
Received July 15, 2021, accepted August 6, 2021, date of publication August 24, 2021, date of current version August 31, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3106888

Secure Image Inference Using Pairwise
Activation Functions
JONAS T. AGYEPONG 1, MOSTAFA SOLIMAN1, YASUTAKA WADA 2, (Member, IEEE),
KEIJI KIMURA 3, (Member, IEEE), AND AHMED EL-MAHDY 1, (Senior Member, IEEE)
1Computer Science and Engineering Department, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
2Department of Information Science, Meisei University, Tokyo 191-8506, Japan
3Department of Computer Science and Engineering, Waseda University, Tokyo 169-8555, Japan

Corresponding author: Jonas T. Agyepong (jonas.tawiah@ejust.edu.eg)

This work was supported by the JSPS KAKENHI under Grant 18K19786.

ABSTRACT Polynomial approximation has for the past few years been used to derive polynomials as an
approximation to activation functions for use in image prediction or inference employing homomorphic
encryption technique to induce data privacy and security. Most proposed works thus far have only been
limited to deriving very few polynomials to use for these tasks. While the literature has considered forming
new activation functions as pairwise multiplication of well-known activation functions, the design space
is mostly unexplored. In some practical applications, there is usually a mix of activation functions used,
so looking ahead, there is the need to explore into using other potential functions that can also improve
performance whiles not relying on a few ones proposed such as ReLU and Swish. This paper explores the
design space of such pairwise, multiplied activation functions and their application in homomorphic image
inference or prediction using the widely popular MNIST and CIFAR-10 benchmark datasets. Moreover,
we analyzed corresponding curve fitting parameters (range and degree), homomorphic-friendly pooling
methods, and optimization methods in the ciphertext domain to avoid incurring huge computation costs but
not compromising accuracy. Results show new activation function combinations yielding similar or better
results in ciphertext as compared to the ones in plaintext.

INDEX TERMS Exploratory analysis, homomorphic encryption scheme, homomorphic image inference,
pairwise functions, polynomial approximation, privacy-preserving machine learning.

I. INTRODUCTION
The area of deep learning is continually growing and has
thus become a promising research field. The accuracy and
throughput of deep neural networks are improving over the
years, making them more useful for applications in diverse
areas. However, as machine learning algorithms still rely
heavily on raw data, it poses a considerable risk to users’
security and privacy. As most processes are delegated to
very high-performance computing equipment far from the
user, it makes the data involved less secure. An alternative
solution to this is to encrypt the data to be processed by the
deep neural network, where the encrypted data and public
key are sent to the server. The server performs the required
computations (or say training, classification or prediction)
on the encrypted data and yields encrypted results which are
sent back to the user. The user then decrypts the results to
plaintext. Performing image processing using CNNs is a very

The associate editor coordinating the review of this manuscript and

approving it for publication was Massimo Cafaro .

complex and slow process, mainly when using more complex
models and massive datasets, so mostly Graphical Process-
ing Units (GPUs) are employed to make processing faster.
Though there continues to be an improvement in accuracy
and run times, performance is still far from satisfactory [7].
Incorporating Fully-Homomorphic Encryption (FHE), which
is also a slow process, will further augment the models’ com-
plexity, making them even slower in their computation. That
means we would have to tune these models when employing
FHE to realize them practically, using few parameters or less-
complex models, but this can affect accuracy adversely.

Most successfully implemented privacy-preserving deep
learning methods use generally less complex datasets
(MNIST [14], [15] and CIFAR-10 [3], [4] especially) and
employ spatial convolutions in the neural network for image
classification. Although they produce good results compared
to non-encrypted classification, their high latency, amount
of parameters, and computation restrict their use for other
more complex computer vision areas employing other forms
of datasets. That might not make this area favourable for

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 118271

https://orcid.org/0000-0002-2388-5150
https://orcid.org/0000-0002-5489-0964
https://orcid.org/0000-0003-2325-4866
https://orcid.org/0000-0001-9736-1352
https://orcid.org/0000-0003-1118-7109


J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

researchers who might still opt for machine learning in plain-
text space.

Privacy-preserving machine learning research has gained
much significant attention over the past decade [31], and
as machine learning continues to grow, so does the rele-
vance of the former. The two notable techniques [1], [5]–[9],
[31] currently being used in implementation are homomor-
phic encryption (HE) and multi-party computation (MPC) or
sometimes the mix of the two and also using secret sharing
techniques. This form of cryptographic technique proposed
in literature known as homomorphic encryption allows for
performing computation on encrypted data as stated earlier,
yielding results equivalent to one where the same type of
processing is executed but on raw unsecured data. A newer
form of this type of encryption called Fully Homomorphic
Encryption (FHE) [29], [30] allows to compute arbitrary
functions on encrypted data [2] meaning the broadening of
the effectiveness of this encryption scheme to perform several
privacy-preserving tasks across many disciplines no matter
the level of complexity and diversity involved in such appli-
cations.

Several proposed works in the past few years have incor-
porated homomorphic encryption in machine learning tasks
such as image classification, character recognition, and so on.
These machine learning processes integrate non-linearities
via transcendental functions such as exponential function
and logarithmic functions. Nevertheless, the homomorphic
encryption scheme does not directly compute or support such
functions. There thus would be the need to use instead poly-
nomial functions, mainly involving addition and multiplica-
tion operations, which allows this privacy-preserving task
to become feasible to execute. Several methods have been
proposed and utilized in the literature.

We realised from most existing works that the design
space for implementing feasible HE solutions that would
mostly involve using calculable polynomials (to replace most
non-linear transcendental functions in the neural network) is
not explored much. The motive is to be able to compute func-
tions in the encrypted domain thus needing to convert tasks
into additive and multiplicative operations. Most proposed
works just derive one or two functions which yielded the
best result in the end but in most practical machine learning
tasks, unpopular types of activation functions used might
produce a better performance so the same should be done for
privacy-preserving tasks if we are looking to implement such
systems practically.

In this paper, we looked at how to derive alternative, but
effective polynomials for implementation in convolutional
neural networks for applications in privacy-preserving image
classification using the MNIST [14], [15] and CIFAR-10
[3], [4] datasets by exploring the design space much
thoroughly. We were able to deduce that our approxi-
mation using polynomials yielded results as accurate as
those utilizing non-polynomials and can thus be further
utilized in homomorphic encryption to yield competitive
results.

