
Performance Evaluation of OSCAR Multi-target
Automatic Parallelizing Compiler on Intel,

AMD, Arm and RISC-V Multicores

Birk Martin Magnussen1[0000−0003−2429−9994], Tohma Kawasumi1,
Hiroki Mikami1, Keiji Kimura1, and Hironori Kasahara1

Department of Computer Science and Engineering, Waseda University
Green Computing Center, 27 Waseda-machi, Shinjuku-ku, Tokyo, 162-0042, Japan

{birk magnussen, tohma, hiroki}@kasahara.cs.waseda.ac.jp
{keiji, kasahara}@waseda.jp

http://www.kasahara.cs.waseda.ac.jp/index.html.en

Abstract. With an increasing number of shared memory multicore pro-
cessor architectures, there is a requirement for supporting multiple ar-
chitectures in automatic parallelizing compilers. The OSCAR (Optimally
Scheduled Advanced Multiprocessor) automatic parallelizing compiler is
able to parallelize many different sequential programs, such as scientific
applications, embedded real-time applications, multimedia applications,
and more. OSCAR compiler’s features include coarse-grain task paral-
lelization with earliest execution condition analysis, analyzing both data
and control dependencies, data locality optimizations over different loop
nests with data dependencies, and the ability to generate parallelized
code using the OSCAR API 2.1. The OSCAR API 2.1 is compatible with
OpenMP for SMP multicores, with additional directives for power control
and supporting heterogeneous multicores. This allows for a C or Fortran
compiler with OpenMP support to generate parallel machine code for
the target multicore. Additionally, using the OSCAR API analyzer al-
lows a sequential-only compiler without OpenMP support to generate
machine code for each core separately, which is then linked to one paral-
lel application. Overall, only little configuration changes to the OSCAR
compiler are needed to run and optimize OSCAR compiler-generated
code on a specific platform. This paper evaluates the performance of
OSCAR compiler-generated code on different modern SMP multicore
processors, including Intel and AMD x86 processors, an Arm processor,
and a RISC-V processor using scientific and multimedia benchmarks in C
and Fortran. The results show promising speedups on all platforms, such
as a speedup of 7.16 for the swim program of the SPEC2000 benchmarks
on an 8-core Intel x86 processor, a speedup of 9.50 for the CG program
of the NAS parallel benchmarks on 8 cores of an AMD x86 Processor, a
speedup of 3.70 for the BT program of the NAS parallel benchmarks on a
4-core RISC-V processor, and a speedup of 2.64 for the equake program
of the SPEC2000 benchmarks on 4 cores of an Arm processor.

Keywords: multicore · parallelizing compiler · OSCAR · multiple plat-
forms · shared memory



2 B. Magnussen et al.

1 Introduction

With an increasing number of processor architectures, there is a requirement for
supporting multiple architectures in automatic parallelizing compilers.

The OSCAR automatic parallelizing compiler[10] is one such compiler, ca-
pable of parallelizing different C and Fortran programs, including scientific ap-
plications and simulations, real-time applications, multimedia applications, and
more.

Other source-to-source parallelizing compilers have been developed[6, 8] to
allow for portability of the generated code between different systems and ar-
chitectures. The OSCAR compiler is additionally able to output code using the
OSCAR API 2.1[15], which is extended from a subset of OpenMP. This allows
both OpenMP-capable native compilers to directly compile the OSCAR-compiler
generated program, as well as the OSCAR API analyzer to generate separate
sequential code for each core of a target system. The resulting sequential code
generated by the OSCAR API analyzer for each core then allows a sequential
compiler which does not have support for a parallel API such as OpenMP to
compile the code for each core and link it to a single parallel program for the
target architecture.

Previous evaluations show the performance of OSCAR compiler-generated
code on SMP server processors[12], as well as on embedded systems with on-
chip shared memory[16].

