] + blurx [x , y−1] + blurx←↩

[x , y] ;
}

This kernel applies two consecutive elementary convolu-
tions on the input signal in. The first convolution is bufferized
to the array bluxr, in turn processed by the next convolution.
With the canonical sequential schedule θ , blurxmight be con-
tracted with the mapping (x ,y,N) 7→ (x mod N ,y mod 3).
So far, that mapping was derived in two steps. First (step

1) an array liveness analysis is applied to compute the con-
flict relation ▷◁θ , relating array cells whose liveness intervals
intersect. Then (step 2), the conflict relation is analyzed to
infer a minimum-range mapping such that conflicting arrays

IMPACT’22, June 20, 2022, Budapest, Hungary Hugo Thievenaz, Keiji Kimura, and Christophe Alias

cells are mapped to different places:

blurx(®i) ▷◁θ blurx(®j) ∧ ®i , ®j ⇒ σblurx (®i, ®N) , σblurx (®j, ®N)

Both steps require polyhedral manipulations. Step 1 requires
to check the emptiness of integer polyhedra. Depending on
the contraction algorithm, step 2 may require rational projec-
tions ([8]), mixed-LP ([1]), or parametric lexico-minimization
of integer polyhedra ([3]). Both steps are expensive. In this
paper, we use an oracle which assumes the precomputation
of the conflict relation. Thus, we focus on improving step 2.

3 Our approach
The following diagram outlines our approach.

Input program (P,θ)

Step 1: Log trace

Step 2: Get optimal
mapping for trace

Step 3: Interpolation

Next parameter instance

Step 4: Check
with Conflict Set Fail

Array contraction mapping σ

Pass

We execute the input kernel on small parameter values (step
1). Then, we apply a liveness dataflow analysis on the trace to
infer the conflict relation, summarized as a conflict difference
set Da = {®i − ®j | a(®i) ▷◁θ a(®j)} (step 2). Since Da is finite,
the successive minima might be instanciated and computed
with a small cost. Finally, we try to infer a parametrized
modulo using an affine interpolation. If the mapping inter-
polated is correct (step 4), it is returned. Else we iterate on
the next parameter value. Many open problems need to be
investigated. How the parameters should be chosen? So far
we considered programs with a single parameter N . In case
several parameters are considered, one need to select lin-
early independant parameters. Other point, the contraction
mapping is usually piecewise affine. With our method, we
actually seek for the dominating value (on the biggest piece,
not on the corners). How to guess parameters on that piece
is still an open problem. Finally, we still depend on an oracle
computed by means of polyhedral operations. We believe
we can get rid of that oracle, providing we actually apply
an instance of a polyhedral algorithm (here the successive
minima).

4 Preliminary results
This section presents the preliminary results obtained with
our approach. Our method have been implemented and eval-
uated on the following kernels, whose code is detailed in
[11]:
• pc-1D is a simple producer/consumer through a 1D-
array. The producer and the consumer access the array
cells in the same order with a phase shift of two steps.
• pc-2D-single is a perfect loop nest operating over a
2D array with dependence vectors (1,0) and (0,1).
• pc-2D-single is a perfect loop nest operating over a
2D array with dependence vectors (1,0) and (0,1). Only
the last array column is live-out.
• blur is the motivating example.

Our analyzer and the kernels have been compiled using gcc
9.3.0, the timings are obtained on an Intel Core i5-1135G7
CPU running at 2.40GHz. The results are depicted on the
following table.

Kernel Array Size Mapping found It. Runtime
pc-1D A N i mod 2 2 1.04 ms
pc-2D A N × N i mod N , j mod N 2 13.0 ms

pc-2D-single A N × N i mod 2, j mod N − 1 2 14.2 ms
blur blurx N × N x mod N ,y mod 3 2 13.1 ms

For each kernel and each arraywe provide the original size,
the mapping inferred from our algorithm. It. is the number
of iterations before interpolating a correct mapping. For all
kernel we tried N = 2, then N = 3, except for the blur
kernel, which required N = 3 and 4, since N = 2 is a corner
case. Must of the time is lost in the oracle. This must still be
improved to provide competitive execution times.

