IEICE

TRANSACTIONS

on Information and Systems

VOL. E104-D NO. 5
MAY 2021

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.

The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.

Distribution by anyone other than the author(s) is prohibited.

A PUBLICATION OF THE INFORMATION AND SYSTEMS SOCIETY

-. The Institute of Electronics, Information and Communication Engineers
l Kikai-Shinko-Kaikan Bldg., 5-8, Shibakoen 3 chome, Minato-ku, TOKYO, 105-0011 JAPAN

IEICE TRANS. INE. & SYST., VOL.E104-D, NO.5 MAY 2021

697

[PAPER

Non-Volatile Main Memory Emulator for Embedded Systems
Employing Three NVMM Behaviour Models

SUMMARY Emerging byte-addressable non-volatile memory devices
attract much attention. A non-volatile main memory (NVMM) built on
them enables larger memory size and lower power consumption than a tra-
ditional DRAM main memory. To fully utilize an NVMM, both software
and hardware must be cooperatively optimized. Simultaneously, even fo-
cusing on a memory module, its micro architecture is still being developed
though real non-volatile memory modules, such as Intel Optane DC per-
sistent memory (DCPMM), have been on the market. Looking at existing
NVMM evaluation environments, software simulators can evaluate various
micro architectures with their long simulation time. Emulators can eval-
uate the whole system fast with less flexibility in their configuration than
simulators. Thus, an NVMM emulator that can realize flexible and fast
system evaluation still has an important role to explore the optimal system.
In this paper, we introduce an NVMM emulator for embedded systems
and explore a direction of optimization techniques for NVMMs by using
it. It is implemented on an SoC-FPGA board employing three NVMM be-
haviour models: coarse-grain, fine-grain and DCPMM-based. The coarse
and fine models enable NVMM performance evaluations based on exten-
sions of traditional DRAM behaviour. The DCPMM-based model emulates
the behaviour of a real DCPMM. Whole evaluation environment is also pro-
vided including Linux kernel modifications and several runtime functions.
We first validate the developed emulator with an existing NVMM emulator,
a cycle-accurate NVMM simulator and a real DCPMM. Then, the program
behavior differences among three models are evaluated with SPEC CPU
programs. As a result, the fine-grain model reveals the program execution
time is affected by the frequency of NVMM memory requests rather than
the cache hit ratio. Comparing with the fine-grain model and the coarse-
grain model under the condition of the former’s longer total write latency
than the latter’s, the former shows lower execution time for four of four-
teen programs than the latter because of the bank-level parallelism and the
row-buffer access locality exploited by the former model.

key words: NVMM, emulator, embedded system, behaviour model, Intel
Optane DC persistent memory

1. Introduction

Non-volatile main memory (NVMM) built with emerg-
ing byte-addressable non-volatile memory devices is ex-
pected to introduce a new trend in computer systems [1], [2].
NVMM can have larger capacity and lower power consump-
tion than traditional DRAM-based main memory. It can also
realize durable data structures by just storing the data to
the NVMM instead of writing it to the file system through
costly OS system calls. For these characteristics, NVMM
will be popularized in embedded systems as well as server

Manuscript received April 21, 2020.
Manuscript revised November 24, 2020.
Manuscript publicized February 5, 2021.
"The authors are with Waseda University, Tokyo, 169-8555
Japan.
a) E-mail: oy @kasahara.cs.waseda.ac.jp
b) E-mail: keiji@waseda.jp
DOI: 10.1587/transinf.2020EDP7092

Yu OMORI™, Nonmember and Keiji KIMURA ™, Member

systems. However, it also introduces several drawbacks over
traditional DRAM, such as relatively longer latency and nar-
rower bandwidth than DRAM. Furthermore, its write op-
erations usually cause a longer latency and larger energy
consumption in the memory system than its read operations.
Data durability will also come at the cost of expensive cache
eviction and memory barrier operations [3].

Both software and hardware in a system must be coop-
eratively optimized for NVMM to sufficiently extract its per-
formance and advantages because of different characteris-
tics from traditional DRAM and flash devices. Nevertheless,
only a few commercially NVMM modules are available and
all of them are for rich servers. Intel Optane DC persistent
memory (DCPMM) [4] is a representative NVMM released
by Intel and Micron in April, 2019. It must be operated
by memory controllers integrated in specific Xeon proces-
sors due to unique DDR-T protocol. The lack of embedded
NVMM results in the use of simulators or emulators that
were proposed in the existing studies.

Software-based simulators [5]-[9] enable cycle-by-
cycle evaluations based on detailed models of memory sys-
tems at a micro architecture level. However, they require
huge simulation time to evaluate large applications. In con-
trast, hardware-based emulators [10]-[14] built on real ma-
chines can execute applications at the speed of the base
hardware and enable much faster evaluations than simula-
tors. The base techniques of the emulators are injecting
additional delays to memory requests. Quartz[10], TUNA
v1[11], and others [13], [14] inject delays based on the num-
ber of memory requests issued to a memory controller. Al-
though these delay injection models can represent asymmet-
ric delays between read and write operations, they are too
coarse to capture the impact of bank parallelism and page
locality in a memory module, which are important factors to
reduce memory latency. TUNA v2.1 [12] introduced a new
delay injection model that can capture them by injecting de-
lays into primitive memory requests issued by a memory
controller and evaluated some applications to reveal the im-
pact of NVMM on application performance.

While existing NVMM emulators have made impor-
tant contributions that enable to explore the possibilities of
NVMMs, several issues still remain. First, the correctness
and effectiveness of the delay injection method proposed in
[12] are insufficiently shown. The model and implementa-
tion were not validated with golden models such as cycle
accurate simulators. In addition, though the delay injec-
tion methods of [12] and [11] can have different impacts

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers

698

on performance in theory, it is not confirmed in experi-
ments. Second, existing simulators and emulators do not
consider DCPMM. While it is currently available only in
rich servers, it will possibly be available in embedded sys-
tems in the future. Researchers have no way to evaluate it
in embedded systems so far. Third, existing NVMM emula-
tors emulate only one NVMM model and evaluation archi-
tecture is fixed. NVMM cells and architectures have been
under research yet, thus emulators should be able to rep-
resent various NVMM models to explore optimization for
NVMM. Fourth, most of papers mentioned above only fo-
cus on building evaluation environments. One of the impor-
tant roles of NVMM simulators and emulators is to explore
optimization techniques for NVMM, however, what factors
impact on performance are not clearly shown.

In this paper, we propose an NVMM emulator for em-
bedded systems built upon ARM multicore-based Zynq SoC
board. We also explore factors that are important to reduce
NVMM latency. This is an extension of the work orig-
inally published at NVMSA2019[15]. Our emulator em-
ploys three behaviour models: coarse-grain, fine-grain and
DCPMM-based. The coarse and fine-grain models repre-
sent expected NVMM behaviour by extending traditional
DRAM-based main memories. The former model injects
additional delays at the memory bus between the last level
cache (LLC) and the memory controller. Similarly, the
latter model injects delays at the memory controller. The
DCPMM-based model is a new behaviour model based on
a real DCPMM. It represents expected DCPMM behaviour
and performance in embedded systems. These three be-
haviour models and implementations were validated with an
existing NVMM emulator, a cycle-accurate NVMM simula-
tor and a real DCPMM to confirm that they show the same
behaviour and effectiveness as expected. Then, we reveal
the impact of NVMM behaviour models on the performance
of a system, especially focusing on the bank parallelism
and the row-buffer access locality in a memory module, by
using micro benchmarks and SPEC CPU 2017 benchmark
programs.