In this paper, the OSCAR compiler’s function, based on multi-grain paral-
lelism and including multiple optimizations such as data localization and cache
optimization, will be explained. Additionally, the paper details usage of the OS-
CAR compiler, targeting systems with and without native compilers supporting
OpenMP. Furthermore, this paper analyzes and discusses the performance of
programs and benchmarks from the SPEC benchmark suite[9], the NAS parallel
benchmark suite[5] and MediaBench II[7], compiled using the OSCAR automatic
parallelizing compiler with further optimization techniques such as data localiza-
tion[22] and cache optimization[13] on different multicore architectures, including
an Intel Xeon E5-2650v4 x86 processor, an AMD EPYC 7702P x86 processor,
an NVIDIA Carmel ARM®v8.2 processor and a SiFive Freedom U740 RISC-V
processor. Neither RISC-V-based processors nor a Zen 2-based processors have
been evaluated with the OSCAR compiler before.

2 The OSCAR Automatic Parallelizing Compiler

The OSCAR automatic parallelizing compiler generates parallel code by utiliz-
ing multigrain parallelism. Multigrain parallelism includes parallelism of large
coarse-grain tasks (coarse-grain parallelism), parallelism of loops (loop-level par-
allelism) as well as parallelism of individual instructions (statement-level paral-
lelism)[15].

To first exploit coarse grain parallelism, the OSCAR compiler splits the se-
quential code into macro-tasks. These macro-tasks can be basic blocks of as-
signments, loops, or function calls. Loops and function calls themselves are then



Performance Evaluation of OSCAR compiler on different multicores 3

further split into macro-tasks as well. From this, the data and control depen-
dencies between each macro-task can be analyzed, from which, using earliest-
execution analysis[10], the macro-tasks are put into a macro-task-graph. The
earliest-execution condition for macro-tasks is twofold:

1. A macro-task must wait for the completion of macro-tasks it is directly data-
dependent on.

2. A macro-task must wait until preceding control-dependent macro-tasks have
evaluated the conditional branches that guarantee said macro-tasks execu-
tion, but the macro-task does not need to wait for the completion of these
preceding macro-tasks.

Once these two conditions are met, the macro-task can be scheduled into the
macro-task-graph. How these conditions are applied in a real program can be
seen in Fig. 1. The first condition, that all macro-tasks that the current macro-
task to schedule is data dependent on must have finished, can be seen in the bb19
macro-task. It is scheduled into the macro-task graph once the macro-tasks it
is data dependent on, bb2, dosum15, bb17, and bb18, are finished. The second
condition can be seen for macro-task bb24. It can already be scheduled after
macro-task bb5, since by that time, both its data dependency on bb1 is fulfilled,
and, after the conditional branch bb5, it is guaranteed that the control flow will
pass bb24.

The tasks in the macro-task graph are occasionally shown to have multiple
outgoing or incoming dependency edges.

If these edges pass through a dotted arc (representing a logical or), it means
that either of the edges passing through the arc will be followed, caused by a
conditional branch in the original program. For outgoing edges, it means that
only one of the edges will be followed to execute latter macro-tasks, and for
incoming edges, it means that only one edge needs to be satisfied to fulfill the
dependency and allow execution of the macro-task.

If the edges pass through a solid arc (representing a logical and), it means
that all these edges will be followed, caused mostly by coarse-grain task par-
allelization. For outgoing edges, it means that all these edges will be followed,
executing their respective nodes. For incoming edges, it means that all edges
must be satisfied to fulfill the dependency and allow execution of the macro-
task.

From the macro-task graph, the individual tasks are assigned to the available
processor cores. If runtime fluctuation, for example, due to conditional branches,
are expected, the OSCAR compiler utilizes dynamic scheduling at runtime to
execute the macro-tasks, otherwise, static scheduling is used. The resulting pro-
gram uses the one time single level thread generation scheme[19], where the
program creates a thread per processor core at program start, and the macro-
tasks are then run on these threads respectively.

Loop-level parallelism is then applied to doall-loop and reduction-loop type
macro-tasks, if possible. Similarly, statement-level parallelism is applied if it is
available in a given macro-task[14].



