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Abstract: Emerging byte accessible non-volatile memory (NVM), or persistent memory (PM), technologies can
promise durability like existing file systems even at an unexpected crash, as well as the competitive performance
with DRAM. Similar to the memory consistency problems, appropriate order of memory access operations and cache
eviction operations, or persistent operations, must be considered to guarantee both program recoverability and perfor-
mance with the underlying persistency model. Several persistency models have been proposed in the literature. The
strand persistency model, which potentially shows higher performance than the epoch persistency model, has more
relaxed rules to exploit more parallelism. However, due to the lack of formal definition of the strand persistency
model, legality and recoverability of strand persistency based programs against system crashes have been abandoned.
To address this, we first propose an operational semantics of the strand persistency model to formalize the behavior
of a program, memory propagation, and history generation under a concurrent environment. Then, we investigate the
durability of library implementations for concurrent objects equipped with strand primitives, and propose a correctness
criterion that the implementations should preserve, originated from buffered durable linearizability. Finally, as a case
study, we discuss two concurrent queue implementations and show how the proposed semantics and criterion capture
both the durability and linearizability of implementations.
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1. Introduction

The emergence of nonvolatile, byte-addressable memory
(NVM) technologies is significantly changing how the persistent
data are handled nowadays. NVM, or persistent memory (PM),
shows the characteristic in combining the feature of non-volatile
storage in data recoverability after system crashes, and high per-
formance in data transfer similar to ordinary DRAM. Various
memory devices, such as Phase Change Memory (PCM) [15],
[23], memristors [28], Intel/Micron 3D XPoint, etc, have been
actively developed to realize PM above.

PM is potentially employed in future computer systems. It
is placed on a memory bus and accessed by CPU cores directly
by ordinary load and store instructions. Thus, anytime an unex-
pected crash happens, a program can recover the execution by in-
specting the current status in the PM and roll-back or roll-forward
to the correct stage of its execution.

However, a correct recovery after a crash requires that PM is
maintained in a consistent state. That is, an inconsistent state may
results in an incorrectly recovered program status. Maintaining
PM in a consistent state is challenging, particularly with manipu-
lating complex data structures in a multi-threaded environment.

One of the difficulties lies in the ordering constraint in making
the data to a persistent state in PM, which is known as memory

persistency (analogous to the traditional memory consistency).
Generally, volatile memory modules (VM), such as caches, are
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placed between CPUs and PM. The actual processing order of
persistent operations, each of which propagates data from a cache
to PM, might be different from the issue order by CPU cores. This
is because the current micro architectures try to change the mem-
ory access orders aggressively to hide slow low-level memory ac-
cesses. Another difficulty lies in guarantee the durability, which
means data are required to reliably reach persistence. However,
since the latency of PM is slow, the crash may happen before PM
is updated, even after CPU cores have issued the operation and
the cache has been modified. These two issues introduce counter-
intuitive memory behavior, thus resulting in posing the difficulty
to design the durable program and the recovery mechanism since
it is difficult to determine which stage in the program execution
became persistent before a crash occurred.

Both memory persistency rules and recovery mechanism
should be carefully designed to guarantee ordering constraint and
durability. An intuitive example is applying enqueue/dequeue op-
erations to a FIFO queue concurrently. For instance, the queue is
originally [1;2] where “1” is enqueued before “2”. Assume that
two threads are trying to enqueue “3” and “4” separately and con-
currently. Under the memory consistency rules for each thread
execution, one possible result is [1;2;3;4]. However, if the order-
ing of persistence for them is not processed properly, after a crash
and its recovery, the queue could be [1;4] or [1;2;3;3].

Generally, such guarantee is supported by low-level ISA pro-
gramming model. By correctly inserting persistent primitives into
a program, the ordering constraint can be archived as a form of
stalling the succeeding instructions until the previous instructions
complete. The mechanism behind these persistent primitives is
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similar to synchronization primitives such as a fence instruction,
which is used to protect memory consistency. In the past years,
several ISA-level persistency models have been proposed to con-
straint the ordering of memory persistent operations. These mod-
els are different in how the data are persisted to PM. Strict persis-

tency [22] is known as the most intuitive persistency model where
the ordering in PM is identical to the ordering in the volatile mem-
ory. The strict model is straightforward but sacrifice the perfor-
mance. Epoch persistency [3], [12], [20] is a more relaxed model
where the ordering constraint between two instructions can be
neglected if they have no dependencies in the aspect of persis-
tency and they are in the same epoch. Epoch model is currently
used in the Intel memory persistency. However, such a model still
contains unnecessary dependencies, which degrade performance.
For example, relaxing the ordering constraint of two instructions,
which are located in different epochs, is impossible even if they
have no dependency.

Compared with strict and epoch models, strand persistency [6],
[22] is the most relaxed model that seeks more opportunities to
parallelize persistent behaviors in both inter and intra threads. In
the strand persistency model, a thread execution is divided into
several logically independent segments, named strands. For each
strand execution, all prior ordering constraints in PM are cleared
so that each strand behaves as if a separate thread, which pro-
vides more opportunities in parallelization than the epoch persis-
tency model. Gogte et al. [6] constructed hardware mechanisms
to implement the strand persistency model and shows better per-
formance than the other two models.

Although the development of computer architectures and pro-
gramming models on PM has grown rapidly, especially in the
aspect of pursuing higher performance, few works have studied
the correctness of a durable program. The legality of a program
under a relax persistency model must be carefully designed to
meet the durability and recoverability. From the view of pro-
grammers, it is interesting to know weather libraries of highly
optimized, high performance data structure can always keep the
data stay safe in PM with the help of ad hoc techniques whenever
a system crashes unexpectedly. This observation has led to the
design of the criteria about the correctness of a library implemen-
tation for concurrent objects on the premise of crash and recovery.
Buffered durable linearizability [11] proposed by Izraelevitz et al.
is generally known as the extension of traditional linearizaiblil-
ity [8], which serves as the conventional notion of the correctness
for concurrent objects. Buffered durable linearizaibility governs
the safety of concurrent objects under the failure model. Such
condition has been widely used to prove the durability of library
implementations such as MS queue, Hashmap, linked-list, etc.
under epoch persistency [4], [24], [26]. However, to the best of
our knowledge, no studies discuss the legality of a program under
the strand model using such a correctness condition. Especially,
no existing work formalize the behavior of the strand persistency
model yet. As a result, programs under it are lack confidence in
recovering to the correct execution state as PM is not guaranteed
to be consistent.

In this paper, we discuss the legality of durable library im-
plementations of a queue under the strand persistency model

from a formal perspective. We propose to look at a queue be-
cause it is a frequently used, highly-concurrent data structure.
It is classical and universal, whereas is complicated enough to
demonstrate the challenges raised by concurrent durable data
structures, and simple enough to demonstrate solutions. Prior
works [4], [11], [12], [22], [24], [25] of memory persistency also
tend to use queues as their examples. To discuss the legality of
a program formally, we formalize the strand persistency model
under TSO memory consistency and describe its behavior in op-
erational semantics. We designed an abstract memory model for
strand persistency and create a set of operational semantics to
describe the behavior of strand primitives and concurrency un-
der the strand persistency model, which is informally proposed in
prior works [6], [14]. We then proposed the legality of a durable
program using the buffered durable linearizability and the invari-
ant of program and memory status. Finally, as a case study, we
show two durable queue libraries and discuss the legality.

In summary, we made the following contributions in this paper:
• We formally define the behavior of strand primitives in the

operational semantics style, describing how the strand buffer,
volatile memory, and PM are modified by executing these
primitives.

• We use buffered durable linearizability to define the legal be-
havior of a program under the strand persistency model.

• We use two queue implementations under the strand persis-
tency model as a case study to discuss the legality of durable
library implementations using undo-logging under TSO and
the strand persistency model.

This paper serves as the start point of the verification of pro-
grams under the strand persistency model. Formalized behavior
of it can be used to develop reasoning techniques for verifying
the correctness of persistent programs and libraries, and to de-
velop program logics that would allow us to verify properties of
a persistent program. However, the formal verification of a pro-
gram written in the strand persistency model, and development
of logics around memory persistency are excluded in the scope
of this paper. As far as we know, we are the first to regulate
the semantics of the strand persistency model and study the dura-
bility and ordering constraint of library implementations using
the strand persistency model. We believe that strand persistency
model is an efficient model that provides more opportunities to
achieve better performance in the future.

The rest of this paper is organized as follows. Section 2 briefly
introduces the motivation of the paper, including the importance,
significance, and difficulties of holding PM in a consistent state,
and why we need to focus on the legality of a program that use
the strand persistency model. Section 3 introduces the opera-
tional semantics for the strand persistency model, including the
abstract memory structure. Section 4 makes a brief introduction
of traditional techniques to prove the durability and linearizabil-
ity. Section 5 describes how we extend the traditional concepts of
durability, linearizability and legality to fit the strand persistency
model. Besides, we choose two strand library implementations to
discuss the legality. Finally, Section 6 concludes this paper.
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2. Background and Motivation

This section describes the background and motivation of this
paper. We use an intuitive example to show the importance and
difficulties in holding PM in a consistent state when a system
crashes unexpectedly. Besides, we explain the reason why we
focus on the strand persistency model by making a comparison
with some other persistency models.