The contributions of this paper are summarized as fol-
lows:

o We built an NVMM emulator employing three NVMM
behaviour models: coarse-grain, fine-grain and
DCPMM-based’. The coarse and fine models enable
DRAM-based NVMM performance evaluations while
the DCPMM model enables DCPMM-based NVMM
performance evaluations on embedded systems.

e We also provided whole evaluation environment in-
cluding Linux kernel modification, NVMM manage-
ment library, and a kernel module for cache flush oper-
ations.

e We validated the behavior of proposed emulator mod-
els by comparing with an NVMM emulator, a cycle-
accurate NVMM simulator, and a real DCPMM.

"The emulator and related software are available at
https://github.com/uyiromo/nvmtest.

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.5 MAY 2021

Through validation, we also demonstrate the effective-
ness of the fine-grain behaviour model.

o We revealed the impact of NVMM behaviour models,
latency, and characteristics of memory requests on ap-
plication performance.

The rest of this paper is organized as follows: Section 2
reviews related works on NVMM evaluation environment.
Section 3 introduces three NVMM behavior models. Sec-
tion 4 explains the implementation of the emulator by using
models described in Sect.3 and whole environment. Sec-
tion 5 presents the validation results, then Sect. 6 discusses
the experimental evaluation and its result. Finally, Sect.7
concludes this paper.

2. Related Work

Software simulators and hardware emulators are current two
major NVMM evaluation environments.

Gem5, NVMain, PCMSim, and HMMSim are exam-
ples of NVMM simulators [5]-[9]. They are implemented
as software simulators that represent the micro architec-
ture of target memory modules. While they enable cycle-
accurate simulation with the flexible parameters and con-
figuration settings, they require too much simulation time
to evaluate system-wide performance for OS and compiler
explorations.

TUNA[11], [12], Quartz[10], and others[13], [14]
are examples of NVMM emulators. TUNA is built on an
ARM-based SoC with FPGA chip. It originally employed
a coarse-grain delay model such that the delay clock cy-
cles were injected for the read and write operations given
to the memory controller. Then, it introduced a fine-grain
delay model in v2.1 [12]. It now injects delays for the prim-
itive memory operations issued by the memory controller
and thus, it offers a more realistic delay model. However,
the impact of bank parallelism and row-buffer access local-
ity that can be observed in a fine-grain delay model is still
unclear. In this paper, we evaluate the programs in terms
of these two points as well as the frequency of the mem-
ory requests that can lead to further software optimization
techniques for OSs and compilers. Furthermore, we imple-
mented an Intel Optane DC Persistent Memory [4] model in
our emulator and evaluate it. Its performance model has not
been implemented in the existing simulators and emulators
so far.

3. NVMM Behaviour Models

To emulate NVMM performance with DRAM, additional
latency must be injected into memory requests. Accord-
ing to the micro architecture of NVMM, several delay in-
jection models can be assumed. In this section, we define
Behaviour Models that represent possible NVMM architec-
ture and behaviour. We introduce overview and behaviour
of existing memories, then derive Behaviour Models from
them.

OMORI and KIMURA: NON-VOLATILE MAIN MEMORY EMULATOR FOR EMBEDDED SYSTEMS EMPLOYING THREE NVMM BEHAVIOUR MODELS

3.1 Overview and Behaviour of Traditional DRAM-Based
Main Memory

This section describes a behaviour of memory controllers
and traditional DRAM-based main memory. The coarse-
grain model (Sect. 3.2) and the fine-grain model (Sect. 3.3)
are the extensions of it.

Figure 1 depicts the behaviour and architecture of
DRAM-based main memory. A memory module consists
of memory cells and row buffers. When CPU issues mem-
ory a request, it will be split up into some DDR commands
in memory controllers. Three commands are mainly used
(ACT, R/W, PRE) as follows.

1. Activate (ACT) opens one page and content of memory
cells are read into row buffers.

2. A memory controller reads data from or writes data
into the row buffers (R/W).

3. Precharge (PRE) writes back row buffers to memory
cells and the page is closed.

According to DDR protocols [16], ACT and PRE are not
always required. They are required only when a request
misses row buffers. Row buffers are written back to memory
cells by PRE, then a new row is loaded by ACT. Thus, the
memory latency depends on row-buffer hit ratio.

The coarse-grain model (Sect.3.2) and the fine-grain
model (Sect. 3.3) are different in the granularity of delay in-
jection. The former one injects delay into memory requests,
on the other hand, the latter one injects delay into DDR
commands.

3.2 Coarse-Grain Behavior Model

According to Sect.3.1, the simplest NVMM model in-
jects additional delay into ALL memory requests between
the last level cache (LLC) and the memory controller (“0.
READ/WRITE (from LLC)” in Fig. 1). While this simple
model is widely used in existing works [10], [11], it can not
represent the effects of row-buffer hit ratio. For instance,
read requests will be delayed even if they hit row buffers.
In comparison to Sect. 3.3, this model is coarse because

Memory Cell

\
tRP) 1. ACTIVATE (tRCD)

v
3. PRECHARGE (

Row Buffer

A

¥ 2. READ/WRITE

| Memory Controller |
A E

0. READ/WRITE (from LLC) <+
\4

| cPU |

Fig.1 Behaviour of DRAM-based main memory [15]

699

all memory requests are delayed without taking DDR com-
mands into account. Thus, we define this model as Coarse-
Grain Behaviour Model. This model represents NVMM that
have no caches like row-buffer in memory modules, thus all
memory requests are delayed.

3.3 Fine-Grain Behaviour Model

Contrary to the coarse-grain behaviour model, detailed
NVMM model injects additional delay into DDR commands
issued by a memory controller (“1. ACTIVATE (tRCD)”
and “3. PRECHARGE (tRP)” in Fig.1). In comparison
to the coarse-grain one, this model delays memory requests
only if they access memory cells and can represent the im-
pact of row-buffer locality and bank parallelism. In addition,
this model extends the DRAM-based behaviour as follows:

o Memory cells must be accessed only by ACT and PRE

e A memory controller in an SoC chip and a micro con-
troller on a memory module are extended to manage
the dirt of row buffers

NVMM holds data by physically stable way than DRAM
and its memory cells are worn out especially by write op-
erations. To reduce the latency and the number of writes,
a memory controller should manage states of a row-buffer
and write back data in the buffer only on the dirty case.
Besides, NVMM does not require abundant write-backs be-
cause memory cells are not damaged by DRAM-like disrup-
tive read operations.

In comparison to Sect.3.2, this model is fine be-
cause it considers detailed DDR commands (ACT, R/W,
PRE) and the effect of row-buffers. Thus, we define this
model as Fine-Grain Behaviour Model. This model rep-
resents NVMM that has architecture similar to the tradi-
tional DRAM having the organization of banks, rows, and
columns, thus memory requests are delayed only when they
miss row-buffers.

