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Abstract While cloud applications are covering people’s privacy data, their related risks, such as theft risk, leak
risk, and other serious risks, are becoming critical issues. Homomorphic encryption (HE) is a promising approach to
overcome them since it enables calculation of encrypted data without decryption. Deep learning (DL) inference on
cloud is an interesting application of HE. However, the computational cost of HE is too expensive, resulting in its
limited usage in the real world. In this paper, we propose an acceleration technique of DL on HE, and implement
it in HE-Transformer, which is a framework for DL on HE. Our approach is reducing the bit-width of internal data
structure of HE libraries, SEAL and HEXL, from 64-bit to 32-bit. As a result, we can obtain up to 3.59× speedup
compared to the original version, while still keeping data privacy.
Key words Homomorphic Encryption, Deep Learning, SIMD

1. Introduction

Variety of digital services is becoming important parts of
our society. Particularly, Deep Learning (DL) based services
have became inevitable since they can naturally support our
daily lives considering various information surrounding us.
They now also handle our confidential information, such as
health information, financial information, and so on.

While the importance of DL services increase, the comput-
ing power required for training also increases as the size of
datasets and neural networks become larger and the demand
for prediction accuracy rises. Thus, it pushes most compa-
nies and organizations to train neural network models on
cloud computing centers. Also, services based on DL infer-
ence utilizing the trained model tend to be deployed on the
cloud. This situation causes the exposure of service users’
privacy information to security risks, such as data steal and
tampering, as well as the exposure of confidential companies’
trained models.

Homomorphic encryption (HE) is an encryption method
that enables encrypted data to perform mathematical oper-
ations [1]. Employing HE for DL on the cloud is a promising
approach that can protect the users’ privacy information and
companies’ confidential trained model. nGraph-HE (HE-
Transformer), a backend of nGraph from Intel, supports the
application of homomorphic encrypted data to deep learn-
ing, i.e., using encrypted data to do evaluations on neural
network models [2]. Specifically, HE-Transformer supports

CKKS encryption scheme, which enables calculations on real
and complex numbers on HE [3]. However, such computation
on ciphertext requires computing power and time that are of-
ten far more than those of plaintext. Even if it can be used
for deep learning, its cost seems too expensive at present.

To get better performance on HE-Transformer, we have
updated it from the original Ver.3.4.5 to a newer version that
integrates HEXL [4]. Moreover, considering the still huge
computing power requirement, we here apply our optimized
new SEAL which provides a 32-bit version for the CKKS
encryption scheme [5]. It enables speedup the computation
of encrypted data while guaranteeing confidentiality. At the
same time, the integration of HEXL makes it possible to uti-
lize AVX512 [6], which further accelerates the computation.
Reduced bit versions of SEAL and HEXL also make it pos-
sible to load more data on the AVX512 architecture at one
time. As the result of updating to newer version of SEAL, the
calculation is accelerated at most 1.98× on the evaluations
based on MNIST dataset and ImageNet dataset. Then, ap-
plying bit-reduced SEAL and HEXL can obtain up to 2.89×
of speedup. That is in total, the integration of bit-reduced
SEAL has made HE-Transformer achieve 3.59× acceleration.

Other parts of this paper include: Section 2. descirbes the
background of each technique. Section 3. summarizes related
works. Section 4. describes details of the works. Section 5.
shows the evaluation and the results. Finally Section 6. con-
cludes our work.
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2. Backgrounds

2. 1 Homomorphic Encryption (HE)
Among the large number of encryption algorithms, homo-

morphic encryption (HE) can meet the need for encrypted
data processing while maintaining confidentiality. It was co-
proposed by Ronald L. Rivest and others in 1970s [1]. Dif-
fering from usual encryption algorithms, additions and mul-
tiplications can be processed on the ciphertext by HE as
follows:

Dec(Enc(m1) + Enc(m2)) = Dec(Enc(m1 + m2)) (1)

Dec(Enc(m1) × Enc(m2)) = Dec(Enc(m1 × m2)) (2)

The idea of HE is based on Learning with Er-
rors (LWE) from Lattice-based Cryptography [7]. Given
a1, a2, a3, ..., an ∈ Rm as a set of base vectors, and A ∈
Rm×n.