2.1 Durability and Ordering Constraint in PM
Maintaining PM in a consistent state is crucial in recovering

a program into a proper stage of its execution when a system
crashes. Otherwise, the recovered program may result in unde-
fined or uncertain behaviors. Such consistency is guaranteed by
ensuring the durability and ordering constraint in PM. Durability
of PM makes sure the data are reliably persistent, whereas order-
ing constraint keeps the writes to PM are organized in a proper
way.

However, guaranteeing the durability and ordering constraint
on PM is difficult, especially in a concurrent environment. One
of the reasons comes from the long latency taken by an PM up-
date. Here is an example of a problem: Assume that two threads
are executed concurrently in a system. One of the threads tries to
update an object on PM, and a crash happens before the object on
PM is actually updated. However, the other thread was acting as
if PM had been updated right before the crash. After the system
is recovered, PM state will be inconsistent from the view of these
two threads.

Algorithm 1 is an intuitive example to show such a problem
in applying the enqueue to the Michael-Scott queue (MSQ) [19]
concurrently. This implementation has one st instruction in L2

and three atomic memory operations CAS in L9, L13, and L17.
This example is safe and the queue is guaranteed to be always
consistent in volatile memory, but such consistency might be lost
in PM because writing back data from cache to PM takes time.
First, from the view of intra-thread, since CAS in L9 and L17 has
data dependency with st in L2, CPU can issues writeback of L9 or
L17 only after L2 is issued. However, the data in L2 might have not
reached PM whereas L9 or L17 have finished the writeback. This
results in the fact that the pointer of queue points to an unallocated
memory segment, which destroys the consistency of the data
structure in PM. From the view of inter-thread, CAS cannot guar-
antee the atomicity of the queue in PM because the order that each
CAS complete in PM might be different with the order that each
CAS is issued. For instance, two threads T1 and T2 execute the
enqueue for MSQ concurrently, the order that CPU issues CAS

is T1.L9; T1.L17; T2.L9; T2.L17. However, the order that these in-
structions complete in PM might be T1.L9; T2.L9; T2.L17; T1.L17,
which means the tail of queue is from the T1 but the tail-> next is
from T2. If the system crashes, the program will apply recovery
algorithm based on the current status of PM. However, the queue
structure has been destroyed by inappropriate persistent ordering.

Another reason for difficulty is the order of the data persistent
operations in PM. The current microarchitectures try to reorder
instructions, including memory operations. Thus, the order of
the data persistent operations might be different from that for the

Algorithm 1: Enqueue operation for undurable MSQ
Data: value

1 node = new node());

2 node -> value = value;

3 node -> next.ptr = NULL;

4 while true do
5 tail = Q -> Tail;

6 next = tail.ptr -> next;

7 if tail == Q -> Tail then
8 if next.ptr == NULL then
9 if CAS(&tail.ptr->next, next, <node, next.count+1> then

10 break;

11 end
12 else
13 CAS(&Q->Tail, tail, <next.ptr, tail.count+1>);

14 end
15 end
16 end

17 CAS(&Q->Tail, tail, <node, tail.count+1>)

volatile memory. Since PM persistent operations have longer la-
tency than the store operations for volatile memory, a more re-
laxed memory ordering constraint is required. Unlike the order-
ing constraint arising from memory consistency, which prescribe
the visible order of loads and stores among threads, the ordering
constraint in the data persistent operations guarantees the order-
ing of persists with respect to system failure atomicity. Thus, the
persistent ordering provides more parallelism as long as the min-
imal set of happens-before relations in memory consistency are
kept. Generally, the ordering constraint for memory persistency
is realized in ISA-level programming by low-level primitives. For
example, Intel [9] uses sfence instruction to enforce a strict order-
ing that any persist after the sfence cannot start until all persists
before the sfence finish the execution.

2.2 Low-level Persistency Models
Here, we use an example to review three low-level persistency

models described by Pelley et al. [22]. They are different in the
ordering constraint of persistent operations.
2.2.1 Strict Persistency

The strict persistency model is known as the most intuitive
way to organize the ordering in PM. In this model, the order-
ing of persistent operations on PM is identical with that on the
volatile memory. As similar as the sequential consistency that
stores in each thread cannot be reordered from the perspective of
other threads, all the persists should follow the same ordering.

In other word, the order that each store becomes durable in
PM is completely same as the order that they become visible in
the cache. This model sacrifices the performance since even un-
necessary ordering constrains, or dependencies, among persistent
operations for the recovery must be preserved.

In Fig. 1, (a) shows a high-level program with three assign-
ments. In this program, L2 has data dependency with L3, and
L1 is completely independent from both L2 and L3. As a re-
sult, when we execute this program in parallel, we can write it
as L1 ‖ (L2; L3). (b) shows a transformed low-level program with
the strict persistency model. As we only discuss the memory per-
sistency here, store and load are not included in (b), (c), and (d).
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Fig. 1 Three types of memory persistency model.

In low-level program, we use “pwb x”, which is short for “persist
write back”, to denote the write-back of x from the cache to PM.
The behavior of pwb is similar with CLWB in Intel [9]. Lx is the
log of variable x, which contains the old value of x before x is
updated. The persist ordering of this program must keep that (1)
Each Lx must be persisted before x, (2) The first persist of vari-
able x must be persisted before the second one, and (3) If pwb of x

and y are strictly ordered, the pwb of Lx and Ly should also keep
such ordering. In the strict model, as each pwb cannot be issued
until the previous pwb is completed, (1), (2), and (3) are guaran-
teed. However, it introduces unnecessary dependency over L1; L3

where they can be parallelized. This program can be written as,

L1; L2; L3; L4; L5; L6

2.2.2 Epoch Persistency
Compared with the strict persistency model, the epoch persis-

tency model loosens the persist ordering constraint. Under epoch
persistency, the execution of each thread is divided into several
parts, each of which is called epoch, by a new low-level primi-
tive named persist barrier, which is known as pfence in Intel. As
fence is used to restrict the memory ordering in cache, persist
barrier is used to restrict the memory ordering in PM. Any pwb

after the persist barrier cannot be issued until all pwbs before the
persist barrier are completed. All pwbs within a same epoch can
be executed concurrently, whereas those in two epochs divided
by a persist barrier must be executed in sequential. Besides, for
the conflict access to the same address by multiple threads, the
persist ordering respects the order of the corresponding stores.
The epoch persistency model succeeded in exploiting more paral-
lelism compared with the strict persistency model, and have been
used in some current hardware design such as Intel x86 [25] and
HOPS [20] recently. However, the parallelism among persistent
operations from different epochs is neglected.

Figure 1 (c) shows a transformed low-level program with the
epoch persistency model. In this program, since L3 and L4 can
be parallelized, they are included in one epoch. The rest of this

program keep the persist ordering in (b). The execution of this
program is shown as,

L1; (L3 ‖ L4); L6; L8; L10

Though the persist ordering in (1) ∼ (3) are protected, it still in-
troduces an unnecessary dependency between L1 and L4 because
the pwb of Lx and Ly can be parallelized if x and y are different
location.
2.2.3 Strand Persistency

The strand persistency model [6] inherits the characteristics of
the epoch persistency morel whereas it can exploit more paral-
lelism among persistent operations. This model newly introduces
a new concept “strand”, which is a kind of a fragment of a thread.
The strand persistency model is supported by three new primi-
tives, named newStrand, joinStrand, and pbarrier. newStrand

is used to declare that the issue of all the pwbs following the
newStrand is independent from any pwb before the newStrand.
The program segment between two adjacent newStrand is one
strand. In other word, the execution of persistent operations
in different strands can be parallelized. Besides, joinStrand is
used to synchronize the execution of strands. All the strands be-
fore the joinStrand must be completed before any pwb after the
joinStrand can be issued. The persist ordering inside each strand
is restricted by pbarrier, which is similar with the pfence in epoch
model. As same as pfence, pbarrier is used to restrict the order-
ing constraint of pwbs, the pwb following pbarrier cannot be
issued before the previous pwb is completed. However, pbarrier

is a more relaxed primitive because the issue of store following
pbarrier does not need to wait for the completion of previous
pwbs, which increase more opportunity of parallelization.

Figure 1 (d) shows an example of strand model, which is orig-
inated from (c). The redundant dependency between L4 and L6 is
removed. L2 and L4 are included in the first strand, L6, L8, L10

and L12 are included in the second strand. The execution of this
program can be shown as,

(L2; L4) ‖ (L6; L8; L10; L12)
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2.3 High-level Persistency Models
ISA-level persistency models above are efficient but hard for

programmers to design actual programs on them that satisfy the
ordering constraints. It is burdensome and error-prone to directly
manipulate persistency primitives, such as pfence, newStrand,
etc. Besides, different architectures [9] provide architecture-
specific instructions to guarantee the durability and ordering.
One of optional ways is using libraries that build upon these
ISA-level primitives [2], [16], [29] to ensure the failure atomic-
ity [7], [13], [17] in the granularity of a transaction [14]. How-
ever, programmers still must carefully use them and easy to vio-
late the required ordering constraint.