A. CONTRIBUTIONS
This paper has the following contributions:
• We derived several low-degree polynomials to use in
implementing the HE machine learning tasks, thus not
being limited to just a few as other works proposed.
These polynomials yield good accuracy in both plaintext
and ciphertext domains.

• We showed that some activation functions, which
usually have a poor performance and thus rarely used
(e.g. Sigmoid, Softplus), can be combined to yield alter-
natives that provide good performance and thus can be
utilized for encrypted and non-encrypted computations.

• In our proposed work, we showed that through effective
HE scheme parameter selection and machine learning
optimizations, we can reduce the number of multiplica-
tion operations (multiplicative depth), memory load, and
improve execution speed.

• We also showed that though activation functions’ prod-
ucts (might) increase computational cost, the cost can
be amortized. In particular, the subsequent polynomial
derivation and use in homomorphic inference allows us
to weigh the polynomial (activation) functions in terms
of their degrees thus giving many choices in selection to
yield the best accuracy, speed and throughput.

B. THREAT MODEL
This being a two-party or two way client-server model means
there is some level of trust to be maintained between both
parties. The client encrypts the data and sends to the server
for prediction but the server would not be able to decrypt
this data likewise the predicted output without the client’s
secret key. The server sends the encrypted result to the client
who can decrypt with the secret key. A third party though
can have access to the server’s model and communication
channel’s internal state. The former means that as training
was done in plaintext, model weights say can be accessed
prior to inference and the latter means one can perceive the
data transmission status and the client’s encrypted message
can be accessed in transit though not deciphered without the
secret key.

C. ORGANIZATION OF PAPER
The rest of the paper is organized as follows. We first briefly
give a review of related work in Section II where we describe
some strengths and areas that can potentially be improved in
relation to our work. In Section III, we highlight the crypto-
graphic technique of homomorphic encryption and touch on
convolutional neural networks with emphasis on activation
layer functions as used to implement homomorphic image
inference using some benchmark datasets from literature. The
set of methods used to accomplish our work are discussed
in Section IV and this is followed by Section V where we
give the details of the network architecture and hardware
configuration used to implement the work. We also discuss
the results we attained first in plaintext domain by using
conventional activation functions and polynomials derived

118272 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

from the former for both datasets. Section VI describes the
graph compiler used in implementing the encrypted image
inference process and we also report the results of homo-
morphic inference on both datasets. Finally, we give the
general conclusions of our work and some recommendations
for future work in Section VII.

II. RELATED WORK
As was mentioned in Section I, HE and MPC form the
two major categories of privacy-preserving machine learning
implemented in literature and in this section, we discuss
proposed works and their limitations that predominantly used
the former technique as this relates to what our proposed
solution also utilized.

Gilad-Bachrach et al. [1] proposed the first neural net-
work over encrypted data, called CryptoNets [7] which
provided a method for executing the inference phase of
privacy-preserving deep learning. They showed that neural
networks can be applied to encrypted data to yield encrypted
results or predictions, where the latter can then be decrypted
with a secret key. They demonstrated CryptoNets on MNIST
optical character recognition tasks and achieved approxi-
mately 99% accuracy using a square function. Using the
square function has the tendency to blow up activation as it
squares incoming values, unlike other activation functions.
ReLU has a similar characteristic and the square unit will just
compound it more including that of negative values.

Hesamifard et al. [6] developed a technique to approxi-
mate the activation functions used in CNNs with low degree
polynomials. The proposed work here outperformed other
solutions [1], [31] owing to how efficient and accurate it
is. They trained CNNs using different approximation meth-
ods including Chebyshev polynomials (also known as min-
max approximation) but were not able to achieve satisfactory
results on MNIST. They instead used an approach based on
the derivative of the ReLU unit to achieve a higher accuracy
but the approximation for sigmoid and tanh units did not
achieve good results. This work was implemented on a CPU
and the focus was on privacy-preserving classification. They
used the MNIST and CIFAR-10 datasets.

Chabanne et al. [31] proposed the implementation of
privacy-preserving machine learning on deeper neural net-
works. They incorporated several non-linear layers and used
the batch normalization principle proposed by [21], and were
able to achieve satisfactory result on theMNIST dataset. They
however used a much deep neural network to achieve an
accuracy of 99.30% on MNIST (with average pooling) and
attained a much lower accuracy with a shallower (network)
variant which shows how costly their method or task can be
to attain a good accuracy.

Ishiyama et al. [16] employed various polynomial approx-
imations of ReLU and Google’s Swish [33], [34] func-
tion to implement homomorphic inference. They achieved
favourable results better than some of the works described
in this section. Although they presented a lower value degree
polynomial, their proposed solution does not provide many

options for approximation functions and other ranges to con-
sider. The accuracy gain margin can thus be improved. Their
best result on MNIST was 99.29% using a degree 2 Swish
polynomial and average pooling.

Chen et al. [10] proposed using logistic regression on
encrypted medical (genomic) data. They used the min-max
approximation method to approximate the sigmoid func-
tion, which they used as an activation function. Specifically,
the Remez algorithm [13], being an iterativeminimax approx-
imation algorithm, was used to generate a more accurate
and low degree polynomial for use in the encrypted logistic
regression model.

Bos et al. [17] also used homomorphic encryption to
implement predictive analysis on encrypted health data in the
cloud. They used logistic regression and Cox proportional
hazard regression models to effectively implement a real-life
privacy-preserving predictive analysis using the Taylor series
method to approximate their analytic function. To attain a
good accuracy, they used a very high degree of the polynomial
(up to the 7th degree), which increased the computation cost
of the polynomial in ciphertext form.

Cheon et al. [18] also proposed a similar work as the previ-
ous one. However, they used themini-max approximation and
Non-Adjacent Form (NAF) encoding. That allowed them to
remove the limitation induced by an input range, making their
analyses faster and more accurate than [17]. Nevertheless,
their regression models still induced a higher polynomial
degree.

Table 1 illustrates how our proposed solution compares to
that of existing ones using several common parameters in the
design space.

