
Parallelizing Factory Automation Ladder Programs by
OSCAR Automatic Parallelizing Compiler

Tohma Kawasumi1, Yuta Tsumura1 Hiroki Mikami1, Tomoya Yoshikawa2,3, Takero
Hosomi2,4, Shingo Oidate2,5, Keiji Kimura1,6, and Hironori Kasahara1,7

1 Waseda University,27 Waseda-machi, Shinjuku-ku, Tokyo, 1620042 {tohma, tmtmwaseda,
hiroki}@kasahara.cs.waseda.ac.jp

2 Mitsubishi Electric Corporation, Tokyo Building, 2-7-3, Marunouchi, Chiyoda-ku, Tokyo,
1008310

3 Yoshikawa.Tomoya@aj.mitsubishielectric.co.jp
4 Hosomi.Takero@ap.mitsubishielectric.co.jp
5 Oidate.Shingo@dx.mitsubishielectric.co.jp

6 keiji@waseda.jp
7 kasahara@waseda.jp

Abstract. Programmable Logic Controllers (PLCs) and their programming lan-
guage, or Ladder language, have been widely used for more than 50 years to
control plants like Factory Automation or FA. Demands for higher performance
of Ladder programs on PLCs are increasing along with increasing functionality
and complexity of plants, as well as growing numbers and variety of sensors
and actuators. Traditional clock frequency improvement of a CPU in a PLC is
inappropriate to satisfy them since high reliability and robustness are essential for
plant control, because of surrounding electrical noise. Instead, parallel processing
on a multicore seems to be a promising approach. However, Ladder programs
have poor loop parallelism and basic block level fine task granularity. This paper
proposes a parallelization technique of Ladder programs by OSCAR automatic
parallelizing compiler. It first translates a source Ladder program into an OS-
CAR compiler-friendly C program by a newly developed automatic translation
tool. Then, the compiler parallelizes it. At the parallelization, the OSCAR com-
piler employs parallelism among macro tasks, each composed of a basic block in
this application. However, the execution time of a basic block is relatively short
compared with data transfer and synchronization overhead. Therefore, macro-task
fusion is applied considering data dependency among macro tasks on a macro
task graph so that the execution time of the fused macro task can be longer than
the overhead and the parallelism among the fused macro tasks can be kept. Before
the macro task fusion, the duplication of the basic block having a conditional
branch and the graph transformation changing a macro task graph with control-
dependence edges into a macro-task graph with just data dependence edges are
applied. Finally, the macro tasks on the macro task graph having data dependence
edges are statically scheduled on processor cores. A performance evaluation on
two ARM Cortex A53 cores on a Zynq UltraScale+ MPSoC ZCU102 shows the
proposed technique can reduce 17% of execution clock cycles, though a parallel
program before the proposed task fusion needs twice longer execution time on
two cores against a sequential execution.



2 Authors Suppressed Due to Excessive Length

Keywords: Ladder-program · Parallelizing compiler · Task fusion · Static schedul-
ing.

1 Introduction

Instead of classic hardwired relay circuit-based sequence controllers, Programmable
Logic Controllers (PLCs) consisting of CPUs have been widely used for plant control
because of their flexibility, low maintenance cost, and small footprint. Among several
PLC programming languages, Ladder language is a representable one. It can represent
relay circuits and offers a low transition cost from classic sequence controllers. A
Ladder program consists of two kinds of circuit blocks: condition parts and execution
parts. Condition parts process boolean operations and check their results. Execution
parts include operations, which are executed according to the results from condition
parts.

Along with the advancement of plant control technology, demands for higher ex-
ecution speed of Ladder programs are also increasing. Lower response time of PLC
obtained by reduced Ladder program execution time allows more sensors and actuators
resulting in precise target plant control. Further, recent plants’ scale tends to become
larger and more complicated, and their Ladder programs are also more extensive. This
trend also introduces the motivation for faster Ladder program execution time.

A traditional approach of increasing the clock frequency of a CPU in a PLC is
inappropriate because it makes keeping high reliability and durability difficult in a high
electrical noise plant environment. Parallel processing of a Ladder program seems to
be a promising approach to accelerate it. However, it usually has low loop parallelism
and fine task granularity, resulting in the difficulty of employing conventional loop-level
parallel processing and simple task parallel processing. Since a PLC is usually used in
a severe environment, low heat dissipation realized by low power consumption is also
expected.