Recently, several works about the persistency models for
language-level, such as C/C++, have been studied. The per-
sistency models in these works are based on synchronization
primitives and extend the semantics to meet failure-atomicity.
For example, ATLAS [1] handles the failure atomicity of a criti-
cal section bounded by lock/unlock using undo-logging to make
sure the recoverability of failure-atomic section. Other alterna-
tive approaches of using logging mechanism also have been pro-
posed, such as redo-logging [21] or justdo-logging [10]. Besides,
PMTest [18] provides assertion-like high-level checkers to guar-
antee the durability and persist ordering. These high-level im-
plementation code are then mapped into ISA-level primitives for
hardware structure to correctly order persistent operations, such
as CLWB and SFENCE instructions in the Intel x86 ISA [9].
However, the mapped ISA-level program has stricter constraints
that are over the programmers’ expectation. Gogte et al. [6]. tried
to relax such constraints by mapping into the strand persistency
model and enable greater persist concurrency than the epoch per-
sistency model.

3. Operational Semantics

We designed an operational semantics of the strand persistency
model on top of TSO memory consistency [27]. The seman-
tics design is inspired by the semantics of the epoch persistency
model published by Raad et al. [24]. We picked theirs as the base-
ment of our semantics design for the following reasons: (i) The
strand persistency model reuses some of the concept of the epoch
persistency model. For example, both of two models have the
persistent buffer to stall pending persists. Since the strand persis-
tency model acts as a more relaxed model, the semantics around
the manipulation of persistent buffer should be designed to sup-
port more concurrency. (ii) The design of such a semantics is
easy to be linked into the correctness condition for recoverability
of a program, which refers to “Buffered durable linearizability”.
By tracking the transition of a program and its memory status, we
can easily determine the moment that the program takes effect on
PM.

The formalized behavior of strand primitives in the operational
semantics strictly respect the informal description of the strand
persistency model proposed by Gogte et al. [6].

3.1 The Syntax of a Program
In this paper, a target program can use strand primitives to con-

trol the memory persistency in high-level. These primitives in-

clude pbarrier, newStrand, and joinStrand. Though they are de-
signed for ISA-level program, programmers can manually insert
them in their programs. The pwb instruction processes a write-
back operation for a cache line, associated with the specified ad-
dress as an argument, to PM. The psync instruction makes sure
all the stores prior the psync should complete the write-back from
cache to PM [9]. However, not all the stores need to be written
back since some of them are not necessary in the aspect of recov-
ery. By adding the argument to the pwb instruction, it makes pos-
sible to remove redundant writeback and improve performance.
For other general instructions, such as if-else, skip, assignment,
etc. we reuse the definition of them from Ref. [24].

3.2 Abstract Memory Structure
The strand model can be realized on top of the abstract memory

structure that supports the behavior of a program, which has high
potential of the concurrency of memory persistency. Figure 2
shows the overview of the structure. Each thread (τ) has a Local
counter (CT ), Store queue (SQ), and Strand buffer unit (SBU).
CT is used to count the memory operations issued by each thread,
and it is used to establish the partial order among memory oper-
ations by providing time (T ) to each operation. SQ is designed
as a queue to keep the pending stores issued by a thread in the
FIFO style. SBU is a list of Strand buffer (SB). Each SB has a
Persist buffer (PB) and Persisting table (PT ). PB is used to keep
the pwbs issued by a thread in the FIFO style. As writing back
to PM takes time to get response, PT is designed as a table to
keep track of the running pwbs. As long as a pwb is issued and
successfully persisted in PM, it can be removed from PT . PT is
located alongside with the corresponding PB.

Cache (C) and Persistent memory (PM) are shared among
threads. Both of them are mapping from memory location to the
value. When a value reaches the cache, it becomes “visible” from
all threads. Similarly, when a value in the cache is written back to
PM, it becomes “durable”, which means it can remain in PM even
after a system crash. Different from the previous work discussing
a semantics for the epoch persistency model, which introduces a
“persistent buffer” to provide visibility [24], the cache has a re-
sponsibility for it in our abstract architecture. This is because the
strand persistency model provides parallelism among strands and
it is difficult to represent it by a single persistent buffer. Thus,
we introduce the strand buffer units and the cache separately to
manage it. The syntax is defined as below:

CT ::= threadID
fin−−→ T

SQ ::= threadID
fin−−→ OP

SBU ::= threadID
fin−−→ SB

C ::= loc
fin−−→ value

PM ::= loc
fin−−→ value

SB ::= Seq〈PB, PT 〉
PB ::= Seq〈OP〉
PT ::= loc

fin−−→ value

OP ::= 〈st(loc, x)|pwb(loc)|pbarrier,T 〉
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Fig. 2 The abstract memory structure of strand model.

The state transition of memory model M
τ:l−−→ M′ follows the

label l issued by thread τ. M stands for “Memory”, which is a
tuple of CT , SQ, SBU, C, and PM.

M ::= 〈CT, SQ, SBU,C,PM〉
Generally, l can be divided into three categories: (1) memory

manipulation operations, which include st(loc, x), pwb(loc), and
CAS (loc, s, t), to update the memory structure deterministically.
(2) memory ordering operations, which include fence, pbarrier,
newStrand, and joinStrand, to keep the memory ordering con-
straint in both volatile memory and PM. (3) silence operation,
which is denoted as ε, to show the non-determinisic update in
the memory structure. The silence operations are activated when
the system can perform the memory propagation. The detail will
be introduced in Section 3.3. The memory model supports the
concurrency with the help of silence operation. When multiple
memory states share the same condition to perform a silence op-
eration, they can be updated in a random order. For example, the
updates of two difference locations in PM can be performed in
any order if they have no dependency each other.

3.3 Semantics of Program and Memory Transition

A memory transition M
τ:l−−→ M′ is a short for CT, SQ, SBU,C,

PM
τ:l−−→ CT ′, SQ′, SBU′,C′,PM′. We designed a set of rules in

the semantics (R.1 ∼ R.11) to describe how the memory status
is updated deterministically or non-deterministically. To simplify
the semantics in this paper, we only shows memory units that
have related to each semantics definition, others are omitted.

store (R.1): When a thread issues an st(loc, x), that means
the value of location loc in the cache will be updated into a new
value x. As the memory model is built on top of TSO, it is possi-
ble to stall the pending sts in each store queue before they reach
the cache. As a result, after a thread issues an st, it is appended
at the end of the local store queue with the current local counter,
and increment the local counter. A pending st in the store buffer
will be propagated to the cache follows the semantics R.7.

CAS (R.2): Compare-and-Swap(CAS) is an atomic memory
operation. When a thread issues a CAS (loc, s, t), it will first load
the value from the location loc in the shared memory unit (firstly
check the cache, and then load from PM if no associated data in

the cache). If the value is the same as s, the value of location loc

in the cache will be updated into t. Before a CAS is issued, all
the pending st issued before the CAS become visible, or update
the cache. Thus, the store queue of the thread becomes empty. As
long as a CAS is issued, it becomes visible instantly in the cache,
and the local counter is increased.

pwb (R.3): When a thread issues a pwb(loc), it is put into the
latest strand buffer in the local strand buffer unit of this thread. As
a strand buffer is a pair of a persist buffer and a persisting table,
the pwb will be first appended at the end of the persist buffer with
the current local counter, then waiting for the moment when the
pwb can be propagated to PM. As well as an st and a CAS , the
counter will be incremented after a pwb is issued.

pbarrier (R.4): The semantics around pbarrier is the same
as pwb. Both of a pbarrier and a pwb are propagated to a per-
sist buffer at the beginning. The difference is that the propagation
path of a pwb is PB → PT → PM, whereas a pbarrier is only
used to stall the propagation of a pwb in PB. The detail is shown
in R.7 and R.10.

fence (R.5): The fence instruction is used to make sure all
the sts in a store queue become visible to other threads before the
thread issues fence. As a result, no more instructions can be ap-
pended to the store queue until the current store queue becomes
drained.

newStrand (R.6): When a thread issues a newStrand, it
means all the following memory operations related to the mem-
ory persistency have no dependency with previous strands. A new
empty strand buffer will be added at the end of the strand buffer
unit of this thread. Any pwb or pbarrier after the newStrand will
be put into this new strand buffer.

joinStrand (R.11): The joinStrand is similar to a synchro-
nization among strands. All the propagation must be finished
before a thread can issue a joinStrand. That means all the sts’
results become visible in the cache and all the pwbs’ results be-
come durable in PM. After issuing the joinStrand, the thread will
reset its local counter to 0.