4 B. Magnussen et al.

bb1

bb2

bb3 bb4

bb5

emt25 bb6

dosum7

bb8

doall9

bb10

doall11

bb12

doall13

bb14

dosum15

bb16

bb17 bb18

bb19

doall20

doall21

bb22

loop23

bb24

emt26

bb1

bb2

bb3bb4

bb5

bb6bb24 emt25

dosum7

bb8

doall9

bb10

doall11

bb12

doall13

bb14

dosum15

bb16bb22doall21 doall20

bb18bb17loop23

bb19

emt26

Macro-Flow Graph:

data dependency

control flow

conditional branch

Macro-Task Graph:

data dependency

control dependency

conditional branch

original control flow

AND

OR

Fig. 1. The macro-flow graph (left) and the macro-task graph (right) of the main
training loop of the art benchmark (see section 4)



Performance Evaluation of OSCAR compiler on different multicores 5

Additionally, data localization and cache optimization can be performed af-
ter macro-task graph generation. Data localization can be performed using loop-
aligned decomposition and subsequent generation of data-localization-groups[22].
For this, doall-loop type, reduction-loop type, and sequential-loop type macro-
task blocks directly connected only by one data dependence edge are analyzed.
In the example macro-task graph in Fig. 1, this would for example be applied
to the sequence of macro-tasks from doall9 to dosum15. By calculating which
array subscripts in the successive loops are data-dependant on another, the OS-
CAR compiler can assign sections of the different loops with respective data
dependencies into one data-localization-group, which will then be run on one
core, in parallel to other data-localization-groups with different sections of the
loops of their own. This allows the different data-localization-groups to run in
parallel with only minimal data sharing needed at the edge of their data regions.
Fig. 2 shows an example of loop-aligned decomposition applied.

Further cache optimization can then be performed by using loop-aligned de-
composition, as described above, on loops whose data size exceeds the available
cache[13]. With the additional data-localization-groups then potentially exceed-
ing the core count for the target system, executing the groups sequentially will
improve the cache behavior of the system. This is because the resulting data-
dependent loop sections are small enough to fit their data into the cache, reducing
the need to replace the cache while iterating through each loop section. Further-
more, by aligning loop-level parallelism borders to the cache lines, performance
can be increased.

DO I=69,101DO I=67,68DO I=36,66DO I=34,35DO I=1,33

DO I=1,33

DO I=2,34

DO I=68,100

DO I=67,67

DO I=35,66

DO I=34,34

DO I=68,100DO I=35,67

LR CAR CARLR LR

C RB2(Doseq)

DO I=1,100
B(I)=B(I-1)

+A(I)+A(I+1)

ENDDO

C RB1(Doall)

DO I=1,101
A(I)=2*I

ENDDO

C RB3(Doall)

DO I=2,100
C(I)=B(I)+B(I-1)

ENDDO

Fig. 2. Example of loop-aligned decomposition of three data-dependent loops. The
loops are decomposed into three main localized regions (LR) accessed by one core only,
and two commonly accessed regions (CAR) that need to be accessed by multiple cores.



6 B. Magnussen et al.

3 Investigated Multicore Architectures

For this paper, four different processor architectures were evaluated. Two x86
processors, one Arm processor, and one RISC-V processor.

The first x86 processor is the Intel Xeon E5-2650v4 12-core processor running
at 2.2 GHz with a maximum boost frequency of 2.9 GHz. It has 32 KiB of L1D
cache per core, 256 KiB L2 cache per core, and 30 MiB shared L3 cache with a
cache line size of 64[11].

The second x86 processor is the AMD EPYC 7702P 64-core processor running
at 2 GHz with a maximum boost frequency of 3.35 GHz. It has 32 KiB of L1D
cache per core, 512 KiB L2 cache per core, and 256 MiB shared L3 cache grouped
into 4-core clusters with a cache line size of 64[3]. If a miss in the L3 cache is
available in an L2 cache within the same cluster, the L3 cache can load the data
from the L2 cache instead of from the main memory[2].

The Arm processor is the NVIDIA Carmel ARM®v8.2 64 Bit 6-core proces-
sor running at 1.4 GHz. It is based on ARMv8.2[4], has 64 KiB L1D cache per
core, 2 MiB L2 cache shared between clusters of two cores, and 4 MiB shared
L3 cache with a cache line size of 64[18].