There is the need for further space exploration of activa-
tion function, considering the formation of activation func-
tions and their polynomial fittings, especially using low-order
polynomials.We realised from these works that much empha-
sis was not placed on yielding an optimal activation function
to use but rather the resultant accuracy to achieve, though it
is arguable. Methods as the type of pooling used were based
on the author’s preference without any comparison to others,
though other combinations to other functions could have
proved better. It was though stated in [7] that pooling can be
avoided without adversely affecting accuracy in MNIST pre-
diction, but looking into much complex applications, it will
be noteworthy to not overlook such. It can be that the area
of searching for much optimized polynomials being derived
from activation functions can prove to be a tedious search
process, as other even better types of activation functions can
be derived in future for use in machine learning algorithms.
We considered all these various aspects in our work thus not
being bounded by few arguments to use in our search space.

III. BACKGROUND
In this section we describe key areas relevant to the field
and in this work. As this paper sought to implement
homomorphic image inference (as being part of the much
broader privacy-preserving machine learning), homomorphic

VOLUME 9, 2021 118273



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

TABLE 1. Comparison between our proposed solution and existing ones.

encryption, convolutional neural networks and datasets as
utilized in this work are clearly distinguished.

A. FULLY HOMOMORPHIC ENCRYPTION
Fully homomorphic encryption (or FHE for short) allows for
computing arbitrary number of operations on encrypted data
which is ideal considering it to be very useful for use in
several practical tasks. It though tends to be computationally
expensive and induces a very huge overhead making them
almost infeasible for use practically.We can use the following
algorithms to define any public key homomorphic encryption
scheme [7], [11]:

Let k, q, t > 1 with N = 2k , t prime and R = Z[X ]/
〈XN+1〉.We can refer to somemessage space asRt = R/tR
and a ciphertext space asRq = R/qR.
• KeyGenε(λ,L): Being a probabilistic algorithm which
takes a security parameter λ and produces a public key
pk and a secret key sk .
Given λ and L as inputs, k, q is chosen so as to attain λ.
A secret key sk ∈ R2, random element a ∈ Rq, some
noise e ∈ Rq is selected, we have a public key, pk being
pk = (b = e− ask, a).

• Encryptε(m, pk): Being a probabilistic algorithm which
takes messages (m ∈ Rt {0, 1}), and public key pk and
outputs a ciphertext c = Encryptε(m; pk) = (br ′ + e′ +
bq/tcm, ar ′), for some random noise e′, r ′ ∈ Rq.

• Decryptε(c, sk): Being a deterministic algorithm which
takes a ciphertext c = (c0, c1) ∈ R2

q, secret key sk , and
outputs messagem = Decryptε(c; sk) = d(t/q)(c0+c1s
mod q)c mod t .

• Evaluateε(f , c1, · · · , ct ; pk): This algorithm takes pk ,
n ciphertexts c1, c2, · · · , cn, and a permitted circuit Cn

and outputs Cn(c1, c2, · · · , cn). Let us assume we take
the set of ciphertexts ci with respective messagesmi, and
the circuit C , this algorithm stated under this point will
result in a new ciphertext c. This holds for:

Decryptε(Evaluateε(C, ci, pk), sk) = C(m1, · · · ,mt ). (1)

We can now formally define what fully homomorphic
encryption is based on the algorithms stated. The scheme

ζ = (KeyGen,Encrypt,Decrypt,Evaluate) would thus be
considered as homomorphic for some circuits C if it holds
for (1) for all circuits C ′ ⊂ C and ζ is fully homomorphic
if it holds for all Boolean circuits. We can go ahead to also
state that if for any circuit C ′ ⊂ C having a number of inputs
which is polynomial in λ, the size of ciphertexts output by
Evaluate is bounded by a fixed value which is polynomial
in λ, and thus ζ is compact.

The twomajor operations underlying FHE are addition and
multiplication and they can be defined as below using say two
hypothetical ciphertexts as inputs. Given the two ciphertexts,
thus c1 = (c0,1, c1,1) and c2 = (c0,2, c1,2);

• HAdd(c1, c2): We get the resultant ciphertext, c1+ c2 =
c′ = (c0,1+c0,2, c1,1+c1,2) which is a component-wise
addition operation.

• HMult(c1, c2): We evaluate as c1 × c2;

* Compute tensor, c∗

c∗ = (c0 = c0,1c0,2, c1 = c0,1c1,2 + c1,1c0,2, c2 =
c1,1c1,2);

* Scale and Relinearize the output, c′

c′ = d Relinearize(d(t/q)c∗c)c mod q.

Where Relinearize(c∗), is a technique used to reduce the
growth in the product or size of the ciphertext result c∗

brought about by the multiplication operation. In relineariza-
tion, an evaluation key (evk) is generated to control this
growth. Using an integer w to control the decomposition rate
and number of components l + 1 in evk , where l = blogwqc.
For 0 < i ≤ l, sample ai ∈ Rq and ei ∈ Rq and calculate
evk[i] = ([wisk2 − (ais + ei)]q, ai). Thus we break down
c2 in base w which implies c2 =

∑l
i=0 c

(i)
2 w

i. We have
c′ = cj +

∑l
i=0 evk[i][j]c

(
2i), where j ∈ 0, 1.

Gentry in his work [29], [30] was the first to propose the
construction of a FHE. This has further opened the doors for
researchers from diverse backgrounds to adopt HE in their
work as FHE allows for several types of operations to be
performed on ciphertexts and most especially to compute
multiple addition and multiplication operations. It is seen
as the go-to method when considering privacy-preserving

118274 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

machine learning application though other works in this
area choose to go for other types of techniques and even
apply a blend of some of them in their works. In our paper,
we adopted FHE scheme in our evaluation in order to benefit
from the numerous features it renders and for details about
this cryptographic technique, one can refer to [20], [28] and
Gentry’s work as it falls outside the scope of this paper.

B. CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks (CNNs), being a type of
deep learning architecture used mostly in computer vision
tasks and in this paper nonetheless, consist of several lay-
ers running from the input layer to the output layer, where
each layer has a particular task to perform on data that is
traversing the network. The units present in these layers per-
form computation on data using operations like addition and
multiplication or using some function(s) to transform data.
Some of these layers are the convolutional layer(s), activation
layer(s), pooling layer(s), fully connected layer(s), dropout
layer, softmax (classifier) layer, and so on. In this section,
we discuss the activation layer as it is central to this paper.