Several parallel acceleration techniques for Ladder programs have been proposed.
One focuses on logic operations in a program and reduces executed instructions. Another
tries to parallelize Ladder programs. However, they are difficult to deal with indirect
access by an index register, which a Ladder program characteristically uses. Program
restructuring techniques for program acceleration are also challenging.

In contrast, we have developed OSCAR (Optimally SCheduled Advanced multipro-
cessoR) automatic parallelizing compiler [3–5]. It employs coarse grain task parallel
processing and near-fine grain parallel processing, in addition to conventional loop
iteration-level parallel processing. Further, we parallelized engine control programs,
which have poor loop parallelism. At this time, branch duplication and task-fusion were
employed to make task granularity coarser and enable static scheduling to cope with
basic block fine granularity avoiding dynamic scheduling overhead. While they can be
also efficiently used for Ladder programs, finer task granularity in a target program must
be overcome.

This paper proposes an acceleration technique for Ladder programs by OSCAR
automatic parallelizing compiler. It first translates a source Ladder program into a C
program. Then, the compiler parallelizes it. At the parallelization, the compiler exploits



Title Suppressed Due to Excessive Length 3

coarse grain task parallelism from a translated C program. The compiler also com-
bines coarse grain tasks considering available parallelism to mitigate synchronization
overhead, in addition to previously proposed branch-duplication and task-fusion for hid-
ing if-statements. Finally, the parallelized program is statically scheduled on processor
cores.

This paper includes the following contributions:

– We developed a Ladder-to-C translator. It enables the OSCAR compiler to parallelize
Ladder programs.

– We propose a task-fusion technique to mitigate synchronization overhead from fine
task granularity in a Ladder program.

– We conducted an experimental evaluation using industry-provided programs. It
reveals the proposed technique can reduce 17% of execution clock cycles.

The rest of the paper is organized as follows. Section 2 introduces the related works.
Section 3 describes Ladder language. Section 4 introduces the proposed Ladder transfor-
mation method in this paper. Section 5 provides the overview of OSCAR automatically
parallelization compiler. Section 6 shows the evaluation results of our proposed methods
on the application from the industry. Section 7 concludes the paper.

2 Related Works

Vasu proposed a parallelization technique for Ladder programs called Soft-PLC. [8]. It
converts a Ladder program into an intermediate representation, performs dependency
analysis on it for each circuit block using a Python program, and achieves speed-up
through parallelization by using Python’s multi-process execution model.

Regarding parallelization of control programs, several studies on model-based design
such as MATLAB/Simulink have been studied. Zhong achieved parallelization by using
parallelism between blocks in a model [10]. Umeda realized speed-up by exploiting
parallelism within blocks in addition to the parallelism between blocks in a model [7].
Similar to the model-based development, a Ladder program can be represented as a block
diagram. However, its program structure is difficult to grasp resulting in the difficulty
of parallelization. To overcome this problem, this paper proposes a Ladder program-
to-C translator. OSCAR compiler takes the result C code by the translator, exploits
parallelization, and generates a parallelized C code by inserting OpenMP or OSCAR-
API directives. In addition, the compiler generates a macro task graph that represents
the data and control dependencies of the program, making it possible to easily check the
program structure.

3 Ladder Language

A Ladder program is a model of sequence control [9], which was conventionally per-
formed by relays and switches. There are two types of representations of a Ladder
program: Ladder diagrams, which directory represent a control circuit as a block dia-
gram, and instruction lists (ILs), which represent a Ladder diagram in a text format. A



4 Authors Suppressed Due to Excessive Length

developer usually develops a program in a Ladder diagram on a development tool, and
it can output ILs from the diagram format.

A Ladder diagram consists of Ladder rungs and Ladder instructions. Ladder in-
structions are connected with both ends of a Ladder rung. A circuit that starts with an
instruction connected to the left Ladder rung and ends with an instruction connected to
the right Ladder rung is called a circuit block. A Ladder diagram is composed by con-
necting these circuit blocks. A circuit block represents an instruction and its execution
condition. A Ladder instruction referring to a memory value is called a device. Typical
devices include input X and output Y with logic values, internal relay M that holds bit
information inside the PLC, device K that holds an immediate value, word device D that
handles 16-bit word data, timer device T that measures time, and counter device C that
counts numbers. A device is represented by a pair of device symbol and number, which
indicates a location of the device to be accessed. For example, X3 uses the value of the
third element of input device X.