3.4 Overview and Behaviour of Intel DC Persistent Mem-
ory

Figure 2 depicts the architecture of Intel DC Persistent

iMC (integrated ADR (Asynchronous DRAM Refresh)
Memo!’y Controller) !

64 Byt
WPQ H—y "Y€

DCPMM

\4

Optane Controller, (cache memory)| [((DRAM)

256 Byte

thane Media AIT (PMEM)
(non-volatile memory cells)

1
1
1
1
1
1
Optane Buffer AIT 1
1
1
1
1
1
1

b e e e m e e e o o - 1

Fig.2 Intel DC persistent memory architecture [4]

700

Memory (DCPMM) [4]. It requires specific Xeon proces-
sors due to the unique DDR-T protocol. DDR-T is de-
fined as an extension of the DDR-4 protocol to realize asyn-
chronous and out-of-order operations. DCPMM consists
of the 3D Xpoint-based optane media [17] and the optane
buffer. The address translation table (AIT) is provided for
wear leveling. The optane controller controls them. The
granularity of a communication is 64-bytes between the
integrated memory controller (iMC) in a CPU chip and
DCPMM. Similarly, it is 256-bytes between the optane con-
troller and the optane media. We modeled its behaviour and
provided environment to explore optimization techniques
for DCPMM on embedded systems.

Figure 3 depicts the average access latency measured
by a micro benchmark shown in Fig.4 on a Xeon and
DCPMM machine (Table 1) under the following conditions:

e An execution processor core was fixed by taskset com-
mand.

o A prefetcher was disabled.

e Non-temporal instructions and memory barriers are
used to prevent the impact of CPU caches [18].

o We filled all allocated DCPMM with zeros to make

—e-Read with MFENCE
Read without MFENCE
Write with MFENCE

£ 700 Write without MFENCE

Average Access Latency [ns
sl .
5
A
]
|

& g @e‘; &N A . & gE @iﬁﬁ*&% S S

Access Stride [byte]
Fig.3 Average Latency on Real DCPMM while changing STRIDE.
“with MFENCE” means that all memory requests are ordered strictly by
memory barrier instructions. “without MFENCE” uses memory barrier
only before and after a loop.

base := return value of mmap()
start = clock();
for (offr = 0; offr < 124*GiB; offr += STRIDE) {
#if defined (READ)

val = movntdga(base+off);
#elif defined (WRITE)

movntdqg ((base+off), val);
#endif
_mm_mfence(); or NO_FENCE
}
end = clock();

Fig.4 Micro benchmark for latency measurement of DCPMM

Table1 Configuration of DCPMM
CPU Xeon Gold 5222 @3.80 GHz
DCPMM DCPMM 128 GiB
Configuration AppDirect not Interleaved
device DAX (devdax)
Operating System Ubuntu 18.04LTS

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.5 MAY 2021

page tables in advance, then invalidated all cache lines
associated with them before measurement.

When looking over Fig.3 from left to right, latency
trends change at three points: 256 byte, 4K byte and 64K
byte, respectively. The latencies for “Write with/without
MFENCE” and “Read without MFENCE” increase until
4K byte, reach a maximum at 4K byte, decrease until 64K
byte, and are constant until 512M byte. In contrast, “Read
with MFENCE” shows constant latency from 4K byte. A
DCPMM module used in this evaluation has eight data chips
on it, each of which has 256-bytes buffer (totally 2KiB per
module). Therefore, stride memory accesses up to 2KiB
stride width can fully utilize those buffers. After that, dou-
bling the stride width should cause heavy buffer access con-
tentions resulting in the constant latency. However, as previ-
ously described, the latency decreases after 4KiB stride for
three cases. Although the detail of the optane controller is
unclear, interleaving accesses among eight data chips seems
to be happened by utilizing some address translation when
an exceeding of a certain amount of stride width in mem-
ory accesses is detected. This may be performed to avoid
heavy memory access contentions to one data chip consid-
ering the endurance of a memory device. The latency differ-
ences between “with MFENCE” and “without MFENCE”
are caused by the memory access parallelism, which is lim-
ited by “MFENCE” instructions.

In addition, DCPMM seems not to have bank paral-
lelism. “Read without MFENCE” shows constant latency
from 4K to 512M. (“Write”s are inappropriate as they are
affected by write queues.) If a DCPMM has bank paral-
lelism, latency of unordered read requests should decrease
at some points.

3.5 DCPMM-Based Behaviour Model

In this section, we define DCPMM-based Behaviour Model
based on the observations in Sect. 3.4 to emulate DCPMM
on the emulator. This model represents NVMM whose ar-
chitecture is similar to DCPMM (Fig. 2), thus memory re-
quests are delayed like DCPMM.

Embedded systems are difficult to have rich memory
controllers like DCPMM due to their cost limitation, hence
the model in the emulator omits the impact of out-of-order
execution and data-chip level interleaving. According to
Fig. 3 and the abstraction above, this models the following
trends:

e The read latency increases sharply when the address
difference of two successive memory accesses is from
64 byte to 256 byte, and slowly from 256 byte to 4K
byte (like “Read with MFENCE”).

o The write latency increases slowly when the address
difference of two successive memory accesses is from
64 byte to 256 byte, sharply from 256 byte to 4K byte
(like “Write with MFENCE”).

o Both read and write latencies are constant from 4K.

e The bank parallelism does not exist.

OMORI and KIMURA: NON-VOLATILE MAIN MEMORY EMULATOR FOR EMBEDDED SYSTEMS EMPLOYING THREE NVMM BEHAVIOUR MODELS

4. Implementation
4.1 Overview

The NVMM emulator in this paper is built on a Xilinx Zyng-
7000 SoC ZC706 board with FPGA (Table 2). A ZC706
board has PS and PL sections. While the PS contains two
CPU cores, an L2 cache as the Last Level Cache (LLC), and
peripheral circuits, the PL has the FPGA. The ZC706 has
two DRAM modules: one is connected to the PS, the other
is connected to the PL. The DRAM connected to the PL is
used for emulating an NVMM. To do so, the Memory In-
terface Generator (MIG) on the PL is used as the memory
controller for the NVMM, as depicted in Fig.5. The fol-
lowing steps have been implemented to provide the NVMM
emulator environment:

1. Implementation of delay injection logic

2. Linux kernel modification for making the NVMM
cacheable

3. Implementation of a kernel module to enable cache
flush operations from user programs

4. Implementation of functions in C language for allocat-
ing and deallocating the NVMM region

4.2 Coarse-Grain Delay Injection

The coarse-grain delay injection is based on the coarse-grain
behaviour model (Sect.3.2). A delay injection module is
inserted between the LLC and the MIG to inject the speci-
fied read/write delay clock cycles for memory requests. The

Table 2 Specification of baseline platform for emulator
FPGA Xilinx Zyng-7000 SoC ZC706
Device Zyng-7000 XC7Z045-2FFG900C SoC
CPU Core Cortex-A9 Dual Core, 667 MHz
L1 Cache 1=32 KiB/core, D=32 KiB/core
L2 Cache 512 KiB/processor
PS DRAM 1 GiB, DDR3-1066, 16bx2 components
PL DRAM 1 GiB, DDR3-1600, 8bx8, SO-DIMM
PL Frequency 200 MHz
oS GNU/Linux 4.14.0-xilinx-00081-g88cc987 [19]
Ubuntu 16.04 LTS