5 Conclusion
In this paper, we have presented a first step toward a trace-
based polyhedral model through array contraction. We have
outlined a method able to infer a modulo mapping given
a canonical basis from a few off-line executions traces. We
have also shown that interpolation of the parameters from a
subset of the possible traces is possible, and we have applied
it to our examples. We have shown results that reproduce the
original successive modulo method and answered positively
to the question of generalization from a subset of traces.
In the future, we seek to apply the same process to more

benchmarks of the polyhedral community, as our experimen-
tations were limited by time. We also look forward to apply
finer analysis on the modulo parametrization, like heuristics
to choose parameter values that are relevant to both the con-
flict set checking and the interpolation, and more generally
a finer approach to the choice of basis for any array alloca-
tion problem. The first parameter will also be investigated.
Finally, we plan to get rid of the oracle and focus on pure
trace analysis.

Rephrasing Polyhedral Optimizations with Trace Analysis IMPACT’22, June 20, 2022, Budapest, Hungary

References
[1] Christophe Alias, Fabrice Baray, and Alain Darte. 2007. Bee+ Cl@ k:

An implementation of lattice-based array contraction in the source-to-
source translator Rose. ACM SIGPLAN Notices 42, 7 (2007), 73–82.

[2] Christophe Alias and Alexandru Plesco. 2021. Data-aware process
networks. In Proceedings of the 30th ACM SIGPLAN International Con-
ference on Compiler Construction. 1–11.

[3] Somashekaracharya G Bhaskaracharya, Uday Bondhugula, and Albert
Cohen. 2016. Automatic storage optimization for arrays. ACM Trans-
actions on Programming Languages and Systems (TOPLAS) 38, 3 (2016),
1–23.

[4] Uday Bondhugula, Albert Hartono, Jagannathan Ramanujam, and
Ponnuswamy Sadayappan. 2008. A practical automatic polyhedral
parallelizer and locality optimizer. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation. 101–113.

[5] Paul Feautrier. 1992. Some Efficient Solutions to the Affine Scheduling
Problem, Part II: Multi-Dimensional Time. International Journal of
Parallel Programming 21, 6 (Dec. 1992), 389–420.

[6] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. In
Encyclopedia of Parallel Computing. 1581–1592.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2017. Ima-
geNet Classification with Deep Convolutional Neural Networks. Com-
mun. ACM 60, 6 (may 2017), 84âĂŞ90. https://doi.org/10.1145/3065386

[8] Vincent Lefebvre and Paul Feautrier. 1998. Automatic storage manage-
ment for parallel programs. Parallel computing 24, 3-4 (1998), 649–671.

[9] Patrice Quinton and Vincent van Dongen. 1989. The mapping of
linear recurrence equations on regular arrays. Journal of VLSI signal
processing systems for signal, image and video technology 1, 2 (1989),
95–113.

[10] Sanjay V. Rajopadhye, S. Purushothaman, and Richard M. Fujimoto.
1986. On synthesizing systolic arrays from Recurrence Equations
with Linear Dependencies. In Foundations of Software Technology and
Theoretical Computer Science, Kesav V. Nori (Ed.). Lecture Notes in
Computer Science, Vol. 241. Springer Berlin Heidelberg, 488–503.

[11] Hugo Thievenaz, Keiji Kimura, and Christophe Alias. 2021. Towards
Trace-Based Array Contraction. Research Report. Inria ; Waseda Uni-
versity. https://hal.inria.fr/hal-03482055

https://doi.org/10.1145/3065386
https://hal.inria.fr/hal-03482055

	1 Introduction
	2 Focus: array contraction
	3 Our approach
	4 Preliminary results
	5 Conclusion
	References