In a conditional part of a circuit block, (1) “Open contact” and (2) “Close contact”
in Figure 1 are used. An open contact in this figure is turned on when X0 is 1, and
a close contact is turned on when X0 is 0. An execution part of a circuit block uses
(3) “OUT instructions” and so on. An OUT instruction is a special instruction that is
always executed and holds 1 in M0 when the condition is satisfied and holds 0 when the
condition is not satisfied. Other instructions are executed when a condition is satisfied,
and there are various instructions such as data transfer instructions and four arithmetic
operations.

Symbols used in Ladder diagrams are expressed in IL language such as LD, AND,
OUT, +, and so on. A conditional part can have LD and LDI, which handle open and
close contacts respectively as contact start instructions, and AND, OR, ANI, and ORI,
which combine contacts. An execution section uses IL instructions, including an OUT
instruction shown in (3) of Figure 1, a “+” instruction for addition, a “-” instruction for
subtraction, and a MOV instruction for data transfer.

A Ladder program is executed from left to right and top to bottom. Then, when an
END instruction is executed, it is executed again from the top to the bottom. Figure 2
shows an example of a Ladder diagram and Figure 3 shows a corresponding Ladder ILs,
respectively. The execution flow of this program is as follows:

1. If X0 is closed, M0 sets as 1 (close), else M0 sets as 0 (open).
2. If X2 and M0 are closed, add 2 to D2.
3. If X2 and M1 are closed, subtract 2 from D2.
4. Go back to step 1 unconditionally.

Execution time from the first instruction to the END instruction is called scan time, and
there is a demand for faster scan time.

4 Ladder Program Transformation

This section explains the proposed Ladder-to-C translator. Considering the fact that a
Ladder program consists of conditional parts and execution parts, the translator translates
a circuit block in a source Ladder program into an if-statement in an output C program.



Title Suppressed Due to Excessive Length 5

X0

(1) Open contact

X0

(2) Close contact (3) OUT instruction

M0

Fig. 1. Symbols used in Ladder diagrams

X0

M0

+ K2 D2

X2 M0

M1

- K2 D2

END

Circuit block1

Circuit block2

Circuit block3

Fig. 2. Example of a Ladder diagram. A Ladder diagram consists of Circuit blocks. They start
with a part connected to a power rail on the left side. Circuit block1 includes an open contact X0
and OUT instruction for M0. Circuit block2 includes 3 contacts and 2 instructions. Circuit block3
includes only END instruction.

4.1 Translation of Instructions around Contacts

An open contact by an LD instruction or a close contact by an LDI instruction is
translated into a single if clause to realize its conditional behaviors explained in Section
3. In addition, a Ladder program has MPS instructions to push contact operation results
onto the stack, MRD instructions to load from the stack, and MPP instructions to pop
from the stack. Our translator handles these three instructions as follows.

– MPS: Start an if clause using the result of the contact operation up to the immediately
preceding point, and execute the subsequent instructions inside this if clause.

– MRD: Output an if clause using the results of the contact operations up to the
previous point.

– MPP: Output an if clause using the results of the contact operations up to the previous
point. After the output of the immediately preceding result section is completed,
close one if clause.

4.2 Device Handling in Ladder Translator

The proposed translator translates devices representing data in a source Ladder program
into arrays in a generated C program. At this time, each device number explained Section



6 Authors Suppressed Due to Excessive Length

LD 
OUT 
LD

MPS
AND 

+ 
MPP
AND 

-
END

X0
M0
X2

M0
K2 D2

M1
K2 D2

Fig. 3. Example of a Ladder instruction list. The left and right sides show instructions and
arguments, respectively.

3 corresponds to each array element in the generated array in the C program. By doing
so, the compiler can analyze data dependency among Ladder operations accessing the
devices, resulting in exploitation of the parallelism from the Ladder program.

4.3 Translation Example

Figure 4 shows the example of translation by the Ladder-to-C translator. It translates LD
instructions into if clauses. As described in section 3, an OUT instruction is executed
unconditionally. Thus, as shown in the first five lines on the right side of Figure 4,
the result of “LD X0” is once stored in a temporal variable, then an assign statement
corresponding “OUT M0” stores the value in the temporal variable into “M[0].” MPS
instruction starts an if clause using the X2 from the previous LD instruction. AND in-
struction after the MPS instruction also starts if clause to express the execution condition
for the add instruction in Figure 3. After translating the add instruction, the translator
closes the if clause started by the AND instruction placed before the add instruction.
MPP instruction and AND instruction start the if clause using the device M1. After
translating the subtraction instruction, the translator closes both if clauses opened by the
AND and MPS instructions. As mentioned in Section 4.2, all devices in the Ladder are
translated into arrays. Note that the device K holds an immediate value, therefore it is
translated into an integer value that it holds, instead of an array element.