1) ACTIVATION LAYER
The inducing of non-linearity within the network arises from
this layer, and HE does not support the corresponding acti-
vation (or transfer) functions used. There have been alter-
native methods such as using square activation [1], and the
derivative of ReLU [6]. These chosen methods performed
similarly to an activation function, and HE supports them.
The more notable activation functions as ReLU, sigmoid,
tanh, and softplus as used in literature are considered for use
in our experiments.
• ReLU: The ReLU activation (or transfer) function
uses the maximum function, ReLU (x) = max(x, 0),
to induce non-linearity after the convolution operation is
performed by clipping off all negative numbers, as in a
filter, and passing only positive numbers to the pooling
layer. This function has proven to be very effective in
most CNN applications, thus adopted mostly as com-
pared to others such as sigmoid and tanh. A merit of
using this function is that it does not cause gradients to
vanish during training thusweights can be easily adapted
to enhance learning and having a better convergence dur-
ing training helps to improve performance. A downside
to using it is that as it is linearly increasing, it blows up
activation function, which causes weights to have large
values and this affects learning adversely.

• Sigmoid: The Sigmoid function, also known as the log-
sig function, uses the logistic-sigmoid function, σ (x) =

1
1+e−x to induce non-linearity just like other activation
functions. It normalizes all positive and negative num-
bers to values between 0 and 1; thus, it does not blow
its activation, ensuring smooth learning. The downside
is that it tends to cause vanishing gradients, especially
in deep networks, which causes problems in the com-
putation of the loss function and weight adaption. The

Sigmoid function can be viewed as a smoothened form
of a Heaviside (step) function where the latter collapses
all negative and positive numbers to 0 and 1 respectively
instead of having intermediate values between these two
extremes.

• Tanh: The Tanh or hyperbolic tangent function in a
similar fashion as the Sigmoid also squashes positive
and negative numbers but into the interval −1 and 1.
It uses the Tanh function, tanh(x) = ex−e−x

ex+e−x to
induce non-linearity into the CNN. In some applications,
it tends to perform better than Sigmoid in terms of speed
and accuracy so it can be employed based upon output
performance.

• Softplus: The Softplus function has the relation
ln(1 + ex); thus, it computes both an exponent and a
natural logarithm of input fed to it. It has a very close
resemblance to the ReLU function, but unlike the latter,
it is not used very often as ReLU and Sigmoid tends to
have a much better performance effect. Also, we can
avoid computing both exponent and natural logarithm in
one instance as this will be costly. We adopted this func-
tion in our paper because it is still very favourable owing
to its likeness to ReLU and as will be later seen, induces
good performance in tasks when it was combined with
other functions.

C. DATASETS
Data forms a core of machine learning. Though mathemati-
cal formulations and algorithms are also vital here, datasets
always play the central role in almost every problem we want
to solve with machine learning.

The datasets usually considered for implementing
privacy-preserving deep (or machine) learning currently con-
sider the accessibility and ease-of-use of the database, relative
size (or the resolution of images in the latter’s case) and
storage requirements of datasets, and so on as tasks are
intuitively very complex and computationally costly. Given
these reasons, notable ones used are thus the MNIST and
CIFAR-10 datasets and have become a benchmark for imple-
menting tasks like classification in general. Thus, it seemed
fit to use such datasets for homomorphic neural network
inference in this paper.

1) MNIST
TheModified National Institute of Standards and Technology
database, known as MNIST, is an extensive database of hand-
written digits usually used for image processing and character
recognition tasks. It is made up of 10 categories or classes of
integers from 0 to 9, with each digit having a 28 × 28 pixel
image format. The dataset has a training set of 60,000 exam-
ples or images and a test set of 10,000 examples of gray-level
images [14].

This dataset’s simplicity and lightweight nature makes it
very resourceful for performing homomorphic (encrypted)
deep learning.

VOLUME 9, 2021 118275



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

2) CIFAR-10
One of the most popular datasets for machine learning and
computer vision is the CIFAR-10 dataset (Canadian Institute
For Advanced Research). There exists the CIFAR-10 and
CIFAR-100 variants and both are labeled subsets of the
80 million tiny images [12] dataset. CIFAR-10 dataset has
10 classes of 32×32 pixel colour images, having 6000 images
per class. Thus, there is 60,000 in total, with 50,000 being
training images and 10,000 test images. The classes do not
overlap and are very distinct from each other, making them
completely mutually exclusive. These 10 classes are aero-
plane, automobile, bird, cat, deer, dog, frog, horse, ship, and
truck.

The description given makes it an ideal dataset for
privacy-preserving deep learning inference.

IV. PROPOSED METHOD
Obviously, as the HE scheme does not support most oper-
ations (or operators such as division) and especially non-
polynomial functions, the drive is to convert most com-
putations into additive and multiplicative tasks within the
neural network. The mathematical technique used for such
is known as function approximation. Table 3 gives a sam-
ple of the outcomes of approximating functions using least
squares method [22], [26] (from numerical analysis) along
with their respective accuracies we got from our experiments.
We describe in the subsections here the various methods we
utilized in our paper to perform the homomorphic prediction
of the MNIST and CIFAR-10 datasets.

For the CNN pooling layers, we considered two methods
that can be used in the encrypted domain. Thus the Average
Pool and Scaled mean or Sum Pool and either can be selected
based upon its performance in the plaintext domain (as can
be seen in comparison to theMaxPool in Section V).
Table 3 bluntly illustrates the matching of parameters as

the accuracy and the least square polynomials we generated
from the conventional activation functions (whether in their
raw form or after been paired through multiplication). For the
ranges used for approximating the functions in least squares,
we considered [−1, 1], [−2, 2], [−3, 3], [−4, 4], [−5, 5],
[−6, 6], and [−10, 10] on the x-axis of the x − y plane and
used an interval of 0.5. For ease of illustration in this paper,
we present the plots of the approximations of the activation
functions in one range with their low-degree polynomials
considered in the Figs. 4, 5, and 6.

A. ACTIVATION FUNCTION COMBINATIONS
We sought to combine notable activation functions in lit-
erature to yield activation function products in our work.
We then used them for neural network training and prediction
in the plaintext domain to assess which ones would have good
performance favourable for deriving polynomials for the
homomorphic inference process. These activation function
combinations are as seen in Table 2 with repeated products
omitted. As noticed, the Swish [33], [34] and Square are

also derived and are widely popular in literature. We grouped
these resultant functions under three (3) categories for easy
description and they are namely;

1) WEIGHTED LINEAR UNITS
These units are as illustrated in Fig. 1 and are briefly defined
as;
• Swish: This linear unit and Sigmoid product is referred
to as the Sigmoid-weighted Linear Unit (SIL). The
Swish, as proposed by [33] uses a trainable parameter,
β whereas SIL, as proposed by [34], is just the product
of the two functions and the latter is as used in this paper.