L(A) = L(a1, a2, a3, ..., an) = {Ax|x ∈ Zn} (3)

L(A) is made of discrete points. Then given equation:

b̂ = A · x + e (4)

Where error e is randomly chosen in specified range. When
A and b̂ are given, LWE aims to find out x that makes the
above equation hold. The problem of LWE is NP-hard and
it is difficult to distinguish vector b̂ from random vector set v

due to the interference of e. Such features ensure the security
of HE.

The process of encryption and decryption of HE can be de-
scribed as below, where P is plaintext, pk = (−A · s + e, A)
is the public key and sk = s is the secret key.

Encrypt(P, pk) = (P, 0) + (−A · s + e, A)

= (−A · s + e + P, A)

= (c0, c1) = c (5)

Decrypt(c, sk) = c0 + c1 · s = P + e (6)

The plaintext will be encrypted into ciphertext c = (c0, c1)
by the public key pk. After decryption, the ciphertext is de-
crypted into P + e, , where e is a manually introduced noise
in pk. While ensuring security, the error e also becomes the
source of inaccuracy.

2. 2 Cheon-Kim-Kim-Song (CKKS) Scheme
CKKS is a homomorphic encryption scheme aiming to

arithmetic of approximate numbers. It develops besed on
Ring Learning with Errors (RLWE), which utilizes polyno-
mial rings instead of matrices [8]. Rather than encrypting

Message M

Plaintext P

Ciphertext c

Encode(M,    ) Decode(M,    )

Enc(P, pk) Dec(c, sk)

Figure 1 Overview of CKKS Scheme.

integers, CKKS aims to process real and complex numbers.
Figure 1 describes the CKKS scheme. It is similar to regu-

lar other RLWE based HE systems, such as BFV [9], except
for the parameter of scale ∆. The message M , usually a sin-
gle number or a vector of numbers, will be expanded by scale
∆ at first, and then be encoded to a plaintext P in form of
a ring polynomial m(X) ∈ Z[X]/

(
XN + 1

)
.

Similar to Section 2. 1, ciphertext is in form of c = (c0, c1),
except that it is composed of two polynomials. And cipher-
text will also be decrypted into P +e, where the introduced e

is the reason why CKKS scheme is for arithmetic of approx-
imate numbers. However, although the noise will affect the
accuracy, this kind of effect is greatly diminished by scale ∆.

When two ciphertexts c and c′ are added together:

c′′ = Add(c, c′) = (c0, c1) + (c′
0, c′

1)

= (c0 + c′
0, c1 + c′

1) (7)

The result of addition conforms to the form of the cipher-
text and is capable of using Decryption function.

But when two ciphertexts are multiplied together, since
ciphertext exists as form of polynomials, multiplication is
much more complicated:

d = Multiply(c, c′) = (c0, c1) × (c′
0, c′

1)

= (c0 × c′
0, c0 × c′

1 + c1 × c′
0, c1 × c′

1)

= (d0, d1, d2) (8)

The result of multiplication d is composed of 3 poly-
nomials, which is obvious that it can not be decrypted
by Decryption function. Thus the new ciphertext needs
Relinearization, by which the new ciphertext is relin-
earized down to normal form:

d′ = Relin(d, Relin_key) = (d′
0, d′

1) (9)

Besides, Rescaling is used for scaling down the size of mul-
tiplied ciphertext. As the paper described before, message is
encoded and encrypted with scale ∆. Without Rescaling,
the scale of ciphertext will increase exponentially after mul-
tiplication. To realize such operation, CKKS scheme uses
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moduli q = ∆L · q0, where L indicates the number of capa-
ble multiplication and log2(q0) − log2(∆) indicates the bit of
integer part.

Nevertheless, q is usually out of 64-bit word length that
mainstream computers use, since multiple scales are accu-
mulated. Chinese Remainder Theorem (CRT) is suitable for
handling this situation by mapping a large number into a set
of numbers modulo co-prime numbers.