propagation (R.7 − R.10): Different from all previous se-
mantics, the propagation timings of an st and a pwb are non-
deterministic. For example, as long as an st exists in the store
queue and it has no dependency, which prevents it from becom-
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ing visible, the st can be propagated to the cache at any time.
stPropC (R.7) restricts the propagation of an st. Firstly, an st

becomes visible following the FIFO order that they are kept in a
store queue. Secondly, if any pwb is trying to write back the value
to PM from the same loc with an st issued after the pwb, and a
pbarrier has been issued after the pwb and before the st, then
the propagation of the st cannot be started until the pwb starts
its propagation. pwbPropPT (R.8), pwbPropPM (R.9), and
pwbStall (R.10) restrict the propagation of a pwb. A pwb(loc)
becomes ready to propagate if all sts that try to write the same loc

to the cache before the pwb(loc) are visible (R.8). If so, the pwb

will be first propagated to the persisting table and become pend-
ing, then be propagated to PM from the persisting table (R.9).
Note that propagating of a pwb is different from that of an st. An
st can become instantly visible as long as it is propagated from
the store queue. However, as PM takes time to get updated, a pwb

cannot be durable as soon as it is propagated. This is also the rea-
son why the pwb propagation is divided into R.8 and R.9. Another
restriction to propagate a pwb is a pbarrier. Before propagating
any pwb following a pbarrier in the persist buffer, all the pwbs in
the persisting table become durable (R.10).

l = st(loc, x), CT(τ) = t

CT , SQ
τ:l−−→ CT[τ 	→ t + 1]), SQ[τ 	→ SQ(τ).〈l, t〉]

(R.1(st))

l = CAS(loc, s, t), CT(τ) = t, SQ(τ) = ∅,
ld(PM,C, ∅, loc) = s

CT ,C
τ:l−−→ CT[τ 	→ t + 1]),C[loc 	→ t]

(R.2(CAS))

l = pwb(loc), CT(τ) = t, SBU(τ) = SBU(τ)′.sb,

sb = 〈pb, pt〉, sb′ = 〈pb.〈l, t〉, pt〉
CT , SBU

τ:l−−→ CT[τ 	→ t + 1]), SBU[τ 	→ SBU(τ)′.sb′]
(R.3(pwb))

l = pbarrier, CT(τ) = t, SBU(τ) = SBU(τ)′.sb,

sb = 〈pb, pt〉, sb′ = 〈pb.〈l, t〉, pt〉
CT , SBU

τ:l−−→ CT[τ 	→ t + 1]), SBU[τ 	→ SBU(τ)′.sb′]
(R.4(pbarrier))

l = fence, SQ(τ) = ∅,
SQ,C

τ:l−−→ SQ,C
(R.5(fence))

l = newStrand, SBU(τ)′ = SBU(τ).sb0, sb0 = ∅
SBU

τ:l−−→ SBU[τ 	→ SBU(τ)′]
(R.6(newStrand))

SQ(τ) = 〈op, t〉, SQ′, op = st(loc, x),
sb ∈ SBU(τ), sb = (pb, pt), pb = pb1.pb2,

�t1, t2.〈pwb(loc), t1〉 ∈ pb1, 〈pbarrier, t2〉 ∈ pb2, t1 < t2 < t.

SQ,C
τ:ε−−→ SQ′,C(loc 	→ x)

(R.7(stPropC))

sb ∈ SBU(τ), sb = (pb, pt),
pb = 〈pwb(loc), t〉.pb′, C(loc) = x,

�t′.〈st(loc, x), t′〉 ∈ SQ(τ), t′ < t

SQ,C, SBU
τ:ε−−→ SQ,C, SBU[τ 	→ (sb 	→ (pb′, pt(loc 	→ x)))]

(R.8(pwbPropPT))

sb ∈ SBU(τ), sb = (pb, pt), pt(loc) = x

SBU,PM
τ:ε−−→

SBU[τ 	→ (sb 	→ (pb, pt(loc 	→ ∅)))],PM[loc 	→ x]

(R.9(pwbPropPM))

sb ∈ SBU(τ), sb = (pb, pt), pb = 〈pbarrier, t〉, pb′,
∀loc.pt(loc) = ∅

SBU
τ:ε−−→ SBU[τ 	→ (sb 	→ (pb′, pt)]

(R.10(pwbStall))

l = joinStrand, CT(τ) = t, SQ(τ) = ∅,
∀sb ∈ SBU(τ), sb = ∅

CT , SQ, SBU,C,PM
τ:l−−→ CT[τ 	→ 0]), SQ, SBU,C,PM

(R.11(joinStrand))

3.4 Persist Ordering in Strand Model
In the strand persistency model proposed by Gogte [6], the be-

havior of each strand primitive restricts the order of the cache
and PM update operations.Such ordering constraints are shown
as VMO (Volatile memory order) and PMO (Persist memory or-
der). The behavior of pbarrier, newStrand, and joinStrand pro-
posed in this paper strictly follows the definition in Gogte’s work.
They use following notations to describe the ordering constaint:
Mi

x means a load or a store operation to the location x of PM on
thread i; S i

x means a store operation to the location x of persis-
tent memory on thread i; PBi means a persist barrier issued by
thread i; NS i means a newStrand issued by thread i; JS i means
a joinStrand issued by thread i; Mi

x ≤v Mi
y means that Mi

x is or-
dered before Mi

y in VMO; Mi
x ≤p Mi

y means that Mi
x is ordered

before Mi
y in PMO;

First, Gogte described that newStrand and persist barrier re-
strict the VMO and the PMO of a program in the following way:

(Mi
x ≤v PBi ≤v Mi

y) ∧ (�NS i : Mi
x ≤v NS i ≤v Mi

y))

→ Mi
x ≤p Mi

y

Such an ordering constraint can be performed by R.4, R.6, and
non-deterministic memory propagation from R.7 ∼ R.10. From
the definition in R.6 and R.8, as long as a program encounters a
newStrand, a new strand buffer will be created and all the follow-
ing pwbs are propagated in this strand buffer. Otherwise, pwbs
will be propagated to the current strand buffer. From R.3 and R.4,
a pwb and a pbarrier are issued to a persist buffer in the same
way. Since a persist buffer is a FIFO buffer, both a pwb and a
pbarrier are ordered in the same way. This is how the VMO part
of the rule above is displayed in our model. However, because of
the restriction of pbarrier in R.10, a pwb following a pbarrier in
a persist buffer have to stall the propagation to PM until all pwbs
before the pbarrier have finished the propagation to PM. This is
how PMO part of the rule above is displayed in our model. As a
result, the behavior of pwb, pbarrier, and newStrand respects the
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behavior defined in Ref. [6].
Next, the VMO and the PMO introduces by joinStrand is

shown as the following way:

(Mi
x ≤v JS i ≤v Mi

y)→ Mi
x ≤p Mi

y

Such ordering constraint can also be shown in our model. From
R.11, when a program encounters a joinStrand, the program will
stall the issue of new memory and persist instructions to both a
store queue and a strand buffer unit until all the running mem-
ory propagations are finished. This is the VMO part of the rule
above. As long as all running memory propagation are done,
which means there is no pending st in a store queue, and no
pending pwb in a strand buffer, all pwbs before the joinStrand

are durable. All the pwbs following the joinStrand will be per-
sisted after these pwbs. This is how the PMO part of the rule
above is displayed. In the consequences, we say the joinStrand in
this paper respects the rule defined in Ref. [6].

3.5 History Generation
To trace a program execution, we borrow the notion of event

and history from Refs. [8], [11], which are originally used to show
the correctness condition for a concurrent object. We use these
two concepts to record the execution status.

H ::= TE

TE ::= (threadID
fin−−→ E)|c

E ::= inv( funcID)|res( funcID)

|st(loc, x)|CAS (loc, s, t)|pwb(loc)

History (H) is defined as a list of thread events (TE), TE is ei-
ther a crash event (c) or a mapping from a thread id to the event
(E). Two types of event are defined: (1) Invocation and response.
inv( f uncID) is an invocation event for a library call. When a
thread issues call(μ) to execute a library call μ, inv(μ) is appended
to the end of H. In contrast, res( funcID) stands for a response
event of a library call, it is appended to the end of H when a thread
issues return. (2) Memory events. st(loc, x) and CAS (loc, s, t) are
added to H as long as they become visible following the seman-
tics R.2 and R.7. pwb(loc) is added to H when it becomes durable,
which means the pwb is completed following the semantics R.8
and R.9.

The transition rule for the history generation is defined as

〈P,M,H〉 τ:l−−→ 〈P′,M′,H′〉. The update of H strongly depends
on the semantics of the memory transition. We say a library call
μ is “pending” if τ.inv(μ) ∈ H but τ.res(μ) � H. A library call μ is
“complete” if both τ.inv(μ) and τ.res(μ) are included in H.