• XTanh: This product of a linear unit and hyperbolic
tangent is referred to as the Tangent-weighted linear unit.

• XSoftplus: This product of a linear unit and Softplus is
referred to as the Softplus-weighted linear unit.

2) EXPONENTIALLY-WEIGHTED UNITS
These units as illustrated in Fig. 2 are briefly defined as;
• Square: Being one of the widely used functions in
earlier implementations of privacy-preserving machine
learning or image classification [1], [7], it is mostly used
to approximate the ReLU function.

• σ 2
: Square of the functions Sigmoid: 1

1+e−x , Tanh:
ex−e−x
ex+e−x , and Softplus: ln(1+ ex).

3) ACTIVATION PRODUCTS
These units as illustrated in Fig. 3 are briefly defined as;
• SigTanh: The product of Sigmoid and hyperbolic tan-
gent units or vice versa due to the commutative property
of multiplication.

• SigSoftplus: The product of Sigmoid and Softplus units
or vice versa.

• TanhSoftplus: The product of hyperbolic tangent and
Softplus units or vice versa.

B. DEEP LEARNING NORMALIZATION METHODS
Using a conventional function as Tanh allows the computa-
tion of values in the range (−∞,+∞) during training; thus,
any number on the x-axis (in the x − y plane) can be easily
computed without any difficulty. In the case of polynomials,
there is the limitation of only being able to approximate
a function as Tanh in some range [−x, +x] (where say
x = 1, 2, 3, 4 . . . ) and during computation, values yielded
outside such a range can pose a problem thus needing to use a
wider range at all cost. We first addressed this by normalizing
the pixel values of the MNIST and CIFAR-10 datasets, which
is in the range [0, 255] into [0.0, 1.0] to yield smaller values
of input data so as not to scale up weight values during
training. In addition to this, we used the Batchnormalization
technique proposed by [21]. Both of these techniques are
usually promoted and thus adopted in machine learning as
they tend to improve performance, so we found it very vital
to utilize in training. We applied batch normalization before
an activation (function) process, and this has benefits in many

118276 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

FIGURE 1. The linear and Sigmoid functions combination gives the Sigmoid-linear unit or the Swish (a). The product of linear and hyperbolic
tangent functions gives the tangent-linear unit shown in (b) and the Softplus-linear unit is as seen in (c).

FIGURE 2. Squaring the linear, Sigmoid, hyperbolic tangent, and Softplus functions gives the squared units (a), (b), (c), and (d) respectively.

FIGURE 3. The combination of the hyperbolic tangent and Sigmoid functions gives the Sigmoid-Tangent unit (a), the product of Sigmoid and
Softplus functions gives the Sigmoid-Softplus unit shown in (b) and the Softplus and hyperbolic tangent product is as seen in (c).

FIGURE 4. The approximations of the Sigmoid-linear unit (a) and the tangent-linear unit shown in (b) to derive degrees 2 and 4 polynomials and
approximation of the Softplus-linear unit to derive degrees 2 and 3 polynomials is as seen in (c).

ways as: (1) normalizing input features fed to the activation
to attain a Gaussian distribution so as not to let variables shift
that much, (2) ensuring numerical stability in computation
due to the use of a much-constricted range of the least square
activation polynomial, (3) inducing some bit of regularization
which helps to reduce overfitting, and overall (4) speeding up

training and improving performance. The Algorithm 1 listing
shows how batch normalization is implemented;

C. CKKS HOMOMORPHIC ENCRYPTION SCHEME
This recently popular HE scheme is as proposed by [28].
Using the products of functions we derived in Table 2,

VOLUME 9, 2021 118277



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

FIGURE 5. The approximations of the squares of Sigmoid, hyperbolic tangent, and Softplus to derive the low-degree polynomials are as respectively
illustrated in (a), (b), and (c).

FIGURE 6. The approximations of the Sigmoid-Hyperbolic Tangent, Sigmoid-Softplus, and Hyperbolic Tangent-Softplus units to derive degrees 2, 3, and
4 polynomials in all are as seen in (a), (b), and (c) respectively.

TABLE 2. Activation function combinations.

TABLE 3. Least squares polynomial approximation.

we generated the corresponding least square polynomials for
the ranges stated in Section IV of which some can be seen
in Table 3. Using the CNNs in Tables 4 and 5, we per-
formed training and prediction (in plaintext) using all the
least square polynomials we generated to assess their efficacy
and feasibility for use in the homomorphic prediction. As we
sought to perform homomorphic inference, we first trained
the CNN with the polynomial in the plaintext domain to

Algorithm 1 BatchNormalization Technique
Input: Values of x over a mini-batch: B = {x1 . . .m};

Parameters to be learned: γ, β
Output: {yi = BNγ,β (xi)}
1. µB ←

1
m

∑m
i=1 xi // mini-batch mean

2. σ 2B ←
1
m

∑m
i=1(xi − µB)2 // mini-batch variance

4. x̂i ←
xi−µB√
σ 2B+ε

// normalize

5. yi ← γ x̂i + β ≡ BNγ,β (xi) // scale and shift

generate our layer weights. We later performed prediction
on a set of encrypted images using this model. We thus
avoid the huge overhead, complexity, and costs of performing
encrypted training, which is not the goal of this paper, and we
can nonetheless use the trained weights of the network in the
end. During homomorphic inference, we encoded our input
data using the polymodulus (t) parameter and then encrypted
this with the coefficient modulus (q). We utilized degrees 2,
3, and 4 polynomials and the values of parameters used for
homomorphic inference is as discussed in Section VI.

D. OPTIMIZATIONS IN HOMOMORPHIC INFERENCE
An important factor in HE is that we can adopt some
optimization techniques to reduce complexity and improve
runtime considerably, and some of these were proposed by
[35], [36], and also utilized by [16]. These methods are
employed in machine learning and can be used to improve
performance in training considerably.

118278 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

FIGURE 7. The approximations of the conventional activation functions as also considered are as illustrated in (a), (b), (c), and (d).