The RISC-V processor is the SiFive Freedom U740 4-core SoC running at
1.2 GHz. It has 32 KiB of L1D cache per application core and 2 MiB shared L2
cache with a cache line size of 64[21].

Fig. 3. “FU740-C000 top-level block diagram” by SiFive, Inc.[21]. CC BY-NC-ND 4.0



Performance Evaluation of OSCAR compiler on different multicores 7

4 Benchmark Programs

Benchmarks from three different benchmark suites are evaluated in this pa-
per. First, some benchmarks of the NAS parallel benchmark suite[5]. Here, the
C version developed by the Real World Computing Project (RWCP), and dis-
tributed by the HPCS lab of the University of Tsukuba[20] are used. The specific
benchmarks of the NPB suite evaluated are BT, CG, and SP. The SP and BT
benchmark both compute the solution of multiple, independent systems of non
diagonally dominant equations, an operation used for some computational fluid
dynamics algorithms. They differ in the ratio of communication to computation.
The CG benchmark applies the conjugate gradient method to a large, sparse,
symmetric positive definite matrix to approximate its smallest eigenvalue.

Furthermore, to represent multimedia applications, the MPEG2 encoding
benchmark of the MediaBench II suite[7] is evaluated. It is similarly written in
C.

Finally, benchmarks of the SPEC2000 floating-point suite[9] are evaluated.
From the benchmarks written in C, art and equake are evaluated, and from the
benchmarks written in Fortran77, swim is evaluated. The art benchmark test
neural network training performance. The equake benchmark simulates seismic
wave propagation. The swim benchmark computes a shallow-water model.

The benchmarks in C are manually edited to conform to parallelizable C[17].
Conforming the code to parallelizable C allows the compiler to utilize the full
potential of data localization and parallelization. The changes made to the bench-
marks are very minor, while some benchmarks do not need any changes at all.

The benchmarks written in Fortran77 are directly passed to the OSCAR
compiler with no changes.

5 Compile Flow

First, the target applications are compiled by the OSCAR compiler. For this, the
source code must be fed to the respective C or Fortran front-end. The front-end
will generate an abstract intermediate representation of the code, which can be
analyzed and processed by the middle path of the OSCAR compiler, depending
on the necessary optimization options in multiple passes. During this stage, opti-
mization parameters as well as system-dependent optimization information, like
the cache architecture of the system, are fed to the OSCAR compiler. Afterward,
the resulting optimized intermediate representation file will be fed into the back-
end, which generates C or Fortran code respectively[12], which is annotated with
the OSCAR API 2.1. As the OSCAR API 2.1 is compatible with OpenMP[15],
the generated source file can be directly fed into a native compiler, like the GNU
C Compiler or the Intel C Compiler, if OpenMP is supported on the target sys-
tem. If not, because the OSCAR compiler generates synchronization and data
transfer code automatically, the OSCAR API analyzer can be utilized to gener-
ate code that contains purely sequential code for each CPU core. This allows a
sequential-only compiler to generate machine code for each core separately, that
can then be linked to a single, parallel application.



8 B. Magnussen et al.

(Parallelizable) C Fortran77

Front-End

Intermediate representation

Middle-Path
Multigrain parallelization, optimiza-
tions, etc. as described in section 2

Intermediate representation

Back-End

OSCAR API 2.1 Code

OpenMP CompilerOSCAR API-Analyzer

Parallelized C

Sequential Compiler

Fig. 4. Compile flow using the OSCAR compiler.

6 Performance of OSCAR Compiler-Parallelized
Programs

Unless otherwise noted, all benchmarks, including the sequential reference code
and the OSCAR compiler-generated parallelized code, are compiled using the
GNU C Compiler with the highest optimization setting (-Ofast) and the cor-
rect architecture supplied using -march=. As all architectures investigated in
this paper have native compilers with OpenMP support, the OSCAR compiler-
generated code was directly compiled without the use of the OSCAR API-
Analyzer. In this paper, the parameters of the OSCAR compiler which are
adapted for each target architecture are are focused on cache parameters such
as last-level cache size, cache line size, cache associativity, and the number of
cores sharing a last-level cache. Other parameters are kept identical across the
different architectures. While micro-optimizations with cost tables for the in-
dividual architectures are possible, this paper analyzes the performance when
using generic cost tables.