ARM Cortex-A9 | |ARM Cortex-A9

L11$ |L1 D$ L11$ [L1 D$
32 KB |32 KB 32 KB |32 KB

L2$ 512 KB

A

MIG
Memory Interface Generator

1

1
v

PS DRAM / 1GB
0x00000000 - Ox3FFFFFFF

PL DRAM (NVMM) / 1GB
0x80000000 - OxBFFFFFFF

Fig.5 Emulator overview [15]

701

specified clock cycles can be set by the user as required.
4.3 Fine-Grain Delay Injection

The fine-grain delay injection is based on the fine-grain be-
haviour model (Sect.3.3). We modified the RTL code of
MIG to inject additional read/write delays for ACT and PRE.
The MIG waits for tRCD nanoseconds after issuing ACT,
and waits for tRP nanoseconds after issuing PRE, respec-
tively. The modified MIG can insert additional latency into
tRCD and tRP as the user required. The fine-grain delay in-
jection does not delay successive memory requests if they
hit row buffers.

4.4 DCPMM-Based Delay Injection

The DCPMM-based delay injection is based on the
DCPMM-based behaviour model (Sect.3.5). This model
is implemented as an extension of the coarse-grain delay
injection so that it injects additional latency only if physi-
cal addresses are multiple of 256 or 4,096. Different laten-
cies on 256- and 4,096-byte boundaries realize different be-
haviour between 64-256 and 256-4K as depicted in Fig. 3.
It can also consider the impact of access locality. For in-
stance, when successive memory requests access physical
addresses of 0x4000 and 0x40002, only the former is de-
layed. This implementation can ignore bank parallelism dis-
cussed in Sect. 3.5.

4.5 Kernel Modification

In our emulator, the system has a heterogeneous main mem-
ory consisting of DRAM and NVMM, and the user process
must use NVMM explicitly through dedicated memory allo-
cation APIs. In order to distinguish the NVMM region (PL
DRAM in Fig.3.1) from the DRAM explicitly, it must be
excluded from the system RAM managed by Linux kernel.
If the system RAM includes NVMM region, the kernel may
allocate it to the system or user processes unintentionally.

In addition to NVMM exclusion from the system
RAM, we must also consider that the Linux kernel provided
by Xilinx [19] treats only system RAM as “cacheable” re-
gion. This cacheability management causes serious perfor-
mance loss when a program uses NVMM outside the system
RAM.

Therefore, we modify the kernel to allocate the NVMM
as a cacheable region. The modified Linux kernel provides
mmap system call to allocate the NVMM region outside the
system RAM to user memory space. The region cacheability
is determined in the mmap system call. In the modified ker-
nel, cacheability of the NVMM region can be specified with
“O_SYNC” flag. If “O_SYNC” is not specified in mmap(),
the region will be allocated as “cacheable”, otherwise “non-
cacheable”.

4.6 Cache Flush Operation

The NVMM can guarantee data persistency only when the

702

data arrives in it. If the CPU cache is enabled, the data
will firstly be written into only the cache. Therefore, the
data must be explicitly evicted from the CPU cache to the
NVMM to ensure the data persistency. The ARM Cortex-
A9 core (ARMV7-A ISA) on ZC706 has cache flush instruc-
tions for this purpose. However, they are privileged, thus an
interface for them available from a user program must be
provided.

We develop a kernel module that enables the user ap-
plications to issue CPU cache flush operations. The user
can also specify the target address range to reduce the sys-
tem call overhead. The flush instructions running in a loop
evicts the data in the cache lines within the specified address
region and they are performed in parallel by the hardware as
much as possible. The memory barrier instructions are exe-
cuted before and after the cache flush loop to ensure the data
consistency.

4.7 NVMM Management Library

We develop a library for the memory allocation from the
NVMM region whose interface is compatible with the stan-
dard C library functions, such as malloc, calloc, realloc, and
free. The functions in the library are implemented by wrap-
ping mmap/munmap system calls described in Sect. 4.5.
The implemented functions are as follows.

void *NVMM Malloc(size_t size)

void *NVMM_Calloc(size_t nmemb, size_t size)
void *NVMM_Realloc(void *ptr, size_t size)
void NVMM_Free(void *ptr)

5. Validation of Accuracy

In this section, we demonstrate the correctness and reliabil-
ity of our behaviour models and implementation by compar-
ing them with golden models. Golden models in this paper
are an existing NVMM Emulator [14] for the coarse-grain
model, an NVMM simulator for the fine-grain model, and
the real DCPMM module for the DCPMM-based model,
respectively.

5.1 Validation of the Coarse-Grain Model

To validate the coarse-grain behaviour model, we com-
pare it with the results in [14]. It implements the coarse-
grain model and validates the implementation by confirming
that the measured latency agrees with the expected latency,
which is set to the emulator. We use the same validation
methods.

The average latency is measured by using a micro
benchmark shown in Fig. 6. The access strides (STRIDE in
Fig. 6) are defined as 32 or 8192 to confirm that the coarse-
grain model cannot consider row-buffer hit ratio. If the
stride is 32, successive requests hit row-buffer and the av-
erage latency will be reduced because 32 is smaller than

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.5 MAY 2021

base := return value of mmap()
start = clock();
for (offs = 0; offs < 1*GiB ; offs += STRIDE) {
#if defined (READ)

val = *((volatile size_t) (base + offs));
#elif defined (WRITE)

*((volatile size_t) (base + offs)) = 0;
#endif

}
end = clock();
ave = (end - start)/(1*GiB/STRIDE)
Fig.6 Micro benchmark for measuring average latency
Table 3 Average latency while changing expected latency. “32” and
“8192” are access strides in bytes.
Measured Latency [ns]
Expected READ WRITE
Latency [ns] 32 8192 32 8192
200 211 211 215 217
400 411 416 414 422
600 612 615 616 623
800 812 815 817 817
1000 1012 1015 1019 1023

row-buffer size (8192).

Table 3 shows the results. Each expected latency is
injected into both read and write by the coarse-grain model.
First, a small error (~ 23ns) is shown between each expected
latency and the corresponding measured one. On the emu-
lator, the expected latency is injected at the memory bus.
The measured latency includes latency between a CPU core
and the memory bus in addition to the expected one. These
errors are derived from it because the differences between
the expected and the measured latencies are almost constant
while the expected latencies are changed. This result shows
that the coarse-grain model is implemented on our emula-
tor correctly. Second, in Table 3, the changes of the access
strides have no impact on the measured latency. This re-
sult shows that the coarse-grain model is not affected by the
row-buffer hit as described in Sect. 3.2.

Through this section, the coarse-grain model and its
implementation was validated in comparison to [14]. The
emulator shows its performance characteristics (no row-
buffer locality) as expected.

5.2 Validation of the Fine-Grain Model

To validate the fine-grain behaviour model, we compare it
with a cycle-accurate NVMM simulator combined with a
multicore simulator. Besides, the fine-grain model is com-
pared with the coarse-grain one to confirm the effects caused
by its behavior model, such as row-buffer access locality and
bank parallelism. We use gem5 [5] and NVMain2 [7] con-
figured as Table 4. The ARMv7 CPU model in gem5 is
modified to precisely simulate Cortex-A9 core according to
[20]. NVMain2 is modified to change the latency for ACT
and PRE.