These graph-level optimization methods are termed as
folding and we utilized them as explained briefly below;
• BatchNorm (BN): Due to the availability of theweights
at test time, we can reuse parameters without incurring
extra costs from retraining thus not consuming more
levels. From Section IV-B, the variables γ, β, µ, σ are
all fixed during the inference phase. The use of the BN
means that when we compute some z where z = W ∗ x
and W represents the weight in a convolution or fully
connected layer with x being the input, we get the output
pre-activation as zBN = γ ẑ+ β where ẑ = z−µz√

σ 2z +ε

At inference thus, we compute (using BN) zBN = γT z+
βT where γT =

γ
√
σ 2z +ε

and βT = β −
γµz√
σ 2z +ε

Computing z and zBN entails a multiplicative depth of 2
but it can be reduced to 1 as the variables W , γT in
zBN = γTWx + β are constants.

• Activation: We manipulated the polynomials in such a
way as to reduce the multiplicative depth. Given the 4th

degree polynomial, say ax4+bx3+cx2+dx+e, 3rd with
ax3+bx2+cx+d , and 2nd with ax2+bx+c havingmul-
tiplicative depths of 3, 3, and 2 respectively, we reduced
them to x4 + (b/a)x3 + (c/a)x2 + (d/a)x + (e/a),
x3+ (b/a)x2+ (c/a)x+ (d/a), and x2+ (b/a)x+ (c/a)
in that order to give reduced multiplicative depths of 2,
2, and 1. Thus before computing an activation, we scale

the weights in the convolution or fully connected layer
with a (i.e. aW ).

• Pooling: Though we used both scaled-mean and aver-
age pooling in our paper, the two were nonetheless
treated differently. Given that our scaled-mean operation
is some X whereby we utilized the window size a1×a2,
our multiplicative depth will be limited to X but for the
average pooling case, the division by a1 × a2 giving
(a1 × a2)−1 · X increases the multiplicative depth by 1.
This can be addressed by multiplying the subsequent
convolution layer’s weights W instead (if any) with the
window size to yield (a1× a2)−1 ·W so that the average
pooling layer uses the X operation to maintain a multi-
plicative depth of 1.

From these procedures, we yield the levels as discussed in
Section VI for the various polynomials considered.

V. PRELIMINARY PLAINTEXT RESULTS
As an obvious key requirement, we first performed training
and testing using the activation function product-forms or
pairs and their polynomials generated before carrying out
experiments in the ciphertext domain. This is presented in
order for both datasets and owing to the numerosity of resul-
tant data generated, we illustrate using plots and tables given
under this section.

VOLUME 9, 2021 118279



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

TABLE 4. ConvNet architecture for training and testing using MNIST.

In our proposed method used to apply polynomial func-
tions in character recognition using MNIST and image clas-
sification using CIFAR-10, we employed the models shown
in detail in Tables 4 and 5. We utilized convolution layers,
pooling layers, fully-connected (or dense) layers, and applied
various activation functions alongside the polynomials we
derived. The architecture in Table 4 used for the MNIST
prediction follows the LeNet-5 structure introduced in [15]
and the one in Table 5 used for CIFAR-10 is the default struc-
ture adopted by most literature that does CIFAR-10 image
classification.

We run our computations on a workstation with a Linux
operating system. We implemented our homomorphic infer-
ence on a CPU after we had done preliminary training tests
on a GPU using MNIST and CIFAR-10 datasets to assess the
activation functions we derived. The details of the hardware
configuration are as shown in Table 6.

A. MNIST PLAINTEXT RESULTS
We first present the results of training and testing using the
MNIST dataset and the CNN in Table 4. These results are as
illustrated in Figs. 8 and 9. The former plot with its sparse
nature allows to easily discriminate individual activation
functions as being measured in two important metrics as run-
time and accuracy using one pooling method whiles the latter
does a side-by-side comparison of pooling methods within
onemetric ofmeasurement. The accuracy is the value attained
at test time and the runtime is the training time. The runtime
at test is rather instantaneous in the plaintext domain and also
varying degrees of the polynomial are handled differently in
the encrypted domain due to factors such as multiplicative
depth thus we shifted focus to the training time, even though
homomorphic inference will be performed in the aftermath,
in order to make some explanations in the plaintext domain.

TABLE 5. ConvNet architecture for training and testing using CIFAR-10.

TABLE 6. Details of hardware used for performing our experiments.

As was mentioned in Section IV, we utilized both
HE-friendly poolingmethods as determining the combination
of activation function and pooling method that yields the best
performance is almost always empirical. Using Tensorflow,
we performed training for 100 epochs using a batch size
of 128 and utilized the Stochastic Gradient Descent with
momentum method and Batchnormalization [21] technique.
It is obvious though that the Keras API [40], which provides a
much higher level of (language) abstraction can providemuch
faster training and inference and even cause to reduce the
number of epochs needed for training to achieve satisfactory
results but we utilized it here nonetheless in order to assess
the efficacy of the activation functions and polynomials to
differing API abstraction. We limited its use to the MNIST
though and for the more complex CIFAR-10 dataset, we used
Keras to improve training efficiency.

118280 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

FIGURE 8. Plot of Results in utilizing MaxPooling (a), AveragePooling (b),
Scaled-Mean or SumPooling (c), and all the activation functions under the
MNIST category.

1) ACTIVATION FUNCTIONS
Fig. 8a illustrates the results when the activation functions and
max pooling method were used. We included max pooling
here in order to compare with the other HE-friendly alterna-
tives being, average pooling (Fig. 8b) and scaled-mean pool-
ing (Fig. 8c). To explain the results more easily, we decided to
use the ReLU function as a yardstick to assess the others as
it is used more often in neural network classification tasks
due to its ability to improve efficiency and increase accu-
racy. It even serves as the basis upon which polynomials are
derived via approximation or otherwise for use in HE training
and/or inference. The plot is demarcated into 4 quadrants
in both Figs. 8 and 10 with the ReLU in the bottom-right
quadrant. The vertical dissecting line separates the activa-
tion functions in their accuracy values relative to the ReLU
function whiles the horizontal dissecting line separates the
activation functions in their training (run) time values relative
to ReLU.