4. Correctness Condition of Undurable Imple-
mentation [8], [11]

In a concurrent environment, linearizability is known as the
correctness condition for the operations performed to a concur-
rent object, such as queue, hash table, etc. It is used to prove
the legality of a library call implementation for a concurrent ob-
ject. Buffered durable linearizability is an extension of such cri-
teria to support both the linearizability and durability in a case of

a system crash. An implementation that meets buffered durable
linearizability means a program can recover to the correct state
when a crash happened at anytime. In this section, we first make
a brief introduction of linearizability [8] and the traditional verifi-
cation techniques to prove an undurable implementation. We will
describe the buffered durable linearizability and discuss how we
extend these concepts to define the correctness of durable imple-
mentations in Section 5.

4.1 Linearizability [8], [11]
In linearizability, an operation in the granularity of a library op-

eration performed by each thread is divided into an invocation and
a response. The operation takes effect between the corresponding
response and its invocation. Then, the behavior of a program can
be simulated as a list of invocations and responses labeled with
each thread id and properties of operations. Such a list is called
History. The verification of the linearizability of a program can
be done by verifying if the value of the shared object after the
history is legal or not.

However, different from a sequential object execution, oper-
ations are allowed to overlap with each other and the ordering
among operations can be non-deterministic in a multi-thread en-
vironment. This leads to the difficulty in verifying the correct-
ness of the object value because the history can be interleaved.
To identify the correctness of the history under such a non-
deterministic situation, it should be convergence with the help
of linearizability. The history H is sequential if each invocation,
except possibly the last, is immediately followed by a matching
response. Each response is immediately followed by a match-
ing invocation. Here, we borrow some notion from Ref. [11] to
define the linearizability. We say an operation is “pending” if
the response of the operation is not included in H. An operation
is “complete” if H contains a pair-wise invocation and response
of the operation. compl(H) denotes the set of histories that can
be generated from H by appending completion responses, and
trunc(H) denotes the set of histories that can be generated from
H by removing pending invocations. H induces an irreflexive
partial order ≺H on operations to capture the “real-time” partial
order between operations.

A history H is then can be recognized as linearizable with the
following definition:
Definition 1 (Linearizability). History (H) can be linearizable

if H can be transformed into another history (H′) with follow-

ing rules: (1) H′ is trunc(compl(H)) and is equivalent with some

sequential history Hs. (2) Hs has the same happens-before with

H.

4.2 Correctness of Undurable Implementation
An implementation can be recognized as a set of histories, each

of which consists of events of two objects, a representation object
REP and an abstract object ABS. The operation events performed
on REP and ABS are called rep operations and abs operations,
respectively. Informally, rep operations are the instructions that
build the implementation (e.g., store, CAS, etc), and abs oper-
ations can be treated as the function declarations of the imple-
mentation (e.g., enqueue, dequeue, etc), and the invocation and

c© 2021 Information Processing Society of Japan 830



Journal of Information Processing Vol.29 823–838 (Dec. 2021)

response of these function declarations. Thus, it is clear to know
that an abstract operation is implemented by the sequence of rep
operations that occur within it.

We say a history H is sequential if: (a) The first event of H

is an invocation. (b) Each invocation, except possibly the last,
is immediately followed by a matching response, each response
is immediately followed by a matching invocation. Besides, a
history H is well-formedness if each sub-history H|T is sequen-
tial, where H|T means the sub-history of H including only the
operations of thread T . In a history, events can be interleaved
under the following restrictions: (1) the sub histories H|REP and
H|ABS satisfy the usual well-formedness conditions, and (2) for
each thread T , each rep operation in H|T lies within an abstract
operation in H|T .

When an implementation is executed in a multi-thread envi-
ronment, concurrent execution to the same memory location will
be serialized in the instruction level at real-time. Thus, H|REP

is linearizable by default. However, the linearizability of H|ABS

totally depends on if the H|REP can result in a legal value where
the legality respects the specification of abstract operation (ABS).
Besides, such a value must also be one of the possible results of
H|ABS.

We can define the correctness of undurable implementation
naively and informally in the following way:
Definition 2 (Correctness of undurable implementation). An

undurable implementation is correct with respect to the specifica-

tion of ABS if for every history H in the implementation, H|ABS

is linearizable.

4.3 Invariant and Abstract Function
We make a brief introduction of the traditional verification

technique for an undurable implementation here.
The verification of a concurrent implementation requires an ap-

propriate definition of an invariant and an abstract function. An
invariant is a boolean value, which shows immutable properties
that the target data structure must hold during the execution. An
abstract function provides a mapping rule to show the data struc-
ture that satisfies an invariant.

A subset of REP values that are legal representations is char-
acterized by a predicate named the “rep invariant”, I : REP →
BOOL. The meaning of a legal representation is given by an ab-
stract function A : REP→ ABS, defined for representation values
that satisfy the invariant.

In a concurrent environment, as abstract operations are allowed
to overlap with each other, an implementation must be prepared to
encounter a rep value reflecting the incomplete effects of concur-
rent operations. As a result, an abstraction function must be de-
fined continually, which means it is not defined between abstract
operations but between rep operations that implement the abstract
operations. Therefore, it is common that a rep invariant must be
preserved by each rep operation in the sequence implementing
each abstract operation. On the behalf of an abstract function, the
non-deterministic behavior of a concurrent execution must be re-
flected to show an acceptable behavior of a concurrent program.
For example, when two threads concurrently enqueue x and y in a
non-deterministic way, both [x; y] and [y; x] are acceptable results

of the program. As a consequence, an abstract function should be
defined to map a rep value to a set of abstract values. This set
represents all the possible sets of linearization permitted by the
current value of the rep.

To verify the correctness of an implementation, it is helpful
to transform assertions about interleaved histories into assertions
about sets of sequential histories, which can be also known as sets
of values. They are convenient to use and verify by using familiar
axiomatic methods such as Hoare logic and Separation logic. For
a given history H, the value of an object at the end of a lineariza-
tion of H is called linearized value Lin(H). As discussed before
in this section, a history can have more than one linearization, so
Lin(H) is used to denote the set of all linearized values of H.

From the view of H|ABS, if an operation is invoked before the
previous operation gets response, which means the execution of
two operations are overlapping, the Lin(H|ABS) contains several
possibilities. However, as H|REP contains instructions that im-
plement the operation, each Lin(H|REP) only contains one possi-
ble value of concurrent object. If an implementation is lineariz-
able, it requires that Lin(H|REP) is one of the possible result of
Lin(H|ABS). Besides, it also requires that the rep invariant I are
always preserved in H|REP. The assertion of implementation
needs to show these conditions are always met. It can be defined
as following:

∃r.r ∈ Lin(H|REP) ∧ r ∈ Lin(H|ABS) ∧ I

For example, assume that a queue q with one element [t], and
thread 1 performs Enq(q, x) and thread 2 performs Deq() con-
currently. The execution of two operations are overlapping. In
this case, Lin(H|ABS) is {[t], [x]}. If the implementation of Enq

and Deq are correct, H|REP will exist that can generate either [t]
or [x]. However, if the implementation is incorrect, H|REP may
generate [t; x] or [], which disobey the assertion above. Then the
implementation is proved to be invalid.

5. Durable Queue Implementations

In this section, we study the legality of library implementa-
tions for a concurrent object using the strand persistency model.
Note that the correctness for the durable implementation should
be carefully defined in the aspect of both durability and recover-
ability. Generally, three aspects are required in the criteria: (1)
a crash may happen anytime, and a system should be correctly
recovered; (2) a recovery should meet failure atomicity where
none or all the updates in failure atomic region can be recog-
nized; (3) The persist ordering after a crash strictly respects the
state before the crash. In Section 4, we described the basic con-
cept of the buffered durable linearizabilty (BDL). In this paper,
we combine the knowledge of the axiomatic verification for lin-
earizability with the idea of BDL and define a criteria for durable
implementations. Such criteria can be recognized as an extension
of the traditional BDL. It regulates the execution of a library im-
plementation by showing the invariant of concurrent object and
persistent memory status. Such invariant must be satisfied when-
ever a system crashes. Besides, the value of a concurrent object
in PM must be legal. In the later part of this section, we use two
case studies of queue implementations to show how we use this
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criteria and semantics of the strand persistency model to discuss
the legality of durable implementations.

5.1 Premise of Implementation and System Crash
Before stepping into the discussion of the legality of a durable

implementation, we first describe the premise of the implementa-
tion of libraries and unexpected system crash to show the scope
of this paper.

Tolerated failure and hardware premise First, we as-
sume the crash is fail-stop. When a system crashes, as long as
data are persisted to PM, these data are kept still and no process
can destroy them anymore. The transient data, such as the data
in thread stacks or caches, will be lost if they have not reached
PM before a crash. We also consider a crash is full-crash, which
means we assume all threads exit the execution when a system
crashes. We exclude the case that partial threads are not affected
by a system crash and continue execution. Next, we say all ad-
dresses in PM are required to be mapped into the same virtual
address. Besides, we also assume the hardware architecture de-
sign follows the abstract memory model described in Section 3
and all CPUs are able to access the shared memory modules even
after the crash. Lastly, each data employs per cache line to store
so that when a CPU decides to flush a data, it flushes the whole
cache line.