First, we measured the average latency of the fine-grain

OMORI and KIMURA: NON-VOLATILE MAIN MEMORY EMULATOR FOR EMBEDDED SYSTEMS EMPLOYING THREE NVMM BEHAVIOUR MODELS

Table 4 The baseline simulator configuration
gemS
Simulation Mode Syscall Emulation
CPU Frequency 667 MHz
CPU Core O3_ARM_v7a3 x1
Cache Line Size 32 byte
L1 Cache 1=32 KiB, D=32 KiB
L2 Cache 512 KiB
NVMain2
Frequency 166 MHz
Size 1 GiB
Command Queue | READ=32 entries, WRITE=32 entries
Page Policy Relax Page

delay injection on the emulator and the simulator by using a
micro benchmark shown in Fig. 6. Access strides (STRIDE
in Fig. 6) are defined as 32 or 8,192 to confirm the effect of
raw-buffer hit ratio as described in Sect. 5.1.

Figure 7 (a) and Fig. 7 (b) show the results of the pro-
posed emulator and the simulator (gem5+NVMain2), re-
spectively. “WRITE/32” in Fig.7 (b) is calibrated based on
the raw data shown in Fig.7(c). When the emulator and
the simulator run the same benchmark for “WRITE/32”, the
number of ACT/PRE differs. For instance, when 1,048,576
reads and writes are issued, the simulator issues 1,656,898
ACT/PRE, on the other hand, the emulator issues 2,050,429
ACT/PRE. This difference comes from detailed memory
controller architectures, such as command queue, arbiter,
connection between modules, and so on. To compare the
simulator and the emulator appropriately, we calibrate the
result according to the number of ACT/PRE because the
fine-grain model injects additional latency into ACT/PRE. In
the example above, each value in Fig. 7 (b) is calculated by
multiplying each data in Fig. 7 (c) by (2,050,429/1,656,898).

According to these graphs, while the additional latency
has a small impact on “READ/32”, “WRITE/8192” is af-
fected largely. Comparing the latency characteristics of the
emulator with the simulator, each case has almost the same
slope. Figure 7 (a) and Fig. 7 (b) show that ‘WRITE/32” and
“WRITE/8192” have almost no difference while they differ
in Fig. 7 (c). The architecture of the MIG IP on the emulator
is conservative, hence this result is caused by the detailed
memory controller architecture. These trends are allowable
because these results are measured by much heavy write re-
quests and such heavy write requests are basically not suit-
able for the NVMM.

Second, we measured the impact of bank parallelism
on the coarse-grain, the fine-grain, and the simulator by us-
ing a micro benchmark shown in Fig.8. Average latency
was measured while changing NBANK that represents the
number of banks to be accessed in parallel.

Figure 9 (a) and Fig. 9 (b) show the normalized aver-
age read and write latency, respectively. Comparison be-
tween “Coarse” and “Fine (Emulator)” reveals that only the
latter can consider parallelism. For instance, the read la-
tency and the write latency of “Fine (Emulator)” decrease to
about 60% and 50% respectively while they are constant for

703

3500

READ / 32 READ / 8192
"2'3000
> WRITE / 32 —A~WRITE / 8192
2500
2
3 2000
[
&
£ 1500
2
<
1000
500
0
0 200 400 600 800 1000
Additional Latency [ns]
(a) Average latency on the proposed emulator
3500
READ / 32 READ / 8192
"2'3000
= WRITE / 32 —A~WRTIE / 8192
2500
2
S 2000
[
&
£ 1500
>
<

1000

500
400 600 800 1000

Additional Latency [ns]

(b) Calibrated average latency on the simulator (gem5+NVMain2)

3500

READ /32 READ / 8192
@'3000
= WRITE / 32 —A~WRTIE / 8192
S 2500
2
5 2000
Q
&
£ 1500
>
I

1000

500

0 200 400 600 800 1000
Additional Latency [ns]

(c) Average latency on the simulator (Raw Data)
Fig.7 Average latency while changing additional latency ((a): the Em-

ulator, (b): the Simulator). 32 and 8192 are access strides. Additional
latencies are injected by fine-grain delay injection.

“Coarse”. In addition, “Fine (Emulator)” and “Fine (Sim-
ulator)” show similar trends. In particular, the read latency
decreases until NBANK = 2 then becomes almost constant,
and the write latency decreases until NBANK = 4. The
different trends among them are caused by their detailed ar-
chitecture difference described above. These results demon-
strate that the fine-grain model on the emulator and the sim-
ulator show similar behaviour as expected.

The results above demonstrate the correctness, reliabil-
ity and effectiveness of the fine-grain model and implemen-
tation on our emulator. The two evaluations above show
that the fine-grain delay injection is implemented correctly
by comparing it with cycle-accurate NVMM simulators. In
addition, we confirmed that only the fine-grain delay in-
jection can capture the effect of row-buffer access locality

704

#define NROW (16384)
#define NBANK (8)

#define SZROW (8*KiB)
#define SZBNK (128*MiB)

// rows in one bank

// bytes in one row
// bytes in one bank

base := return value of mmap()
start = clock();

// each row, each bank
for (st = 0; st < NROW*SZROW; st += SZROW){
for (of = st; of < SZBNK*NBANK; of += SZBNK) {
addr = base + of;
#if defined (READ)
val = *((volatile unsigned long *)addr);
#elif defined (WRITE)
*((volatile unsigned long *)addr) = OL;
#endif
}
}
end = clock();

Fig.8 Micro benchmark for measuring bank parallelism

1.2
1 o— — >
>
Q
[=
L 0.8
]
@©
-
T 06 —i i
i~
©
€ 04 oarse
S
=z ~#-Fine (Emulator)
0.2
Fine (Simulator)
0
1 2 3 4
NBANK
(a) Read latency
1:2
1
>
Q
=
o 0.8
I
©
8
T 06
N
g 0.4 ~@-Coarse
<}
= =#-Fine (Emulator)
0.2

Fine (Simulator)

1 2; 3 4
NBANK

(b) Write latency
Fig.9 Normalized average latency while changing NBANK ((a): Read,
(b): Write). They are normalized against to the results when NBANK = 1.
Coarse is the results of the coarse-grain delay injection. Fine (Emulator)
and Fine (Simulator) are that of the fine-grain delay injection on the emu-
lator and on the simulator, respectively. Additional 1,000ns are injected for
both read and write.

and bank parallelism as expected. By comparing Table 3
and Fig.7 (a), only the fine-grain model can consider the
row-buffer access locality. Similarly, Fig. 9 (a) and Fig. 9 (b)
show that only the fine-grain model can consider the bank
parallelism.