Until now, CKKS scheme is used in large variety of HE li-
braries. For example, HElib supports BGV and CKKS cryp-
tographic schemes [10], and SEAL from Microsoft supports
BFV and CKKS cryptographic schemes [4].

2. 3 SEAL and HEXL
SEAL is an open-source HE library provided by Microsoft,

which supports BFV and CKKS encryption schemes and
also supports arithmetical operations on encrypted data [4].
HEXL is also an open-source library developed by Intel. The
main purpose of it is accelerating frequently used calcula-
tions in HE [6]. As it develops so far, starting from Ver.3.6.3,
SEAL has integrated HEXL Ver.1.1.0. Since then, SEAL can
directly utilize HEXL without additional installation.

In our previous work, we have extended SEAL and HEXL
so that they can process their calculation on 32bit internal
data structure, instead of the original 64bit one [11]. The mo-
tivation of this work came from the well known insight that
practical deep learning applications do not often 64bit-length
for input data and parameters such as weights to train neu-
ral networks, as well as to achieve the required prediction
accuracy [12]. By reducing the bit width of internal data
structure, more SIMD width can be kept, resulting in higher
performance.

2. 3. 1 Bit Reduced (32bit) SEAL
To achieve the bit reduced SEAL, the coefficient type of

the polynomial expressing the ciphertext needs to be changed
from 64bit to 32bit. This target can be attained by changing
the coeff_modulus parameter in SEAL. Besides, the func-
tions such as encoding, decoding, encryption, decryption,
and ciphertext itself computations of SEAL need to be mod-
ified to use 32bit data structure. These functions not only
change the type of their parameters and local variables but
also the whole process of computation will be based on 32bit.

To further accelerate the ciphertext computation, in ad-
dition to the bit reduced SEAL, the generation of Galois
key is also parallelized. Galois key is used for rotating the
ciphertext on the CKKS encryption scheme, where the rota-
tion is necessary for ciphertext multiplication. We have par-
allelized the loops for Galois key generation hierarchically
by OpenMP and AVX512; outer loops are parallelized by
OpenMP and inner additions and multiplications are vector-

ized by AVX512.
2. 3. 2 Bit Reduced (32bit) HEXL
HEXL is an open-source acceleration library from Intel.

It enables acceleration of polynomial computation by lever-
aging the new instruction set AVX512 and applying it to
Number-Theoretic Transform (NTT) [6]. This is feasible for
SEAL, where both BFV and CKKS are encrypted based on
polynomials.

In the current version of SEAL, HEXL has been already in-
tegrated. With the implementation of the bit reduced SEAL,
HEXL needs to be changed accordingly.

For the development of the bit reduced HEXL, since is is
built based on the AVX512 instruction set, these AVX512 in-
structions in it are also modified to use 32bit data structure.
For example, in the function that performs multiplication to
obtain the low bit, instead of using _mm512_mullo_epi64, we
use the _mm512_mullo_epi32 instruction [11]. Considering
the overall feasibility, there are still plenty of modifications
besides changes to the instructions.

3. Related Works

Much of the known work also deals with how to apply
HE for deep learning [5], [13]～[15], but they mainly focus on
algorithm-level optimization or acceleration. This paper con-
centrates on data structures. And additionally, our work can
be applied to the papers mentioned before, leading to better
optimization.

4. Adapting Bit Reduced SEAL and
HEXL to HE-Transformer

HE-Transformer aims to accelerate processing of HE en-
abled neural networks. It works as a backend of nGraph,
which is a DL compiler. As shown in Figure 2, it takes a
graph intermediate representation (IR) from nGraph, and
utilizes SEAL to process add, multiply, convolution, and
other DL related operations on HE cryptsystems, such as
CKKS and BFV, as well as employing HE related optimiza-
tions. This section describes how we adapted the bit reduced
SEAL and HEXL to HE-transformer.

4. 1 Modification for Updated SEAL
As of today, the latest update of HE-Transformer is dated

2020. The version of SEAL used by it was 3.4.5. Compared
to the existing version 3.6.6, where two major version up-
dates were made, there is a considerable gap between two
versions, both in terms of performance and code. In partic-
ular, the original version did not introduce HEXL and could
not take advantage of the AVX512 instruction set. There-
fore, we first adapted SEAL 3.6.6 to HE-Transformer instead
of the originally used 3.4.5.