Performance Evaluation of OSCAR compiler on different multicores 9

6.1 OSCAR Compiled Benchmark Performance on Intel x86

Fig. 5 show the performance of the OSCAR compiler-generated code using a
different number of cores, compared to the sequential version of the benchmark
on the Intel Xeon E5-2650v4 processor.

0

1

2

3

4

5

6

7

8

BT CG SP art equake MPEG2 swim

S
p

ee
d
u
p

to
S
eq

u
en

ti
a
l 1 Core

2 Cores
4 Cores
8 Cores

Fig. 5. Relative speedup (higher is better) of the respective benchmark using a certain
number of processor cores compared to the sequential version on the Intel x86 processor.

A noticeable result is that the swim benchmark is significantly sped up by
using the OSCAR compiler, even with just one core executing the benchmark.
At an execution time of 58.1 s for the sequential program and 33.2 s for the
OSCAR compiler-generated single-core version, this is a speedup of 1.75. At
eight cores, with an execution time of 8.1 s, the speedup is 7.17. The execution
times show superlinear speedup for up to 4 cores. This is a result of the cache
optimization technique employed by the OSCAR compiler[13] as described in
section 2. Table 1 shows the cache statistics of the swim benchmark for the
sequential version and the OSCAR compiler-generated versions. These statistics
suggest that the OSCAR compiler was able to improve the cache access in the
generated code, resulting in the speedup of the benchmark. Furthermore, the
MPEG2 encoding benchmark for example, can reduce its execution time from
2.17 s in the sequential version to 0.377 s in the OSCAR compiler-generated
eight-core version, for a speedup of 5.75.

To show that the OSCAR compiler can utilize different native compilers, the
performances of OSCAR compiler-parallelized benchmarks were tested using the
Intel C++ and Fortran Compilers as well. For a better comparison, the sequential
reference benchmarks are also compiled using the Intel compilers.

Fig. 6 shows both versions’ relative speedup to the sequential execution time
of the respective benchmark, run on the Intel Xeon E5-2650v4 processor. This
shows that the OSCAR compiler can be used in conjunction with the Intel com-
pilers as well to speed up the final result of the execution. The slightly lower
relative speedups compared to Fig. 5 are mostly due to the lower sequential



10 B. Magnussen et al.

Table 1. Cache statistics of the swim benchmark as measured by perf, sequential
version compared to OSCAR compiler-generated version.

Program L1 loads L1 load misses L3 loads L3 load misses

Sequential 2.3 · 1011 1.2 · 1011 5.7 · 1010 1.1 · 1010

OSCAR 1 core 2.3 · 1011 6.5 · 1010 1.5 · 1010 8.2 · 109

OSCAR 2 core 2.2 · 1011 6.5 · 1010 1.5 · 1010 7.1 · 109

OSCAR 4 core 2.2 · 1011 6.5 · 1010 1.4 · 1010 6.1 · 109

OSCAR 8 core 2.2 · 1011 6.5 · 1010 1.3 · 1010 4.1 · 109

execution time of the reference benchmark when compiled with the Intel Com-
pilers at full optimization. For example, while their respective speedups to the
sequential versions decreased using the Intel compilers, the absolute execution
time of the swim benchmark parallelized using the OSCAR compiler targeting
eight cores decreased to 5.8 s, while the execution time of the MPEG2 encoding
benchmark decreased to 0.234 s.

0

1

2

3

4

5

6

BT CG SP art equake MPEG2 swim

S
p

ee
d
u
p

to
S
eq

u
en

ti
a
l

ICC Auto-Parallelization (8 Cores)
OSCAR Parallelization (8 Cores)

Fig. 6. Relative speedup of the respective benchmark auto-parallelized on 8 cores to
its sequential version. Both the sequential version and the OSCAR compiler-generated
code used the Intel compiler as the native compiler. The MPEG2 encoding benchmark
causes a segmentation fault when compiled with Intel compiler auto-parallelization and
run with more than one core, and is thus not shown.