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.5 MAY 2021

700
600

500

300
-e-DCPMM

200

Emulator

1
1

1

1

1

1

1

1

1

1

400 1
|

1

1

1

1

1

1

1

100 1
1

1

Average Access Latency [ns]

0 1
64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Access Stride [byte]
(a) Read latency

/7

900
800
700
600

500
400

300 -e-DCPMM

Emulator

1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

100 :

1

1

Average Access Latency [ns]

200 :
0 ,
64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M
Access Stride [byte]
(b) Write latency
Fig.10 Average latency ((a): Read, (b): Write). DCPMM are the same
as with MFENCE in Fig.3. Emulator are the results of the emulator em-
ploying the DCPMM-based behaviour model (Sect. 3.5). In (a), additional
200ns and 225ns are injected at 256-byte and 4,096-byte boundaries, re-

spectively. In (b), additional 500ns and 800ns are injected at 256-byte and
4,096-byte boundaries, respectively.

5.3 Validation of the DCPMM-Based Model

To validate the DCPMM-based behaviour model, we com-
pare it with a real DCPMM module (Table 1). For DCPMM,
“Read with MFENCE” and “Write with MFENCE” are used
because of constraints in Sect.3.5. For the average la-
tency measurement, we prepare a micro benchmark shown
in Fig. 6 that is an emulator’s corresponding benchmark to
Fig.4. STRIDE was up to 1 MiB to get enough results. In
this evaluation, CPU caches were disabled instead of using
non-temporal instructions.

Figure 10 (a) and Fig. 10 (b) show the results. These
results show that the emulator shows the same behaviour as
DCPMM between 64-4K, then show constant latency for the
case of the DCPMM-based model (Sect. 3.5). The increas-
ing trend of the read latency of the emulator that is different
from the real DCPMM (Fig. 10 (a)) is allowable. This result
is caused by the continuous accesses by the micro bench-
mark. This kind of heavily memory access intensive appli-
cations are basically not suitable for the NVMM.

In Fig.10(b), “DCPMM” and “Emulator” show the
same trends from 64 to 4K, and then show the different
trends. The trend of “DCPMM” from 4K to 1M is proba-
bly caused by the advanced control of the optane controller.
Such advanced micro controllers are not expected for an
embedded system in terms of the cost.

OMORI and KIMURA: NON-VOLATILE MAIN MEMORY EMULATOR FOR EMBEDDED SYSTEMS EMPLOYING THREE NVMM BEHAVIOUR MODELS

Normalized Execution Time

544.nab_r 511.povray_r 531.deepsjeng_r 525.x264_r 508.namd_r 520.omnetpp_r

705

H Coarse DCPMM Fine

4
2
wom mwm B wm wm B0 il o8 B0 1

541.leela_r 523.xalanchmk_r 557.xz_r
Benchmarks

538.imagick_r 505.mcf_r 510.parest_r 519.lbm_r

Fig.11 Normalized execution time of SPEC CPU 2017 programs. Coarse and Fine are the result
of coarse-grain and fine-grain delay injection when ARL = AWL = 1,000. DCPMM is the result of
DCPMM-based delay injection. To compare DCPMM with other models, 2,000ns and 2,250ns are
injected for read at 256 or 4K byte boundaries, 5,000ns and 8,000ns for write at 256 or 4K byte bound-
aries, and 1,000ns for other requests. All of them are normalized against to the execution time when no

additional latency are injected.

Through this section, the DCPMM-based model and
its implementation were validated in comparison to a real
DCPMM module. Figure 10 (a) and Fig. 10 (b) show that the
emulator can emulate DCPMM performance with allowable
errors.

6. Experimental Evaluation with SPEC CPU Bench-
mark

This section describes the experimental evaluation of the
NVMM emulator environment to explore a direction of op-
timization techniques. Two parameters, ARL and AWL, used
throughout this section are defined as follows:

o ARL: Configured read latency in nanoseconds

— coarse-grain: expected read latency
— fine-grain: additional tRCD

o AWL: Configured write latency in nanoseconds

— coarse-grain: expected write latency
— fine-grain: additional tRP

6.1 Normalized Execution Time of SPEC 2017 Bench-
mark Programs

This section demonstrates how three models affect real
application performance differently and what factors im-
pact on performance by using the emulator. Three models
are compared by using SPEC CPU 2017 benchmark [21].
Fourteen of 24 programs are chosen from SPEC CPU rate
benchmark programs. They are written in C/C++ and can
be successfully compiled and executed on the emulator.
We replaced all malloc, calloc, realloc, and free functions
with NVMM _Malloc, NVMM_Calloc, NVMM _Realloc,
and NVMM _Free described in Sect. 4.7 to allocate heap ob-
jects on the NVMM.

For the coarse-grain and the fine-grain models, both
of ARL and AWL are set to 1,000. For the DCPMM-based
model, 1,000 nanoseconds are injected as the base latency,

and the extra latency is injected for 256 or 4K byte bound-
aries. Our experiment and the software optimization manual
by Intel [22] indicate that read requests to DCPMM become
twice slower if they miss the optane buffer. In other words,
they step over 256-byte boundaries. Thus, 2,000 nanosec-
onds (1,000 x 2) for read at 256-byte boundary, and then
2,000 x 1.25, 2,000 x 2.5, 2,000 x 4.0 nanoseconds are in-
jected for other boundaries according to Fig. 10.

Figure 11 shows the evaluation result as the normal-
ized execution time for each program to the execution time
without any delay injection. These bars are sorted by nor-
malized execution time of “Fine” in ascending order from
left to right.

First, “Coarse” and “DCPMM” should be discussed.
Though the “Fine” bars are sorted in ascending order,
“Coarse” bars for 531.deepsjeng.r, 520.omnetpp._r, and
557.xz_r show longer execution time than their next to the
right programs. “DCPMM” bars show the same trends as
“Coarse” because the injection model of the DPCMM-based
model is implemented based on the coarse-grain model. In
the rest of this section, we focus on “Coarse” on behalf of
them.

Looking at each bar, Fig. 11 shows that the delay mod-
els affect the latency differently depending on each program.
For instance, the normalized execution time of 544.nab_r
and 511.porvray_r are both almost 1.0 for both models.
However, for 519.lbm_r, the normalized execution time of
the coarse-grain model is 8.3 while that of the fine-grain
model is 13.4; thus, the fine-grain model has a 1.61 times
longer execution time than the coarse-grain one. In ad-
dition, for 531.deepsjeng_r, 520.pmnetpp_r, 505.mcf_r, and
510.parest._r, the coarse-grain model shows higher execution
time than the fine-grain model, while the fine-grain model
shows higher values for other programs.

For detailed investigation, memory access character-
istics, such as the number of read/write requests to the
NVMM, the number of ACT and PRE, and bank par-
allelism, are also measured. Memory requests between
the LLC and the MIG are counted. Bank parallelism
(BANK_PARA) is defined as follows:

706
Table 5 BANK_PARA and ACT/REQ for each program
Benchmark BANK_PARA ACT/REQ
544.nab_r 0.000 0.989
511.povray.r 0.000 0.844
531.deepsjeng.r 0.170 0.633
525.x264 0.070 0.964
508.namd_r 0.080 0.945
520.omnetpp._r 0.270 0.882
541.leelar 0.000 0.913
557 xz.r 0.050 0.921
523.xalancbmk . r 0.000 0.970
538.imagick.r 0.000 0.987
505.mef.r 0.280 0.809
510.parest_r 0.001 0.936
519.1bm._r 0.220 0.934

1. If successive requests use different rows, add 1
2. Divide result of 1) by the total number of requests

Activate per requests (ACT/REQ) is defined by dividing the
number of ACT by the total number of requests.