5 OSCAR Automatic Parallelizing Compiler

5.1 Macro Task Level Parallelization

One of the main features of the OSCAR automatic parallelizing compiler is exploitation
of Macro Task (MT) level parallelism in addition to conventional loop-iteration level
parallelism and statement level near-fine grain parallelism. The compiler defines basic
blocks, loops, and function calls in a source program as macro tasks. For Ladder
programs, almost all macro tasks are basic blocks.

In macro task level parallel processing, or coarse grain task parallel processing,
the compiler divides a source program into macro tasks. Then, the compiler analyses



Title Suppressed Due to Excessive Length 7

LD 
OUT 
LD

MPS
AND 

+ 
MPP
AND 

-
END

X0
M0
X2

M0
K2 D2

M1
K2 D2

tempM0 = 0;
if(X[0x0]){

tempM0 = 1;
}
M[0] = tempM0;
if(X[0x2]){

if(M[0]){
D[2] = D[2] + 2;

}
if(M[1]){

D[2] = D[2] – 2;
}

}

Circuit block1

Circuit block2

Circuit block1

Circuit block2

Fig. 4. Translation example of a Ladder diagram shown in Figure 2. One circuit block translated
into one if clause.

control flow and data dependencies among them. The analysis result is represented as
a macro flow graph (MFG). Figure 5 shows an example of MFG. In the figure, a node
represents a macro task. A small circle at a bottom of an MT represents a conditional
branch. A solid edge represents a data dependence and a dotted edge represents a control
dependence, respectively. Next, the compiler performs the earliest executable condition
(EEC) analysis from an MFG. For each macro task, an earliest executable condition
represents when the macro task can start its execution the earliest considering its data
dependence and control dependence. The compiler generates a macro task graph (MTG)
as a result of the earliest executable condition analysis, which naturally represents the
parallelism among macro tasks.

Figure 6 shows an example of MTG. A solid edge represents data dependence and
a dotted edge represents a control dependence, respectively. A solid arc in front of a
macro task is an AND arc, representing the macro task can start when all data and
control dependencies bound by it are satisfied. Similarly, a dotted arc is an OR arc,
which represents the macro task can start when one of data and control dependencies
bound by it is satisfied.

After generating a macro task graph, macro tasks are assigned to cores in a target
multicore for parallel execution. At this time, the compiler chooses dynamic schedul-
ing or static scheduling. Dynamic scheduling determines the allocation at the program
execution time, while static scheduling determines it at the compile time. Dynamic
scheduling can deal with conditional branches and task execution cost fluctuation ap-
propriately, while it introduces runtime scheduling overhead. On the other hand, static
scheduling has no scheduling overhead at runtime because it can schedule in advance
when an MTG has no conditional branch [6].

5.2 Basic Block Decomposition

If a macro task is a basic block and it can be decomposed into independent groups
of statements, the compiler can decompose it into multiple macro tasks. To do so, the
compiler also builds a task graph representing data dependencies among statements in a
basic block. According to the built task graph, the compiler can detect the independent



8 Authors Suppressed Due to Excessive Length

bb1

bb2

emt5

bb3 bb4

Fig. 5. MFG sample. A small circle at a bottom of an MT represents a conditional branch. A solid
edge represents a data dependence and a dotted edge represents a control dependence, respectively.

loop1 loop2 loop3 loop4loop5 loop6

bb7

bb8

bb9

bb10

bb11

bb13

bb14

bb15

bb16

bb17

bb19

bb20

bb21

bb22

bb23

bb25

bb26

bb27

bb28

bb29

bb31

bb32

bb33

bb34

bb35

bb37

bb38

bb39

bb40

bb41

bb43

bb44

bb45

bb46

bb47

bb49

bb50

bb51

sb52

bb53

bb54

bb58

bb59

bb60

sb61

bb62

bb63

bb67

bb68

bb69

sb70

bb71

bb72

bb76

bb77

bb78

sb79

bb80

bb81loop86

emt87

Fig. 6. MTG sample. It is a graph that adds EEC analysis results to an MFG.

groups of statements. Thus, the compiler can exploit more parallelism. This basic block
decomposition makes finer macro tasks resulting in relatively larger synchronization
and data transfer overhead among macro tasks. To mitigate it, the compiler tries to fuse
multiple macro tasks as explained in the following subsections.