6.2 OSCAR Compiled Benchmark Performance on AMD x86

Fig. 7 show the performance of the OSCAR compiler-generated code using a
different number of cores, compared to the sequential version of the benchmark
on the AMD EPYC7702P processor.

Similar to the Intel processor, the swim benchmark exhibits high single-core
performance and some superlinear speedup due to the cache optimization tech-
niques. Additionally, the CG benchmark shows superlinear speedup. As Fig. 8



Performance Evaluation of OSCAR compiler on different multicores 11

0
1
2
3
4
5
6
7
8
9

10

BT CG SP art equake MPEG2 swim

S
p

ee
d
u
p

to
S
eq

u
en

ti
a
l 1 Core

2 Cores
4 Cores
8 Cores

Fig. 7. Relative speedup of the respective benchmark using a certain number of pro-
cessor cores compared to the sequential version on the AMD x86 processor.

doall2

doall3 bb1

doall4 dosum5

bb6

doall7

dosum8

bb9

doall10

emt11

Macro-Task Graph:

data dependency

control dependency

conditional branch

original control flow

AND

OR

Fig. 8. The macro-task graph of the main loop of the CG benchmark of the NAS
parallel benchmark suite (see section 4)



12 B. Magnussen et al.

shows, the main loop of CG features many doall loops and dosum reduction loops
in succession with data dependence on another. This macro-task graph structure
results in data localization similar to the data localization methods using loop-
aligned decomposition[22] described in section 2. The data localization is able to
improve the performance of the benchmark with multiple cores and causes the
superlinear speedup, decreasing overall execution time from 0.86 s in the sequen-
tial version to 0.09 s using the OSCAR compiler-generated eight-core version for
a 9.5 speedup.

The OSCAR compiler uses operation cost tables for estimating task length
for scheduling. These benchmarks used generic tables for all benchmarks. Cus-
tomizing this table for the AMD EPYC 7702P processor would allow for an
improvement of the speedup of the art benchmark on this system. For the art
benchmark without customizing the operation cost table, the execution time was
only reduced from 4.76 s in the sequential version to 3.52 s using the OSCAR
compiler-generated eight-core version for a speedup of 1.35.

6.3 OSCAR Compiled Benchmark Performance on Arm

0

0.5

1

1.5

2

2.5

3

BT CG SP art equake MPEG2 swim

S
p

ee
d
u
p

to
S
eq

u
en

ti
a
l 1 Core

2 Cores
4 Cores

Fig. 9. Relative speedup of the respective benchmark using a certain number of pro-
cessor cores compared to the sequential version on the Arm processor.

Fig. 9 shows the performance of the OSCAR compiler-generated code using a
different number of cores, compared to the sequential version of the benchmark
on the NVIDIA Carmel ARM®v8.2 64 Bit processor.

The Arm processor shows overall good speedup for the different benchmarks.
While the cache optimization applied to the swim benchmark is noticeable, it
is much smaller compared to the effects on the Intel and AMD CPU’s. Overall,
good speedup is observed, with for example the equake benchmark’s execution
time decreasing from 19.0 s in the sequential version to 7.18 s using the OSCAR
compiler-generated four-core version for a speedup of 2.64.



Performance Evaluation of OSCAR compiler on different multicores 13

6.4 OSCAR Compiled Benchmark Performance on RISC-V

Fig. 10 show the performance of the OSCAR compiler-generated code using a
different number of cores, compared to the sequential version of the benchmark
on the SiFive Freedom U740 processor.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

BT CG SP art equake MPEG2 swim

S
p

ee
d
u
p

to
S
eq

u
en

ti
a
l 1 Core

2 Cores
4 Cores

Fig. 10. Relative speedup of the respective benchmark using a certain number of pro-
cessor cores compared to the sequential version on the RISC-V processor.

The RISC-V processor shows good overall speedup as well. Notably, the
observed speedup is much more homogeneous compared to the other platforms.
This is because the RISC-V SoC is comparably slower than the other processors
used, while the memory performance is similar to the other systems. This reduces
the overall effect of memory on the benchmarks, both the bottlenecks, as well as
the positive impact of cache optimization for benchmarks like swim. For example
the BT benchmark’s execution time decreased from 2041 s in the sequential
version to 551 s using the OSCAR compiler-generated four-core version for a
speedup of 3.7.