Table 5 shows BANK_PARA and ACT/REQ for each
program. The programs are sorted similar to that shown
in Fig. 11. This table shows that 531.deepsjeng_r has low
ACT/REQ (0.633), showing high row-buffer access local-
ity. It also shows that 520.omnetpp_r and 505.mcf_r have
high BANK_PARA (0.270, 0.280), showing high bank paral-
lelism. The values show why these programs show the fine-
grain model attains a lower execution time in comparison
with the coarse-grain model. They also prove that the fine-
grain model can capture the effect of the row-buffer access
locality and the bank parallelism as described in Sect. 5.2.

Although 510.parest_r is also an exception, its bank
parallelism and row-buffer locality values are not good. In
the coarse-grain injection, read and write requests can be
processed in parallel, and either of read or write requests
having a larger total number of requests can cause more im-
pact on the total execution time than another. 510.parest_r
has high read/write ratio (25.0), which is defined by di-
viding the number of read requests by write requests, to
the NVMM. The significantly high read/write ratio for the
coarse grain model spoils the parallelism of memory ac-
cesses resulting in a longer execution time than expected.

There still exists an important question: Which of the
characteristics of an application mainly affect on the ex-
ecution time? BANK_PARA and ACT/REQ shown in Ta-
ble 5 are important factors. However, 505.mcf_r has high
BANK_PARA (0.280) and low ACT/REQ (0.809), while the
normalized execution time is longer than 538.imagick_r. To
investigate this question, the cache hit ratio for the LLC and
the frequency of memory requests to the NVMM are also
measured. The frequency of memory requests is the number
of memory requests per second. For this measurement, both
ARL and AWL are set to 0.

Table 6 shows the measurement result for each pro-
gram. As the normalized execution time of the fine-grain
model gets longer from top to bottom, it is expected that
the cache hit ratio will decrease and the memory requests
frequency will increase. However, there are several excep-

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.5 MAY 2021

Table 6 Cache hit ratio and frequency of memory requests to NVMM
for each program

Benchmark Cache Hit Ratio [%] = Memory Requests [/s]
544.nab_r 99.998 2,615
511.povray.r 99.983 85,219

531.deepsjeng_r 99.784 623,954
525.x264 r 99.926 493,471
508.namd_r 99.858 669,040

520.omnetpp_r 97.968 1,561,328
541.leelar 99.785 852,818

557.xzr 99.596 1,824,788
523.xalancbmk_r 99.516 1,295,606
538.imagick.r 99.356 1,540,642
505.mcf.r 93.501 4,170,876
510.parest_r 95.384 5,967,728
519.1bm.r 88.551 11,812,742

tions, as shown by the underlined values in the table. One
reason is attributed to the data location, because the cache
hit ratio takes all memory requests into account not only to
the heap area that is located on the NVMM but also to the
whole memory area. Thus, the frequency of memory re-
quests to the NVMM has more impact than the cache hit
ratio for this evaluation.

Regarding the relationship between 505.mcfr and
538.imagick_r, the former has twice the number of fre-
quency accesses to the NVMM as the latter. This implies
that the impact of the frequency of memory requests exceeds
that of BANK_PARA and ACT/REQ for latency reduction.
The same situation is found in 519.1bm_r and 510.parest._r.

As described previously, the fine-grain model has
a higher execution time than the coarse-grain model for
most programs (except 531.deepsjeng.r, 520.omnetpp.r,
505.mcf_r, and 510.parest_r). This is, of course, caused by
the difference of the total write latency. However, ACT/REQ
is another important factor. According to Table 5, the aver-
age ACT/REQ is about 0.90. This implies that most requests
are processed with ACT and PRE together, resulting in the
additional latency equaling ARL + AWL (= 2,000 ns) in the
fine-grain model.

6.2 Cache Flush Overhead

As described in Sect. 4.6, the data in the cache must be
evicted to the NVMM to make it durable. This section
demonstrates the impact of cache flush overhead and what
factors impact on it. We insert cache flush instructions
into each program in the SPEC CPU to make their main
data structure durable. Four programs having the following
characteristics are chosen: 508.namd_r has high data paral-
lelism. 541.]leela_r allocates a lot of small regions (20 Byte
% 200,000). 557.xz_r allocates a large region and is an in-
memory application. 519.1bm_r requires quite a high band-
width. Table 7 presents the evaluation result of the over-
head caused by the cache flush. In this table, an overhead
of “zero” denotes the additional execution time caused by
the cache flush operations when both ARL and AWL are set
to 0. Similarly, an overhead of “coarse” and “fine” are the

OMORI and KIMURA: NON-VOLATILE MAIN MEMORY EMULATOR FOR EMBEDDED SYSTEMS EMPLOYING THREE NVMM BEHAVIOUR MODELS

Table 7 Cache flush overhead and flushed lines

Overhead [s]

Benchmark zero coarse fine Total Flushed Lines

508.namdr 0.31 0.33 0.27 922,288

541.]eelar 0.30 0.35 0.28 248,525
557.xz.r 0.03 0.04 0.02 166,898
519.1bm.r 5.49 5.55 5.46 1,859,045

additional execution time when both ARL and AWL are set
to 1,000 with the coarse-grain and the fine-grain injection
models. “Total Flushed Lines” is the number of total cache
lines flushed by the inserted flush instructions.

This table shows that “fine” is less than “coarse” and
“coarse” is more than “zero”. The former observation is due
to high data locality. Memory requests caused by flushing
the region have high row buffer access locality and addi-
tional latency is reduced. The latter observation shows that
overhead is affected by ARL and AWL.

Regarding the amount of the overhead for each pro-
gram, Table 7 indicates that it is mainly affected by the
number of total flushed lines. However, 508.namd_r flushes
about four times more lines than 541.leela_r and shows al-
most the same overhead, which is due to the granularity of
flush operations. For 508.name.r, the large area is speci-
fied for each cache flush operation. Therefore, when the
data is flushed, most part of it has been already evicted from
the cache by line replacement, and resulting in the small
number of the NVMM access. On the other hand, the small
area is specified at a cache flush time for 541.leela_r, thus,
when 541.leela_r flushes the data, most part of it is still in
the cache and evicted by this flush operation. These cases
indicate that the overhead caused by the explicit data evic-
tion is affected by the cache flush granularity. However, it
must be noticed that the data durability cannot be ensured
until the end of a cache flush operation and the following
memory barrier operation.

7. Conclusion

In this paper, we built an NVMM emulator environment
on a Xilinx Zynq board having the ARM Cortex-A9 cores
with FPGA. This emulator implemented three NVMM be-
haviour models: coarse-grain, fine-grain and DCPMM-
based. The coarse-grain model is a coarse extension and
fine-grain model is a detailed extension of the traditional
DRAM behaviour. The DCPMM-based model implements
abstract behaviour of the Intel Optane DC Persistent Mem-
ory (DCPMM). We also provided the cache flush software
interface required for the persist operations, as well as the
standard C library compatible NVMM allocation functions
for this environment.