Strand model As described in Section 2, the strand persis-
tency model has more relaxed persist dependencies within and
across threads compared with the epoch persistency model. In
the epoch persistency model, only consecutive persists within a
thread can be labelled as concurrent. Besides, persists from dif-
ferent threads are only concurrent if their epochs race or if they
are not synchronized. Many persists within and across threads
can still be concurrently executed even if they do not fit these pat-
terns. With the help of the strand primitives, more concurrency
can be discovered in both intra-thread and inter-thread levels.

Undo-logging We apply the undo-logging mechanism de-
signed in ATLAS [1] for recovery. Undo logging ensures failure
atomicity by recording the undo-log of data before an in-place
update in a failure-atomic region. The undo-log is reset after the
corresponding in-place update in PM. If a system crashes before
the new data are updated in PM, the recovery process will use
undo logs to roll-back partial PM updates. If the system crashes
after the updates in PM, the program will roll-forward from the
latest updates in the undo logs. To ensure correct recovery, it re-
quires the partial persist ordering between the undo log and the
corresponding in-place update in PM. That is, the log of a loca-
tion must be persisted before the in-place update of that location
in PM. The undo logs and in-place updates for different mem-
ory locations can be persisted concurrently if their corresponding
stores are concurrent. We use the strand persistency model to seek
for the parallelism aggressively for undo-logging mechanism.

TSO We choose “total-store-order” (TSO) as our memory
consistency model. TSO is a mainstream practical weak memory
consistency model followed by the x86 architectures (both Intel
and AMD). TSO is a more relaxed consistency model compared
with strict consistency (SC). By integrating the store buffer, store
and load instructions can be reordered. Stores in the store buffer

follows the FIFO ordering and such ordering remains unchanged.
Thus, we say the stores become visible in the cache with the same
order that they are issued.

5.2 Durable Libraries Implementation Routine
This paper discusses the legality by using durable queue im-

plementations as the case study. However, while developing the
algorithm, we discover that all durable library implementations
adhere to a certain routine regardless the type of data structure.
They are: (1) execute a newStrand, (2) store the metadata of the
concurrent object to track the current progress of the executing
thread, (3) execute a pbarrier to restrict the ordering constraint
inside the strand, (4) update the value of concurrent object by car-
rying out the library operation, (5) execute a joinStrand at the end
of the library implementation. Note that (1) ∼ (4) is repeatable if
a library implementation has more than one instruction to update
the concurrent object. For instance, in an enqueue/dequeue im-
plementation, the update of node and pointer can be put into two
different strands of a thread even they have dependency. This is
because these two updates read/write the same location and the
persist ordering of them must respect the store ordering. Such a
constraint can be explicitly shown by the behavior of the strand
persistency model. The joinStrand in the step (5) makes sure the
effect of the library operation gets response before the end of the
current call. Other concurrent objects such as tree and linked-list
can also adapt such a routine. Following the steps above, the per-
sist of log in each strand can be parallelized without destroying
the consistency of a concurrent object status in PM.

Note that the implementation routine shown in this paper is
different with the one in Ref. [6] where each store has a corre-
sponding undo-log, pbarrier, and newStrand. We exploited a
strand in a more coarse-grain granularity and allow each strand
contains more than one stores. Besides, the undo-log is created
for each concurrent object but not for each store. An example of
the implementation is shown in Algorithms 2 ∼ 5 in Section 5.5.

5.3 Buffered Durable Linearizability [11]
Buffered durable linearizability is the correctness showing that

operations become persistent before they return. When a crash
happens, all previously completed operations remain completed,
with their effects visible in PM, or becoming durable. If oper-
ations have not completed when a crash happens, or a crash in-
terrupts the execution, their effect may not be visible after the re-
covery in the subsequent history. Operations may become durable
simply because they have finished all the persists before the crash
even the lack of a response. Assume a history H has the happens-
before order ≺h of events E, a “≺-consistent cut” of H is denoted
as P where if E ∈ P and E′ ≺h E in H, then E′ ∈ P and E′ ≺h E

in P. We use εi to show the ith sub-history of H without any
crash event, and ci to show the ith crash event. Then, the buffered
durable linearizability is defined as follows:
Definition 3 (Buffered durable linearizability). History (H =
ε0c1ε1c2 . . . ccεc) is buffered durable linearizable if there exists

sub-histories P0P1, . . . , Pc−1 such that ∀0 ≤ i ≤ c, Pi is a ≺-

consistent cut of εi, and P0P1 . . . Pi−1εi is linearizable.
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5.4 Correctness Condition
We adopt several basic axiomatic concepts from the verifica-

tion of the linearizability and buffered durable linearizability to
define the criteria of the strand library implementation. The ba-
sic idea is similar to the correctness condition of linearizability,
which says an implementation is correct with respect to the spec-
ification of ABS if for every history H in the implementation,
H|ABS is linearizable. In other words, for every possible lin-
earized value r in the concrete implementation history H|REP,
there exists an abstract function that shows r respects the rep in-
variant I and such values are included in a possible linearized
value set from H|ABS. We extend this idea into buffered durable
linearizability in this section.
5.4.1 Rep Operations and Operational Semantics

Except for the general REP operations, memory persistency
primitives should also be recognized as REP operations and can
be included in a history H or H|REP. These primitives are not
related to the rep value in the cache directly. In contrast, they
manipulate the memory status and a rep value in PM and some
of them are recorded in the log. We can use the operational se-
mantics in Section 3 to capture how these primitives modify a
concurrent object in PM.
5.4.2 Correctness of Durable Implementation

The central correctness condition relies on a rep invariant and
an abstract function of a durable implementation under the base
memory persistency model. As well as linearizability, a concur-
rent object needs to keep the rep invariant be true in a current
history when a system is stable. Whenever a system crashes, the
rep invariant must be true in the recovered history. Besides, an
abstract function also needs to get the value of the object in the
recovered history, which we call “durable linearized value”, that
satisfies the rep invariant. As described in Section 4.2, H|REP

is linearizable in default because the concurrent execution to the
same memory location is serialized in instruction level. It is re-
quired to show that every recovered history of concurrent object
r is always buffered durable linearizable. That means the imple-
mentation should keep the invariant unchanged over abstract in-
vocations and responses, and over completions of rep operations.
If any possible state violates the invariant, the implementation is
incorrect.

Since a library implementation is data structure specific, the
rep invariant is also an ad hoc property. However, as we discussed
in Section 5.2, durable library implementations follow a certain
design routine. This means that apart from the data structure spe-
cific rep invariant, a durable implementation must also satisfy the
invariant in the aspect of logging and persistent point. For the im-
plementation based on undo-logging, the persistent point refers to
the instructions that perform an in-place update of a concurrent
object in PM. Here, we list two invariants of persistent point:
• (A) If an in-place update of a value is shown in the current

PM status, the corresponding persist of the undo log must be
included in the recovered history.

• (B) A linearization point of an implementation must appear
before the persistent point of the implementation.

As a system crash happens in non-deterministic way, it is
not sufficient to merely capture the linearized values of the cur-

rent H|REP. Instead, the linearized values of recovered his-
tory after every possible crashes must be considered. We use
H = ε0c1ε1 . . . ccεc to denote the history with c crash events.
Each εi is a sub-history of H without any crash, ci means the ith
crash. When a system crashes at ci+1, the recovery process will
determine which part of εi should be recovered by checking the
current statues of PM and εi. The recovered history of εi is de-
noted as Pi. Note that Pi is similar with the consistent-cut of εi

defined in Section 5.3. Since Pi is known as the recovered history
of εi, it is obvious to know that Pi ⊆ εi+1 because εi+1include both
the recovered history of εi and ongoing history of the program.

From the definition of durable linearizability or buffered
durable linearizability, Pi is another form of trunc(comp(εi))
where either adding a corresponding response or removing a
pending invocation depends on whether a persistent point of the
implementation is persisted or not, respectively. Here, we can ob-
tain Pi by continuously inspecting the current memory status in
PM. As we use undo-logging mechanism for recovery, εi has a
pairwise persists of undo log and corresponding in-place update
for each store. If a system crashes after the persist of the undo
log and before the in-place update, the pending invocation is re-
moved. If a system crashes after the persist of the in-place update
and before the response of the abstract operation, a corresponding
response is added.