5.3 Avoiding Dynamic Scheduling Overhead

A plant control program, like a Ladder program, has many operations, which require
conditional branches since their behavior is determined by sensor inputs. Thus, dynamic
scheduling is required to deal with this dynamic behavior of a program. However, the
execution cost of each macro task in a plant control program tends to be small, resulting
in the impracticality of dynamic scheduling [7].

To avoid dynamic scheduling, the compiler fuses a macro task containing a condi-
tional branch and macro tasks that have control dependent on the conditional branch



Title Suppressed Due to Excessive Length 9

macro task so that the fused macro task can hide conditional branches inside it. There-
fore, the compiler can employ static scheduling for an MTG after this macro task fusion.
It also enlarges the execution cost of a macro task.

Figure 7 shows the result of applying this technique to Figure 6. All control depen-
dencies are hidden in the macro tasks.

Fig. 7. MTG sample(control flow dependence free). All conditional branches are hidden in the
macro tasks. The edges represent the data dependencies.

5.4 Branch Duplication

Although the macro task fusion explained in Section 5.3 can avoid dynamic scheduling
by hiding conditional branches, this may result in the loss of parallelism within a
conditional branch. For instance, when a then-part consists of two independent macro
tasks, the macro task fusion technique spoils it since they are fused into the same macro
task. To exploit the original parallelism in this case, we proposed branch duplication
technique [2]. For this example, it duplicates the conditional branch for those independent
macro tasks in the then-part, and each pair of the duplicated conditional branch and a
macro task in the then-part are fused in one macro task. Thus, both of avoiding dynamic
scheduling and exploitation of original parallelism can be realized.

5.5 Macro Task Fusion for Ladder Programs

As mentioned in section 5.3, Ladder programs consists of small macro tasks. In addition,
they frequently contain instruction sequences such that an if-clause including variable
accesses follows its initialization statement. The statements in each of them are data-
dependent and worth task fusion. To reduce a synchronization overhead and a data
transfer overhead, we implemented another macro task fusion technique. It fuses macro
tasks for the following four cases:

– For two macro tasks MT X and MT Y, if MT X has only successor MT Y, X and Y
are fused.

– For two macro tasks MT X and MT Y, if MT X has only predecessor MT Y, X and
Y are fused.

– If macro tasks have no predecessor macro tasks and they also have common suc-
cessor macro tasks, they are fused into a single macro task. For instance, in Figure
8, MT1 and MT2 are fused into MT1-2. Similarly, MT3 and MT4 are fused into



10 Authors Suppressed Due to Excessive Length

MT3-4. This kind of MTs frequently appear in Ladder programs to initialize device
values.

– If macro tasks have no successor macro tasks other than the end macro task (EMT),
which is the last macro task of an MTG, and they also have common predecessor
macro tasks, they are fused into a single macro task. For instance, in Figure 9, MT3
and MT4 are fused int MT3-4. Similarly, MT5 and MT6 are fused into MT5-6.
This kind of macro tasks correspond to setting final result to external devices, and
they are independent from other macro tasks. They also frequently appear in Ladder
programs.

Note that, this fusion technique is only employable to macro tasks whose execution
cost are less than synchronization and data transfer costs to avoid spoiling available
parallelism.

MT1+2

MT5 MT6

EMT7

MT2MT1 MT3 MT4

MT5 MT6

EMT7

MT3+4

Fig. 8. Macro task fusion for MTs with no predecessors. The upper four MTs are fused, two by
two.

MT3+4

MT1 MT2

EMT7

MT4MT3 MT5 MT6

MT1 MT2

EMT7

MT5+6

Fig. 9. Macro task fusion for MTs with no successors. The middle four MTs are fused, two by two.

6 Evaluation

6.1 Evaluation Environment

We use Xilinx ZCU102 board with Cortex-A53 driven at 300MHz (4 cores) and 4GB
memory [1] for the evaluation. Ubuntu 20.04.2 LTS is installed on it.