First, we investigated the differences of class hierarchy
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HE-Transformer

BFVCKKS

Figure 2 Overview of HE-Transformer. This paper mainly fo-
cuses on CKKS sheme.

between two versions of SEAL, then we modified HE-
Transformer to adapt to newer class hierarchy. For example,
SEAL 3.4.5 had the class SmallModulus, and, by 3.6.6, it
has been merged into Modulus, which causes problems with
incorrect calls in HE-Transformer.

Additionally, several functions are changed to newer
ones. A function of key-generation is such an ex-
ample. In SEAL 3.4.5, the public key was gener-
ated by the function KeyGenerator::public_key(), while
KeyGenerator::create_public_key() has the same func-
tion in the version 3.6.6.

Meanwhile, the treatment of SEALContext, which contains
encryption parameters, has also been changed. Unlike the
old version where a generated SEALContext is passed in form
of a pointer, the new version generates a SEALContext and
passes it as an instance directly, resulting in the modification
of all its related code.

Moreover, the name of scheme type is also changed from
CKKS to ckks using lower letters.

Besides, for the thought of the integirity, modifying codes
needs to be as much as carefully considered.

4. 2 Modification for Bit Reduced SEAL
As stated in Section 2. 3, the bit reduced SEAL and HEXL

introduce 32bit data structure in all aspects. Accordingly,
HE-Transformer has to be modified to use 32bit data struc-
ture for the relevant parts as well. For example, all pa-
rameters with the original data type uint_64 is changed to
uint_32, and the double type is changed to float, and so
on. Simultaneously, the potential data overflow should be
considered due to the change of data types.

In addition, the functions involved must be changed ac-
cording to the 32-bit SEAL.

For instance, multiply_uint64_hw64 is changed to
multiply_uint32_hw32, which has been improved in the

Table 1 Machine Specification

CPU Intel Xeon W-2145
Number of Cores 8
Base Frequency 3.7GHz

Support AVX512 Yes
L1D Cache 32KiB/core
L2 Cache 1MiB/core
L3 Cache 11MiB

Main Memory 94GiB
OS Ubuntu 20.04

bit reduced SEAL, and barrett_reduce_128 is changed to
barrett_reduce_64.

5. Evaluation

This section shows the performance evaluation of the ac-
celerated HE-Transformer based on the premise of the mod-
ifications described in Section 4.

5. 1 Evaluation Environment
We conducted the evaluation on an Intel Xeon W-2145

machine shown in Table 1. We evaluated CryptoNets with
MNIST and MobileNet with ImageNet, which are also in-
cluded in HE-Transformer.

5. 2 Parameter Setting
In order to ensure that the evaluation can be performed

on different versions and that the evaluation results can be
compared directly. In this paper, the parameters of the orig-
inal version, the 64-bit version and the 32-bit version are all
set uniformly. coeff_modulus and scale are both set based
on 29 bits with security promised as well. In particular,
the length of coeff_modulus decides the number of multipli-
cation encrypted data can perform. scale is the parameter
used to expand the input message, and it should be the power
of 2.

5. 3 Evaluation Result
5. 3. 1 MNIST Evaluation
CryptoNets is a widely used framework in the field of

HE [13]. It supports converting trained neural network model
into networks that is available for HE data. We here utilize
Cryptonets and do evaluations based on Modified National
Institute of Standards and Technology (MNIST) dataset [16].

The configuration in Listing 1 is used for this evaluation.
"scheme_name":"HE_SEAL" means we use SEAL backend here.
poly_modulus_degree affects the maximum number of value
HE-Transformer can encrypt at one time. It should be noted
that complex_packing decides whether packing every two
real numbers into one complex number at the encoding. Here
we set batch_size to 8192.