We use Lin(H) and DurLin(H) to denote the sets of all lin-
earized values of H in the cache and durable linearized value of
H in PM, respectively. Similar to a linearized value, we call the
memory status in PM at the end of a linearization of H as lin-

earized memory status and use DurPM(H) to denote the set of
all possible linearized memory status in PM. Now, we can define
the correctness of a durable implementation more precisely based
on the invariant and buffered durable linearizability:
Definition 4 (Correctness of durable implementation). For

history H = ε0c1ε1 . . . ccεc, we say H is buffered durable lineariz-

able if ∀i. 0 < i < c, Pi is a recovered history of a sub-history

εi with PM status DurPM(εi) and r ∈ DurLin(Pi|REP). r holds

the invariant of the persistent point Ip and the invariant of data

structure Is, and r ∈ DurLin(εi|ABS).
Note that the above correctness is independent from the data

structure. To adapt such a criteria into a library implementation,
a definition of a data structure specific invariant Is is required.
5.4.3 The Invariant of Durable Queue Implementation

To obtain the adequate invariant and abstract function of the
queue, we seek for a connection between the buffered durable
linearized value and the recovered history. We treat a set of val-
ues in a durable queue persisted in PM as an array with partial
order ≺p, named Qp. A set of values in a durable queue stayed in
the cache is treated as an array with partial order ≺v, named Qv.
In the recovered history, we say x ≺h y if an in-place persist of
the value x at the memory location l1 and that of the value y at the
memory location l2 has the following relation:

∀H, 〈P,M,H0〉 ∗−→ 〈P′,M′,H〉, pwb(l1) ≺h pwb(l2)

where H0 means the initial empty history, and
∗−→ stands for the

transition from the initial state to the final state. We define the
linearization point (lp(τ, μ)) as the last st that modifies a concur-
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rent object in the cache by the abstract operation μ in the thread
τ. Similarly, we also define the persistent point (pp(τ, μ)) as the
last pwb that modifies the object in PM. If the thread τ performs
enq(queue, x) in μ and the thread τ′ performs enq(queue, y) in μ′,
we define the partial orders in Qp and Qv as follows, respectively:
• x ≺p y in Qp if pp(τ, μ) ≺h pp(τ′, μ′) in H and x, y ∈ queue

in PM
• x ≺v y in Qv if lp(τ, μ) ≺h lp(τ′, μ′) in H and x, y ∈ queue in

the cache.
Then, the abstract function shows that the durable linearized

values DurLin(H) in the queue in PM makes an array satisfying:
• (1) All in-place persist of values in the recovered history

must also appear in the array.
• (2) if a partial order exists between two in-place persist in

the recovered history, then such a partial order must also be
satisfied in the array.

As a result, the invariant Is of the durable implementation of the
queue must meets the specification of the queue:
• (C) If the queue has items in it, then its length is bigger than

1.
• (D) The pointer points its next element in the queue is null

for the last element.
• (E) if x ≺p y in the durable linearized values in PM, the

x ≺v y in the linearized values in the cache.

5.5 Discussion of Durable Queue Implementations
In this section, we discuss the case studies of two en-

queue/dequeue implementations using the strand persistency
model. The case studies in this section are based on the algo-
rithms that has been guaranteed to be correct in the aspect of
memory consistency. We transformed these implementations us-
ing the strand persistency model to meet the memory persistency.

We first made an example of enqueue/dequeue implementa-
tion using CAS to support the durability and recoverability (Al-
gorithms 2 and 3).

Algorithm 2 is an extension of the traditional MS queue in Al-
gorithm 1, which uses the implementation routine described in
Section 5.2. This implementation is safe in both memory consis-
tency and persistency. In the aspect of memory persistency, this
program has two strands. To abbreviate the discussion, we named
the strand from L1 to L11 as “data-strand”, L13 to L43 as “ptr-
strand”. In the data-strand, right after the node is allocated, the
data log is initialized and persisted with the flag “unallocated”.
After the in-place update of the node, the flag is marked as “in-
valid” showing that the recovery of the data-strand is not required
anymore. In the ptr–strand, the initial flag of ptr log is “valid”.
After the in-place update of both &tail and &(last → next),
the ptr-strand does not need to recovery when a system crashes.
When the flags in both the data-strand and the ptr-strand are
marked as “invalid” and such flags have reached PM, the library
operation is recognized as “complete” and need to roll-forward
when a system crashes. If any of the flag in PM is still “valid” or
“unallocated”, the library operation is required to roll-back when
a system crashes even if one of the strands has completed.

Note that both data log and ptr log along with their flags are
local to each thread so that the protection of the atomicity of log

Algorithm 2: Enqueue for durable MSQ with CAS
Data: value

1 newStrand;

2 Node* node = (Node*)malloc(sizeof(Node));

3 data log.data = node;

4 data log.flg = unallocated;

5 pwb data log;

6 pbarrier;

7 node.data = value;

8 pwb node;

9 pbarrier;

10 data log.flg = invalid;

11 pwb data log.flg;

12

13 newStrand;

14 ptr log.next = tail->next;

15 ptr log.tail = tail;

16 ptr log.flg = valid;

17 pwb ptr log;

18 pbarrier;

19 while true do
20 Node* last = tail;

21 Node** nxt = &(last -> next);

22 if last == tail then
23 if nxt == NULL then
24 if CAS(&(last->next), *nxt, node) then
25 pwb &(last->next);

26 if CAS(&tail, *last, node) then
27 pwb &tail;

28 end

29 pbarrier;

30 ptr log.flg = invalid;

31 pwb ptr log.flg;

32 joinStrand;

33 return;
34 end
35 else
36 pwb &(last->next);

37 if CAS(&tail, *last, *nxt) then
38 pwb &tail;

39 end

40 pbarrier;
41 end
42 end
43 end

is not required. When the system recovery from a crash, a con-
sistent queue can be recovered by comparing each log of its asso-
ciated thread with the queue in PM. Such a recovery mechanism
may sacrifice performance in recoverability as we re-do some of
strands. However, as a system crash is known as a rare condition,
we prefer to pay more attention to gain better performance when a
system does not crash, which means we use the strand primitives
as less as we can protect the least recoverability of the program.
Since the scope of this paper focuses on the correctness of the
memory persistency, the algorithm to maximize the performance
of a library implementation is not discussed here.

We now discuss the memory persistency of this algorithm is
safe in following three aspects: “intra-thread/intra-strand”, “intra-
thread/inter-strand” and “inter-thread/inter-strand”.

From the view of intra-thread/intra-strand, the pbarriers in L6
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Algorithm 3: Dequeue for durable MSQ with CAS

1 newStrand;

2 ptr log.tail = tail;

3 ptr log.head = head;

4 ptr log.flg = valid;

5 pwb ptr log;

6 pbarrier;

7 while true do
8 Node* first = head;

9 Node* last = tail;

10 Node** nxt = &(first -> next);

11 if first == head then
12 if first == last then
13 if next == NULL then
14 return;

15 end

16 if CAS(&tail, *last, *nxt) then
17 pwb &tail;

18 end
19 else
20 if CAS(&head, *head, *nxt) then
21 pwb &head;

22 ptr log.flg = invalid ;

23 pwb ptr log.flg;

24 joinStrand;

25 return;
26 end
27 end
28 end
29 end

and L9 strictly restrict the persist ordering of the data-strand un-
der the undo-logging mechanism, which shows that the in-place
update of a memory location must be processed after the log is
persisted, with the help of rules R.3,R.4 and R.8,R.9,R.10 in Sec-
tion 3. Note that R.4 and R.10 indicate that L8 is allowed to be
issued before L5 completes and after L5 is issued, whereas L8 is
guaranteed to completes after L5 completes. Note that the issue
order of L8 and L5 to PM by a strand buffer is strictly protected
by R.10, as long as a persisting table holds pending persists, the
upcoming persists after the pbarrier in a persist buffer have to
be stalled. The pbarriers of L29 and L40 in the ptr-strand work
in the same way. Besides, it is also allowed that a thread exe-
cutes several enqueue continuously. In this case, the joinStrand

in L32 restricts the order of the pwb and the pbarrier from dif-
ferent operations. From the rule in R.10, when a thread executes
a joinStrand, it needs to make sure that all the running memory
propagation are finished. In Algorithm 2, as the joinStrand is ex-
ecuted right before the return of the operation, none of pwb in
the following operation can be issued until all the pwbs in the
previous operation become durable in PM.

From the view of intra-thread/inter-strand, all the pwbs in the
ptr-strand are allowed to be issued without stalling or waiting
pwbs in the data-strand completion. This may results in an invalid
persist ordering between L8 in the data-strand and L25 and L27, or
L36 and L38 in the ptr-strand. For example, L25 is issued after L8

is issued but L25 completes before L8 completes. As joinStrand

is the only operation ensuring the persist ordering of two pwbs
in two different strands, if they are writing to different memory
locations, we allow such an invalid persist ordering temporary.

However, as discussed before, if a system crashes in this phase,
the operation is recognized as incomplete and is required to role-
back and re-do the whole operation again. This means the undo-
logging mechanism in this implementation prevent the program
to take reference from an incomplete memory status in PM dur-
ing recovery. An alternative way to force the persist ordering of
pwbs in the data-starnd and the ptr-strand is to put a joinStrand at
the beginning of the ptr-strand (between L13 and L14). However,
it results in that the ptr-strand must stall until the data-strand com-
pletes, which sacrifices the performance instead.