In Fig. 8a, if the resultant accuracy value is more of the
emphasis, then there will be several other functions to choose
from asides ReLU as their results are also very considerable.
Assuming there are much accurate ways of dealing with the
max function and conventional activation functions in the
homomorphic domain, thenwe can outrightmakemore selec-
tions from the results. As the HE task nonetheless involves
training in the plaintext prior to homomorphic inference,
the runtime in training can also be considered especially in
cases where faster executions are needed and/or as models
scale up and become more complex which augments the
overall running time. Looking at the alternative poolingmeth-
ods in Fig. 8, we realized that average pooling in Fig. 8b
has the best returns in overall activation function perfor-
mance relative to ReLU as compared to scaled-mean pooling
in Fig. 8c. Fig. 8c though has a larger quantity of accuracy
throughput of activation functions due to how many of them
give an increased accuracy relative to ReLU and as compared
to Fig. 8b. In the charts in Fig. 9, we can state that the
average and scaled-mean pooling methods can provide good
alternatives to the max pooling method (Fig. 9a) when paired
with several other activation functions (and in comparison
to the ReLU nevertheless). In Fig. 9b, it is observed that
the runtimes of all the functions taper approximately to a
single value thus it can be rendered as a negligible metric for
smaller models used for training. In theory, much emphasis
(especially in cases such as image classification and inference
using HE) is in increasing accuracy or throughput and thus
the best out of the lot can be selected. There though can
be changes to expect if polynomials are used in place of
the activation functions and we discuss the results for the
approximated polynomials in the following section.

2) APPROXIMATED POLYNOMIALS
We also present the results of the approximated polynomials
derived and used for training and testing using the MNIST
dataset. These are as presented in Tables 7, 8, and 9. Due to the
results being large in number, we made a summary of it using
appropriate statistical parameters as the mean (µ), standard
deviation (σ ), minimum (min.), and maximum (max.) values
of the test accuracy and training time. We discovered through
our analysis that Tanh2 had the worst approximation as can
be seen in Fig. 5b using least squares thus, we omitted it
from the approximated polynomial results; it either generated
very bad results or was difficult to use for training in other
cases. Also, the square function is not present as it exists
uniquely and not considered as a polynomial derived from a
conventional activation function. The µ and σ , being param-
eters of a normal distribution, gives a good measure of the
data and we included the min. and max. values as in most
privacy-preserving machine learning tasks, the key objective
is to achieve the best accuracy and better it almost always.
With our polynomials generated from the activation function
pairings and including that of the individual functions, we can
determine from Table 7, the ones that yielded the best accu-
racy, the average accuracy to likely expect, and the spread of

VOLUME 9, 2021 118281



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

FIGURE 9. Plot of results showing how Average Pooling and Scaled-Mean Pooling measures with MaxPooling on both the accuracy (a) and runtime
scales (b) under the MNIST category.

the results of the activation function polynomial. To assess
how the results of these polynomials measure up to that of
the conventional functions in Table 2, we also presented the
various deviations (being the differences) as shown by the
‘margin’ parameters in the Tables. This shows how good or
bad the polynomial is when used for training as compared
to its parent activation function. This value can be positive
or negative with a number being far from 0 considered weak
whiles that towards 0 is strong with the activation function
being the reference ‘zero’ value. Also with the belief being
that pairing activation functions might increase cost in train-
ing due to the computation of two functions, we included
the training time parameters to assess whether such pairings
will induce any significant costs as compared to using just
one activation function. The training time inclusions clearly
depicts that generally the activation function pairs can be used
just as the individual functions used to derive them without
accruing any substantial costs in training. As training is also
done in plaintext, this can be overlooked so unless training is
done in an encrypted domain, this cost, whether any, can be
considered negligible.

B. CIFAR-10 PLAINTEXT RESULTS
We now present the results of training and testing using the
CIFAR-10 dataset and the CNN in Table 5. These results
are as illustrated in Figs. 10 and 11. We also utilized both
HE-friendly pooling methods here in addition to the acti-
vation function combinations. Using Keras and the network
architecture in Table 5, we performed training for 400 epochs
using a batch size of 64 and utilized the Stochastic Gradi-
ent Descent with momentum method and Batchnormaliza-
tion [21] technique. The latter technique is known to improve
classification accuracy significantly and is as stated in [16]
and finds popular use in machine learning thus we used
it directly and its effect in the network is as described in
Section IV-B.

1) ACTIVATION FUNCTIONS
In Figs. 10b and 10c, it can be observed that the average
pooling and scaled-mean (or sum) pooling respectively gave

much better accuracy results owing to how many of the
activation functions cluster close to the ReLU, being the
reference function, as compared to that of the max pooling
(Fig. 10a) which has the activation functions spread out and
far from ReLU. There are cases though were a few improved
the accuracy beyond that of the ReLU and overall, most of
the activation functions had reduced runtimes relative to the
ReLU. In general, it can be said that the Swish function had
much consistency in giving a favourable performance across
both datasets whiles others do better more specifically when
paired with a particular pooling method.

2) APPROXIMATED POLYNOMIALS
We also present the results of the approximated polynomials
derived and used for training and testing using CIFAR-10.
These results are as summarized in Tables 10, 11, and 12.

From Table 10, using ReLU as a reference, it can be
observed that several other approximated polynomials gave
better classification accuracy results being in the mean, stan-
dard deviation, and maximum values given. With the mean
and standard deviation of the classification accuracy, we can
determine how well using a particular type of approximated
polynomial gives a better chance of achieving a satisfactory
accuracy as compared to others. The minimum value gives
a measure of how strong the approximated polynomial is
even for some worse case parameters which gives a poor
performance whiles the maximum value gives the highest
achieved classification accuracy from the observations of
the approximated polynomials. This is one of the, if not,
the most important aspect that researchers look out for in
determining which approximated polynomial to use for their
homomorphic training and/or inference as they try to get
close to the value of that yield by using a conventional
activation function. We again stress on this here as using
CIFAR-10 and the accompanying network in Table 5 pre-
sented a more challenging task in comparison to using the
MNIST as previously discussed. Again using ReLU as a
reference, we can select the polynomials with the increased
accuracy to use in the encrypted domain nonetheless. The
corresponding runtime in Table 10 gives us a picture of how

118282 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

TABLE 7. Summary of Plaintext Results on MNIST Showing Variations in Comparison to the Conventional Activation Functions.

TABLE 8. Summary of Plaintext Results on MNIST Depicting Relationships in Pooling Methods, Ranges, and Degree of Polynomials.