The above three models were validated with an NVMM
emulator, a cycle-accurate simulator, and a real DCPMM.
The comparison between the fine-grain and a simulator
showed the effectiveness of the emulator implementation.
In addition, the comparison between the fine-grain and the
coarse-grain showed that only the former can capture the

707

impact of the bank parallelism and the row-buffer access lo-
cality. The DCPMM-based implementation was compared
with a real DCPMM and they showed similar behaviour.
The evaluation investigated the performance difference
among three models by using the SPEC CPU 2017 bench-
mark. It also assessed the impact on the execution time due
to the bank parallelism, the row-buffer access locality, and
the frequency of the NVMM requests. The evaluation re-
sults with the SPEC benchmark demonstrate that the fre-
quency of the NVMM requests has a higher impact on the
execution time than the cache hit ratio for the total execution
time. In addition, high bank parallelism and high row-buffer
access locality can reduce the NVMM access latency. These
three parameters should be considered when software opti-
mization techniques for OSs and the compilers are explored.

Acknowledgements

The authors would like to thank Mr. Toshiya Otomo and
Mr. Tomokazu Yoshida from Fixstars for valuable discus-
sions. This work was partly executed under the cooperation
of organization between Kioxia Corporation and Waseda
University.

References

[1] M. Webb, “Overview of persistent memory,” Flash Memory Summit
2018, 2018.

[2] B. Gervasi and J. Hinkle, “Overcoming system memory challenges
with persistent memory and nvdimm-p,” JEDEC Server Forum,
2017.

[3] S.Pelley, PM. Chen, and T.F. Wenisch, “Memory persistency,” Proc.
41st Annual International Symposium on Computer Architecuture,
ISCA ’14, Piscataway, NJ, USA, pp.265-276, IEEE Press, 2014.

[4] L. Looi and J.J. Xu, “Intel® optaneTM data center persistent mem-
ory,” Hot Chips (HC) 31, Aug. 2019.

[5] N. Binkert, B. Beckmann, G. Black, S.K. Reinhardt, A. Saidi, A.
Basu, J. Hestness, D.R. Hower, T. Krishna, S. Sardashti, R. Sen, K.
Sewell, M. Shoaib, N. Vaish, M.D. Hill, and D.A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol.39, no.2, pp.1-7,
Aug. 2011.

[6] M. Poremba and Y. Xie, “Nvmain: An architectural-level main
memory simulator for emerging non-volatile memories,” 2012 IEEE
Computer Society Annual Symposium on VLSI, pp.392-397, Aug.
2012.

[7] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-)volatile memory systems,” IEEE
Computer Architecture Letters, vol.14, no.2, pp.140-143, July 2015.

[8] J. Wang and B. Wang, “Pcmsim: A hybrid memory system simu-
lator for the cloud storage,” 2017 Fifth International Conference on
Advanced Cloud and Big Data (CBD), pp.81-86, Aug. 2017.

[9] S. Bock, B.R. Childers, R. Melhem, and D. Mosse, “Hmmsim: a
simulator for hardware-software co-design of hybrid main memory,”
2015 IEEE Non-Volatile Memory System and Applications Sympo-
sium (NVMSA), pp.1-6, Aug. 2015.

[10] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A
lightweight performance emulator for persistent memory software,”
Proc. 16th Annual Middleware Conference, Middleware ’15, New
York, NY, USA, pp.37-49, ACM, 2015.

[11] T. Lee, D. Kim, H. Park, S. Yoo, and S. Lee, “Fpga-based
prototyping systems for emerging memory technologies,” 2014
25nd IEEE International Symposium on Rapid System Prototyping,
pp.115-120, Oct. 2014.

http://dx.doi.org/10.1109/isca.2014.6853222
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1109/isvlsi.2012.82
http://dx.doi.org/10.1109/lca.2015.2402435
http://dx.doi.org/10.1109/cbd.2017.22
http://dx.doi.org/10.1109/nvmsa.2015.7304374
http://dx.doi.org/10.1145/2814576.2814806
http://dx.doi.org/10.1109/rsp.2014.6966901

708

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

T. Lee and S. Yoo, “An fpga-based platform for non volatile mem-
ory emulation,” 2017 IEEE 6th Non-Volatile Memory Systems and
Applications Symposium (NVMSA), pp.1-4, Aug. 2017.

A. Koshiba, T. Hirofuchi, S. Akiyama, R. Takano, and M. Namiki,
“Towards write-back aware software emulator for non-volatile mem-
ory,” 2017 IEEE 6th Non-Volatile Memory Systems and Applica-
tions Symposium (NVMSA), pp.1-6, Aug. 2017.

A. Koshiba, T. Hirofuchi, R. Takano, and M. Namiki, “A soft-
ware-based NVM emulator supporting read/write asymmetric laten-
cies,” IEICE Trans. Inf. & Syst., vol.102-D, no.12, pp.2377-2388,
2019.

Y. Omori and K. Kimura, “Performance evaluation on nvmm emu-
lator employing fine-grain delay injection,” 2019 IEEE Non-Volatile
Memory Systems and Applications Symposium (NVMSA), pp.1-6,
Aug. 2019.

J.S.S.T. ASSOCIATION, “Ddr3 sdram standard (revision of jesd79-
3e, july 2010),” July 2012.

M. Webb, “Markets for 3d-xpoint,” Flash Memory Summit 2018,
2018.

Intel, “Intel® 64 and ia-32 architectures software developer’s man-
ual,” 2019.

Xilinx, “Xilinx/linux-xInx: The official linux kernel from xilinx,”
https://github.com/Xilinx/linux-xInx, Accessed on 2020-1.

F.A. Endo, D. Couroussé, and H. Charles, “Micro-architectural
simulation of in-order and out-of-order arm microprocessors with
gemS5,” 2014 International Conference on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS XIV),
pp-266-273, 2014.

spec.org, “Spec cpu(r) 2017,” https://www.spec.org/cpu2017/, Ac-
cessed on 2020-1.

Intel, “Intel® 64 and ia-32 architectures optimization reference
manual,” 2019.

Yu Omori received his B.E. and M.E.
in Computer Science and Engineering from
Waseda University in 2019 and 2020. He is now
a Ph.D. student of Computer Science and Engi-
neering of Waseda University. He is a member
of IEEE Eta Kappa Nu Mu Tau Chapter. His re-
search interest includes non-volatile main mem-
ory for embedded systems. His research interest
includes non-volatile main memory for embed-
ded systems.

Keiji Kimura received the Ph. D degrees
in electrical engineering from Waseda Univer-
sity in 2001. He was an assistant professor
in 2004, associate professor in 2005, and pro-
fessor in 2012 at Waseda University. He is a
director of Green Computing System Research
Organization in Waseda from 2019. He is a
recipient of 2014 MEXT (Ministry of Educa-
tion, Culture, Sports, Science and Technology
in Japan) award. His research interest includes
multicore processor architecture and paralleliz-

ing compiler technologies. He is a member of IPSJ, ACM and IEEE. He
has served on program committee of many conferences.

IEICE TRANS. INF. & SYST., VOL.E104-D, NO.5 MAY 2021

http://dx.doi.org/10.1109/nvmsa.2017.8064466
http://dx.doi.org/10.1109/nvmsa.2017.8064479
http://dx.doi.org/10.1587/transinf.2019pap0018
http://dx.doi.org/10.1109/nvmsa.2019.8863522
http://dx.doi.org/10.1109/samos.2014.6893220