Title Suppressed Due to Excessive Length 11

6.2 Evaluation Programs

We evaluated three proprietary factory automation small test programs. Table 1 shows
their summary as the numbers of lines of and the execution clock cycles. We use
them since they appropriately represents real Ladder programs for factory automation
usage and there are no publicly available such Ladder programs. They are labeled from
“Program1” to “Program3”. Note that they have many basic blocks and a few loop. Thus,
ordinary product parallelizing compilers cannot exploit parallelism from the programs
composed of a set of basic blocks.

6.3 Evaluation Results

Table 2 shows the average task cost obtained before and after task fusion for each
evaluated program. Here, “cost” is the estimated clock cycles for a virtual target multicore
modeled in the compiler. Figure 11 shows the Program2’s MTG, and Figure 13 (a) shows
that for Program3, respectively. Similarly, Figures 10, 12, and 13 (b) show the MTGs
for Program1, 2 and 3, respectively. The task fusion technique described in Section 5.5
is employed for them. As described in Section 5.3, a coarse grain parallelization for
small macro tasks is ineffective due to the data transfer and synchronization overhead.
According to Table 2, our task fusion technique makes task granularity about twice
as large for Program1, about 6 times for Program2, and about 10 times for Program3,
respectively. Thus, these results indicate a relative reduction in parallelization overhead.

Table 3 shows the summary of the parallelism exploited from the evaluated programs.
Here, “parallelism” is calculated as “total task cost” divided by “critical path length”
by the compiler [5]. In this table, the parallelism of Program1 and Program2 is still
greater than 2 after the newly proposed task fusion. Hence, the newly proposed task
fusion technique described in section 5.5 can maintain sufficient parallelism for two
cores for Program1 and Program2. Although parallelism of Program3 is less than 2 after
employing our proposal, task granularity increased 10 times, suggesting that the actual
execution performance is better.

Figure 14 shows the clock measurement results for Program2 on Xilinx ZCU102.
According to this figure, the Ladder-to-C translator and GCC’s execution clock on one
core were 1614. The execution clock on two cores was increased to 3633, namely 2.25
times slower than sequential execution, by the Ladder-to-C translator and the OSCAR
compiler without task fusion considering data transfer and synchronization overhead
due to a synchronization overhead and a data transfer overhead. The execution clocks on
two cores were reduced to 1335 by the Ladder-to-C translator and the OSCAR compiler,
which implements the macro task fusion method described in section 5.5. In summary,
our current task fusion allows us to speed up 1.2 times on an actual Arm SMP multicore
for the first time in the past 50 years.

6.4 Comparison with Soft-PLC

As mentioned in Section 2, Soft-PLC also realized Ladder program parallelization [8].
Different from our parallelization technique, it did not handle indirect device accesses
by an index register. Our translator translates a device into an array and it can naturally



12 Authors Suppressed Due to Excessive Length

handle indirect accesses. In addition, it was a kind of a simulator that executes Lad-
der programs though it realized parallel execution. On the other hand, our technique
can generate a parallelized native code that can be directly executed on an Arm multi-
core. Finally, we conducted the experimental evaluation with industry-provided Ladder
programs as shown in this section, while the Soft-PLC was evaluated with randomly
generated Ladder programs having around several dozen steps.

Table 1. Summary of the evaluated programs

Number of steps
Execution clock cycles of

translated Ladder programs on ZCU102
Program1 196 269
Program2 1766 1614
Program3 522 383

Table 2. Summary of average task cost estimated in the compiler

Average task cost without macro task fusion Average task cost with macro task fusion
Program1 101.95 276.86
Program2 236.30 1,394.92
Program3 36.95 363.71

Table 3. Summary of the parallelism estimated in the compiler

Parallelism without macro task fusion Parallelism with macro task fusion
Program1 4.3 4.3
Program2 2.5 2.0
Program3 2.0 1.4

7 Conclusion

This paper has proposed a parallelizing compilation method for “Ladder” programs used
for Factory Automation (FA) for over 50 years. A ladder program is translated into C
by a newly developed translator in the proposed method. Next, the OSCAR compiler
parallelizes the generated C program for any shared memory multicores with or without
a coherent cache. The generated C program consists of small basic blocks with control



Title Suppressed Due to Excessive Length 13

Fig. 10. MTG for Program1 (Newly proposed task fusion described in Section 5.5 was employed.)