7 Conclusion

This paper shows how the OSCAR automatic parallelizing compiler can uti-
lize multigrain parallelism to generate parallelized code from different programs
and benchmarks for various architectures from embedded multicores to high-
performance processors. This code can then be compiled for the respective ar-
chitectures using a native compiler of the system, like the Intel C and Fortran
Compilers or the GNU C and Fortran Compilers. By utilizing the OSCAR API
2.1 and the OSCAR API analyzer, it is even possible to generate sequential code
for each core of a system, which allows OSCAR compiler-generated code to be
run on systems whose native compilers do not support a parallel API such as
OpenMP. Overall, this paper finds that the OSCAR compiler is able to automat-
ically parallelize a variety of benchmarks, including scientific simulations, media



14 B. Magnussen et al.

applications, and machine learning applications, written in C and Fortran with
good speedup. Measuring the benchmark programs showed good performances,
such as a speedup of 7.16 for the swim program of the SPEC2000 benchmarks,
a speedup of 6.73 for the CG program of the NAS parallel benchmarks, and a
speedup of 5.75 for the MPEG2 encoding benchmark on 8 cores of an Intel x86
processor. Similarly, on 8 cores of the AMD x86 processor, speedups such as
9.50 for the CG program of the NAS parallel benchmarks, a speedup of 8.39 for
the swim program of the SPEC2000 benchmarks, and a speedup of 3.94 on the
BT benchmark of the NAS parallel were observed. On the 4-core SiFive RISC-
V processor, speedups including a speedup of 3.70 for the BT program of the
NAS parallel benchmarks on a 4-core, a speedup of 2.80 for the SP program of
the NAS parallel benchmarks, and a speedup of 3.40 for the equake program of
the SPEC2000 benchmarks. Finally, on 4 cores of an NVIDIA Arm processor,
observed speedups include 2.64 for the equake program of the SPEC2000 bench-
marks, 2.87 for the CG program of the NAS parallel benchmarks, and 1.86 for
the art program of the SPEC2000 benchmarks.

These speedups are similar to the previous performance of OSCAR generated
code on the RP2 processor platform[1]. This shows that the OSCAR compiler
can achieve good speedup and performance for benchmarks on different archi-
tectures with different instruction sets as well. The OSCAR compiler proves to
be able to handle parallelizing code for a variety of current architectures, in-
cluding embedded systems and high-performance processors, without extensive
per-system tuning, using default parameters and cost tables.

Due to advanced optimization techniques such as cache optimization and
data localization, superlinear speedup can be achieved for some benchmarks.

References

1. Adhi, B.A., Kashimata, T., Takahashi, K., Kimura, K., Kasahara, H.:
Compiler software coherent control for embedded high performance mul-
ticore. IEICE Transactions on Electronics E103.C(3), 85–97 (2020).
https://doi.org/10.1587/transele.2019LHP0008

2. Advanced Micro Devices, Inc.: Software Optimization Guide for AMD Family 17h
Processors (2017)

3. Advanced Micro Devices, Inc.: Preliminary Processor Programming Reference
(PPR) for AMD Family 17h Model 31h, Revision B0 Processors (2020)

4. Arm Limited: Arm® Architecture Reference Manual, Armv8, for Armv8-A archi-
tecture profile (2021)

5. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum,
L., Fatoohi, R.A., Frederickson, P.O., Lasinski, T.A., Schreiber, R.S., Si-
mon, H.D., Venkatakrishnan, V., Weeratunga, S.K.: The NAS parallel bench-
marks summary and preliminary results. In: Supercomputing ’91:Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing. pp. 158–165 (1991).
https://doi.org/10.1145/125826.125925

6. Blume, W., Doallo, R., Eigenmann, R., Grout, J., Hoeflinger, J., Lawrence,
T.: Parallel programming with polaris. Computer 29(12), 78–82 (1996).
https://doi.org/10.1109/2.546612