Figure 3 depicts the result of evaluation on MNIST
dataset, where Complex Packing means the result after acti-
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Listing 1 Parameters for MNIST Evaluation

1 {

2 " scheme_name ": " HE_SEAL ",

3 " poly_modulus_degree ": 16384 ,

4 " security_level ": 128 ,

5 " coeff_modulus ":

[29 ,29 ,29 ,29 ,29 ,29 ,29 ,29 ,29 ,29] ,

6 " complex_packing ": true ,

7 " scale ": 536870912

8 }

Figure 3 Evaluation Result on MNIST

Table 2 Speedup After Integrating 32bit SEAL (MNIST) for
Each Number of Threads

Threads
Real number Complex packing

1 2 4 8 1 2 4 8
vs. 3.6.6 2.07 2.07 2.16 2.89 2.01 1.96 2.03 2.52
vs. 3.4.5 3.03 2.96 2.93 3.39 3.59 3.46 3.43 3.55

vating complex_packing. The entire test is conducted in
three rounds, and then we take the average of the three
rounds as our final test result. The result shows the perfor-
mance improvement of the bit reduced 32bit SEAL compar-
ing with the original 3.4.5. Take the performance of Ver.3.6.6
in the case of single-thread as our benchmark, the 32bit HE-
Transformer attains 2.01×–9.43× speedup with the increas-
ing number of threads. As shown on Table 2, at compar-
ing the 32bit version with original one in each number of
thread, we achieve at most 3.59× acceleration. Then com-
pared to SEAL 3.6.6 version, the 32bit version still achieves
at most 2.89× acceleration. Moreover, the evaluation can
still achieve 98.60% classification accuracy, only about 0.5%
lower than non-encrypted cases. complex_packing indeed
decreases the speed, whereas it will double the capacity of
input. Therefore in terms of the processing speed of a single
image, the result is well accepted.

Listing 2 Parameters for ImageNet Evaluation

1 {

2 " scheme_name ": " HE_SEAL ",

3 " poly_modulus_degree ": 4096 ,

4 " security_level ": 0,

5 " coeff_modulus ": [29 ,29 ,29 ,29 ,29] ,

6 " complex_packing ": true ,

7 " scale ": 536870912

8 }

Figure 4 Evaluation Result on ImageNet

Table 3 Speedup After Integrating 32bit SEAL (ImageNet) for
Each Number of Threads

Threads
Real number Complex packing

1 2 4 8 1 2 4 8
vs. 3.6.6 1.56 1.52 1.47 1.39 1.54 1.52 1.46 1.39
vs. 3.4.5 3.08 2.93 2.80 2.42 3.04 2.92 2.75 2.40

5. 4 ImageNet Evaluation
Here we test HE-Transformer by using MobileNet to make

inference, with dataset from ImageNet [17]. Encryption pa-
rameters are set as Listing 2.

Due to the larger size of the neural network, increased scale
of dataset and limitation of memory, this paper chooses rel-
atively small encryption parameters here, where the security
level is set to 0, only for comparison of performance. We set
batch_size to 512 for this evaluation.

Figure 4 depicts the result of the evaluation on it. Simi-
lar to the evaluation on MNIST dataset, we conduct three
rounds of tests and choose the average result of them. As
the Table 3 reveals, after integrating the 32 bit SEAL, the
runtime is accelerated to 3.08× compared to original HE-
Transformer, while still maintain the accuracy at 67.58%,
which is similar to evaluation of plaintext. The figure shows
that, using single-threaded Ver.3.6.6 as baseline, we have
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achieved 1.54×–8.11× of acceleration along with increasing
the number of threads. Table 3 also shows, at comparing
the 32bit version with original one in each number of thread,
we achieve at most 3.08× acceleration. Even if compared to
Ver.3.6.6 in different number of thread, the 32bit version can
achieves up to 1.56× acceleration.

6. Conclusion

In this paper, we realized acceleration of HE-Transformer
for DL processing on HE. Modifications were implemented in
two steps, including the updating from Ver.3.4.5 to Ver.3.6.6
and integrating the bit reduced SEAL.

As the result of acceleration, in case of single thread, we
achieve 3.59× and 3.08× speedup on MNIST and ImageNet
datasets with different neural networks with comparable ac-
curacy with the calculation on plaintext .
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