From the view of inter-thread/inter-strand, the ordering con-
straint of L25, L27, L31, L36, and L38 are protected by how CAS

keeps the atomicity of queue update. L25, L27, and L31 are issued
only when L24 is triggered and the joinStrand in L32 makes sure
these three pwbs need to complete before the end of the imple-
mentation. Such an implementation makes sure the update of the
ptr-strand is atomic and cannot be interrupted by other threads.
L36 and L38 are added into the current ptr-strand when L23 is false
and the pbarrier in L40 restricts the persist ordering of the pwb

in the ptr-strand between the current loop and the next loop. As
a result, the durable enqueue is legal in the durability with the
formalized behavior of the strand persistency model.

From the view of recoverability, when a system crashes, the
recovery process traverses the queue in the current PM from the
head to the tail. The traverse finishes at the tail with “invalid”
flag is located. Such a traverse is used to locate the tail where the
enqueue for the tail is interrupted. If the flag of the corresponding
enqueue of the tail is marked as “valid/unallocated”, the enqueue
is required to be executed again.

The legality of the dequeue in Algorithm 3 can be discussed in
the same way. The implementation of the dequeue only contains
the ptr-strand so that the case of intra-thread/inter-strand does
not have to be considered. As same as the enqueue, the atom-
icity of pwbs in L21 and L23 are guaranteed by CAS in L20. The
joinStrand in L24 makes sure all effects of the persistent opera-
tions must get response before the end of the dequeue operation.
The recovery of the dequeue is similar with the enqueue, a tra-
verse is processed from the head to the tail, and finish the traverse
at the head with “invalid” flag is located. All the dequeues with
“invalid” flag are required to be executed again.

We made an another example of a durable strand lock-based
enqueue/dequeue implementation (Algorithms 4 and 5). As same
as MS queue, a new data is allocated in the data segment first,
then it updates the pointer of the queue to let the tail point to the
data segment. The durability of the enqueue and the dequeue can
be protected in the same way. We use the enqueue to explain the
mechanism behind it.

From the view of memory consistency, this program is safe in
a concurrent environment. When a thread performs the enqueue,
a node is allocated in the local environment. Such allocation is
independent from other threads so that it can be concurrently per-
formed with other threads. When the thread updates the queue,
the critical section is protected by lock to keep all the manipula-
tions are atomic in the aspect of inter-thread. Besides, the pointer
manipulation of the thread can be concurrent with the data allo-
cation from other threads. The data allocation must be performed
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Algorithm 4: Enqueue for durable queue with lock
Data: value

1 newStrand;

2 Node* node = (Node*)malloc(sizeof(Node));

3 data log.data = node;

4 data log.flg = unallocated;

5 pwb data log;

6 pbarrier;

7 node.data = value;

8 pwb node;

9 pbarrier;

10 data log.flg = invalid;

11 pwb data log.flg;

12

13 lock(ptr lock);

14 fence;

15 newStrand;

16 ptr log.next = tail;

17 ptr log.tail = tail;

18 ptr log.flg = valid;

19 pwb ptr log;

20 pbarrier;

21 tail->next = node;

22 pwb &(tail->next);

23 tail = node;

24 pwb &tail;

25 pbarrier;

26 ptr log.flg = invalid;

27 pwb ptr log.flg;

28 joinStrand;

29 unlock(ptr lock);

30 return;

Algorithm 5: Dequeue for durable queue with lock

1 lock(ptr lock);

2 fence;

3 newStrand;

4 ptr log.head = head;

5 ptr log.flg = valid;

6 pwb ptr log;

7 pbarrier;

8 Node* first = head;

9 Node* nxt = head->next;

10 if first == NULL then
11 ptr log.flg = invalid;

12 pwb ptr log.flg;

13 joinStrand;

14 unlock(ptr lock);

15 return;
16 end

17 head = nxt;

18 pwb head;

19 pbarrier;

20 ptr log.flg = invalid;

21 pwb ptr log.flg;

22 joinStrand;

23 unlock(ptr lock);

24 return;

before the pointer manipulation in intra-thread. Such a restricted
ordering is also protected by the “fence” after the lock.

In the aspect of memory persistency, the data-strand is from L1

to L11 and the ptr-strand is from L13 to L29. The behavior in the
data-strand is same as that in Algorithms 2. In the ptr-strand, the
log of the queue is initialized right after the lock. After the log
is persisted, two pointers are persisted separately. Note that no
persist ordering between persists of these two pointers exists as
failure atomicity only allow none or all of persists being durable.
As well as the data-strand, the upcoming persist of flag means the
log is invalid anymore. Finally, before the unlock, the joinStrand

is performed to make sure all the stores are visible and all the
persists are durable.

All above algorithms meet the correctness criteria of Defini-
tion 4. First, DurLin(Pi|REP) ⊆ DurLin(εi|ABS) is always true
because the library operation is able to rollback to a certain sta-
ble stage with the help of undo-logging. Next, DurPM(εi) can
be obtained by following the trace of pwbs in the current history
εi. From εi, the invariant of the persistent point and the queue
are always met because both CAS and lock can implicitly protect
the persistent ordering of both inter-thread/inter-strand and intra-
thread/inter-strand. This is because the execution of each pwb

can be triggered only when the corresponding CAS return true,
or lock is activated. Thus, the order of pwbs follows the order of
CAS s or the order of each thread acquires lock.

In Fig. 3, we use an example of proof script to show the mech-
anism behind it. The precondition of the proof is as follows: a
queue Q is provided with the value [a; b]. Two threads attempts to
perform Enq(Q, c) and Enq(Q, d) concurrently. The Hypothesis
is when both of two operations complete, the Q in PM is [a; b; c]
where the tail of Q is c and the tail → next of Q is NULL. The
goal of proof is showing such hypothesis is false.

From H, we know that both the nodes of c and d have been
added into the queue in order, but the tail is failed to be updated.
This means the effect of T1.pwb(&tail) overwrites the effect of
T2.pwb(&tail), whereas the effect of T2.pwb(&(last → next))
overwrites the effect of T1.pwb(&(last → next)). It decides the
completion order of these four instructions, which is shown in
S 2. As the issue order of pwbs is same with the completion order
of these pwbs if they are writing back from the same location in
the cache, we can infer the issue order in S 4 from S 3. Because
after the issue of pwb(&tail) and pwb(&(last → next)), the PM
status is changed, we can infer that after T2 issued pwb(&tail),
T1 has modified the value of &tail in the cache by CAS , and af-
ter T1 issued pwb(&(last → next)), T2 has modified the value
of &(last → next) in the cache by CAS . This is shown in S 6.
Next, from the behavior of a pwb, we know that before any pwb

can be issued, the corresponding CAS has to be visible in the
cache. Thus, we can get the order of the CAS shown in S 7. From
Algorithm 2, we know that the atomicity of the enqueue is pro-
tected by the CAS . The update of &tail and &(last → next)
by a thread cannot be interrupted by another thread. Therefore,
it is impossible to detect the ordering that the T1.L24 ≺ T2.L24

whereas T2.L26 ≺ T1.L26, which is shown from S 8 to S 11. As a
result, we proved that the ordering in S 7 is impossible. Thus, the
hypothesis is incorrect.
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Fig. 3 The proof script of impossible PM state and memory ordering.

5.6 Related Work of Durable Queue Implementations
The design of durable data structures that can recover from sys-

tem crashes has been studied in the past years. In Friedman et al.
work [5], they proposed three novel implementations of a concur-
rent lock-free queue in high-level design. As same as the imple-
mentations in this paper, they extended the traditional Michael
and Scott’s queue to meet the memory persistency model. The
three implementations proposed in their work are different in the
level of durable linearization, which also refers to the permitted
behaviors in the aspect of memory persistency. The proposed
implementations in this paper are different with their work, es-
pecially in the aspect of memory persistency model and concur-
rency. In Friedman et al. work, they use FLUSH instruction,
which is similar with the pwb in this paper, to perform the write-
back from the cache to PM. Since FLUSH takes time to get re-
sponse, the durable implementations in their work optimize the
program by minimizing the number of FLUSHs, whereas guar-
antee the least durability and recoverability of the program. The
concurrency among FLUSHs are not included in the scope of
their work so that all the execution of FLUSHs are sequential.
Besides, since the algorithms are implemented in high-level, the
low-level memory persistency models are not discussed in their
work.

In the contrast, the proposed implementations in this paper fo-
cus on the concurrency among write-back operations in a durable
implementation, and study the legality of a durable implementa-
tion while using the most relaxed low-level memory persistency
model. As a result, in our implementation, as long as the dura-
bility and recoverability of a program are not destroyed, it is pos-
sible to perform the write-back to PM without stalling until the
previous write-back is complete.

6. Conclusion

In this paper, we first formally design the operational seman-
tics of the strand persistency model to formalize the behavior
of it. The semantics describes how a history, a storage, and a
program are changed under the strand primitives. We then pro-
posed the criteria that describe the durability and recoverability of
a strand program by extending the buffered durable linearizabil-
ity. Finally, we use two queue implementations as case studies to
discuss the legality of durable library implementations.
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