Performance Evaluation of OSCAR compiler on different multicores 15

7. Fritts, J.E., Steiling, F.W., Tucek, J.A., Wolf, W.: MediaBench II video: Expediting
the next generation of video systems research. Microprocessors and Microsystems
33(4), 301–318 (2009). https://doi.org/10.1016/j.micpro.2009.02.010

8. Hall, M., Anderson, J., Amarasinghe, S., Murphy, B., Liao, S.W., Bugnion, E.,
Lam, M.: Maximizing multiprocessor performance with the SUIF compiler. Com-
puter 29(12), 84–89 (1996). https://doi.org/10.1109/2.546613

9. Henning, J.L.: SPEC CPU2000: Measuring CPU performance in the new millen-
nium. Computer 33(7), 28–35 (Jul 2000). https://doi.org/10.1109/2.869367

10. Honda, H., Kasahara, H.: Coarse grain parallelism detection scheme of a
fortran program. Systems and Computers in Japan 22(12), 24–36 (1991).
https://doi.org/10.1002/scj.4690221203

11. Intel Corp.: Intel® 64 and IA-32 Architectures Software Developer’s Manual
(2021)

12. Ishizaka, K., Miyamoto, T., Shirako, J., Obata, M., Kimura, K., Kasahara, H.:
Performance of OSCAR Multigrain Parallelizing Compiler on SMP Servers. In:
Languages and Compilers for High Performance Computing. pp. 319–331. Springer
Berlin Heidelberg (2005). https://doi.org/10.1007/11532378 23

13. Ishizaka, K., Obata, M., Kasahara, H.: Coarse grain task parallel processing
with cache optimization on shared memory multiprocessor. In: Proceedings of
the 14th International Conference on Languages and Compilers for Parallel
Computing. p. 352–365. LCPC’01, Springer-Verlag, Berlin, Heidelberg (2001).
https://doi.org/10.1007/3-540-35767-X 23

14. Kimura, K., Wada, Y., Nakano, H., Kodaka, T., Shirako, J., Ishizaka,
K., Kasahara, H.: Multigrain parallel processing on compiler coopera-
tive chip multiprocessor. In: 9th Annual Workshop on Interaction between
Compilers and Computer Architectures (INTERACT’05). pp. 11–20 (2005).
https://doi.org/10.1109/INTERACT.2005.9

15. Kimura, K., González-Alvarez, C., Hayashi, A., Mikami, H., Shimaoka, M., Shirako,
J., Kasahara, H.: OSCAR API v2.1: Extensions for an advanced accelerator control
scheme to a low-power multicore API. In: 17th Workshop on Compilers for Parallel
Computing (2013)

16. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Shirako, J., Kasahara, H.: OS-
CAR API for real-time low-power multicores and its performance on multicores and
SMP servers. In: Languages and Compilers for Parallel Computing. pp. 188–202.
Springer Berlin Heidelberg (2010). https://doi.org/10.1007/978-3-642-13374-9 13

17. Mase, M., Onozaki, Y., Kimura, K., Kasahara, H.: Parallelizable c and its perfor-
mance on low power high performance multicore processors (2010)

18. NVIDIA Corp.: NVIDIA Jetson Xavier NX System-on-Module Data Sheet (2020)
19. Obata, M., Shirako, J., Kaminaga, H., Ishizaka, K., Kasahara, H.: Hierarchical

parallelism control for multigrain parallel processing. In: Languages and Com-
pilers for Parallel Computing. pp. 31–44. Springer Berlin Heidelberg (2005).
https://doi.org/10.1007/11596110 3

20. Real world computing project: Omni OpenMP Compiler Project.
http://www.hpcs.cs.tsukuba.ac.jp/omni-compiler/, accessed: 2021-07-18

21. SiFive, Inc.: SiFive FU740-C000 Manual (2021)
22. Yoshida, A., Koshizuka, K., Kasahara, H.: Data-localization for fortran macro-

dataflow computation using partial static task assignment. In: Proceedings
of the 10th International Conference on Supercomputing. p. 61–68. ICS
’96, Association for Computing Machinery, New York, NY, USA (1996).
https://doi.org/10.1145/237578.237586