Fig. 11. MTG for Program2 (Task fusion described in Section 5.3 was employed.)

dependencies. OSCAR Compiler generates a macro task graph composed of basic
blocks as macro tasks. It fuses the micro tasks into other micro tasks having only data
dependencies among them by task fusion technique developed for “automobile engine
control program” parallelization. Next, the OSCAR compiler fuses small micro tasks
into coarser ones, considering task execution time, data transfer, and synchronization
overhead. By the proposed compilation scheme, this paper succeeded in parallelizing the
Ladder programs on a real multicore processor, although there has not existed automatic
parallelization of the ladder circuit for over 50 years. In the evaluation, since the actual
ladder programs directly represent existing control systems are difficult to use, we we
used a few small proprietary test programs to evaluate compilation analysis and an
executable program with input and output data. This paper conducted an experimental
evaluation on an Arm two-core multicore. The execution time on two cores without the
proposed task fusion considering data transfer and synchronization overhead, was 2.25
times slower than sequential execution. However, the proposed task fusion allows us to
speed up 1.2 times on an actual Arm SMP multicore for the first time in the past 50 years.
The proposed Ladder-to-C translation and the macro task fusion to reduce data transfer
and synchronization overhead has shown for the first time that parallel processing of the
real-time sequence control computation on an SMP multicore is possible. Improvement
of the macro-task fusion method will allow us more speedups. Also, this method can be



14 Authors Suppressed Due to Excessive Length

Fig. 12. MTG for Program2 (Newly proposed task fusion described in Section 5.5 was employed.)

easily applied to embedded multicores using distributed shared memory like Renesas
and Infineon for automobiles, like in our previous paper [7].

References

1. Zynq ultrascale+ mpsoc zcu102 evaluation kit. https://www.xilinx.com/products/
boards-and-kits/ek-u1-zcu102-g.html

2. Kanehagi, Y., Umeda, D., Hayashi, A., Kimura, K., Kasahara, H.: Parallelization of auto-
motive engine control software on embedded multi-core processor using oscar compiler. In:
2013 IEEE COOL Chips XVI. pp. 1–3. IEEE (2013)

3. Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., Narita, S.: A multi-grain
parallelizing compilation scheme for oscar (optimzally scheduled advanced multiprocessor).
In: Proc. 4th Intl. Workshop on LCPC. pp. 283–297 (August 1991)

4. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel processing on smp
using openmp. In: Languages and Compilers for Parallel Computing. pp. 189–207. Springer
Berlin Heidelberg, Berlin, Heidelberg (2001)

5. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical parallelism
control for multigrain parallel processing. In: Languages and Compilers for Parallel Comput-
ing. pp. 31–44. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

6. Oki, Y., Mikami, H., Nishida, H., Umeda, D., Kimura, K., Kasahara, H.: Performance of static
and dynamic task scheduling for real-time engine control system on embedded multicore
processor. In: International Workshop on Languages and Compilers for Parallel Computing.
pp. 1–14. Springer (2019)

7. Umeda, D., Suzuki, T., Mikami, H., Kimura, K., Kasahara, H.: Multigrain parallelization for
model-based design applications using the oscar compiler. In: Languages and Compilers for
Parallel Computing. pp. 125–139. Springer (2015)

8. Vasu, P., Chouhan, H., Naik, N.: Design and implementation of optimal soft-programmable
logic controller on multicore processor. In: 2017 International conference on Microelectronic
Devices, Circuits and Systems (ICMDCS). pp. 1–4. IEEE (2017)

9. W.Bolton: Programable Logic Controllers Sixth Edition. Newnes (2015)
10. Zhong, Z., Edahiro, M.: Model-based parallelizer for embedded control systems on single-isa

heterogeneous multicore processors. In: 2018 International SoC Design Conference (ISOCC).
pp. 117–118. IEEE (2018)

https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html


Title Suppressed Due to Excessive Length 15

(b)(a)

Fig. 13. MTGs for Program3. (a) was employed the task fusion technique described in Section
5.3. (b) was employed the newly proposed task fusion technique described in Section 5.5.

Fig. 14. Clock measurement results on the ZCU102. The left bar is the result obtained by compiling
the output of our Ladder-to-C translator with GCC. The center bar is the result with the task fusion
technique described in Section 5.3. The right bar is the result with the newly proposed task fusion
technique described in Section 5.5.


	Parallelizing Factory Automation Ladder Programs by OSCAR Automatic Parallelizing Compiler