TABLE 9. Results on MNIST Deducing Efficacy of Polynomial Degrees.

efficient the approximated polynomial makes the training
process and this can help us in our decision and design
procedures. This metric was considered to ascertain the fact
that different approximated polynomials will have dissimilar
impacts on the efficiency of neural network training and in
cases whereby a trade-off is to bemade between classification
accuracy and overall runtime of training. The former gives the
throughput or say the amount of correct predictions achieved
over some time periodwhiles the latter is tied to the overheads
and computational costs. In cases whereby much complex
network architectures are employed and/or several activation

functions/polynomials are used, this trade-off becomes much
vital in design considerations. By comparing with the results
given under Section V-B1, we also present the classification
accuracy and training time margins. These deviations in the
accuracy helps us visualize the efficacy of the approximated
polynomials in their being able to measure up to their respec-
tive activation functions and this loosely describes how we
can relate the approximated polynomials to the activation
functions in their approximation capacity. The accompanying
runtime margin is able to show how these approximated poly-
nomials fair in being measured in efficiency in comparison to

VOLUME 9, 2021 118283



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

FIGURE 10. Plot of Results in utilizing MaxPooling (a), AveragePooling
(b), Scaled-Mean or SumPooling (c), and all the activation functions under
the CIFAR-10 category.

the activation functions and from Table 10, we realize that
certain polynomials will do better in efficiency as compared
to their parent activation function governed by the negative
values presented.

Table 11 gives the observations of individual type of
approximated polynomial and the number of polynomial
degrees used. As we made emphasis on using smaller degree
of polynomials (and limiting it to degree 4), the parameters
we selected and utilized in our approximation means the
achievable degrees of approximation of the approximated
polynomial is what is as used and presented in this table (and
this is as mentioned in Section IV). In isolating the range in
the same table, the strength in approximation is illustrated
via the R2value, where approaching the value 1.0 shows a
better approximation and approaching 0.0 otherwise and as
is seen, the range [−1, 1] gives a better approximation due to
its closeness to the origin of the x-axis (in the x − y plane)
and [−10, 10] gave the worst approximation due to being
the farthest from 0. Using much constricted ranges (i.e. being

more closer to 0 as seen in [−1, 1]) is much difficult to utilize
in training but as was described in Section IV-B, we can
counter against that by using Batchnormalization. From the
classification accuracy, we can determine that the ranges
of [−3, 3], [−4, 4], and [−5, 5] gives a better chance of
yielding a polynomial that can improve performance (via the
larger mean values given) though from the maximum values
also given, we realize that achieving much higher accuracy
is skewed towards the wider ranges from [−5, 5] upwards.
Looking at the accuracy margin, we also realize that the
ranges [−3, 3], [−4, 4], and [−5, 5] do better generally
in performance and with the minimum values, we can find
out which ranges had better deviations from the activation
functions’ accuracy with [−3, 3] being the best owing to
its lowest negative value. Touching on the pooling meth-
ods, being average and scaled-mean, we found out from the
Table 11 that using scaled-mean pooling method generally
gave better accuracy whiles average pooling makes training
more efficient.

Lastly, in Table 12, the overall performance of the approx-
imated polynomials in their degrees is given. This is very
important to note as the selection of the degree of polynomial
to use will alter the multiplicative depth of the neural network
thus impacting the cost of performing the homomorphic infer-
ence. Generally, as the drive is to reduce computational costs
via reducing parameters such as the level or multiplicative
depth, deriving amuch lower degree polynomial which yields
the best accuracy is to be striven for. Though we can realize
that in Table 12, the degree 2 polynomial has the best yield
via its mean and standard deviation, the degree 4 polynomial
can produce even better outliers as shown by its maximum
value being the highest which thus can be opted for to attain
the best yield in the encrypted inference.

VI. HOMOMORPHIC INFERENCE EVALUATION
In this section, we describe the results of our analysis in the
homomorphic inference phase. The parameters used for the
encrypted MNIST and CIFAR-10 predictions are as shown
in Tables 13 and 14. They were derived based on the descrip-
tion given in Section IV and also considering the standard
conventions stated by [37]. Both tables satisfy λ = 128-bit
security, which is a very high security level for our inference
process.

A. UTILIZATION OF A GRAPH COMPILER FOR ENCRYPTED
INFERENCE
Over the past few years, a lot of works have improved upon
the first proposed Cryptonets [1] and several improvements
have been made. This has been in terms of minimizing the
overall execution times in both training and testing phases,
reducing memory capacity needed for implementations, and
most importantly improving upon the throughput of the net-
work in homomorphic prediction or accuracy and adopting
better optimization techniques in the encrypted domain to
ameliorate previous proposed works. As more research is
being carried out in privacy-preserving machine learning,

118284 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

FIGURE 11. Plot of results showing how Average Pooling and Scaled-Mean Pooling measures with MaxPooling on both the accuracy (a) and
runtime scales (b) under the CIFAR-10 category.

TABLE 10. Breakdown of Plaintext Results on CIFAR-10 Showing Variations in Comparison to the Conventional Activation Functions.

TABLE 11. Plaintext Results on CIFAR-10 Depicting Relationships in Pooling Methods, Ranges, and Degree of Polynomials.

TABLE 12. Results on CIFAR-10 Deducing Efficacy of Polynomial Degrees.

we can state emphatically that these systems would become
much realised pragmatically by being deployed in real appli-
cations. Thus in our work, we utilized the graph compiler pro-
posed by [35], [36] to implement our homomorphic inference
as this affords the easy and rapid prototyping of experiments
carried out. A compiler such as this, and just like others,
abstracts most tedious tasks from the user or programmer
thus work can be carried out much faster. Also, the compiler

would come shipped with much better features and attributes
which greatly improves work and considering one such as
this graph compiler, implementations can be done vividly
whiles observing standard practices in the field as presented
by recognized avenues as [37].

The Intel graph compiler for performing deep
learning (DL) tasks on (homomorphically) encrypted
data, represented as nGraph-HE, is based on the Intel

VOLUME 9, 2021 118285



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

nGraph [38], [39] deep learning graph compiler by the same
vendor. The latter allows the implementation of models using
frameworks such as Tensorflow [23], [24] thus an HE library
such as Microsoft SEAL [25], [27], [32] which acts as a
backendwithin nGraph-HEwill allow theHE task to be easily
implemented and enhance the benchmarking of models in
privacy-preserving deep learning domain. As stated in the
work of [35], graph compilers such as this one designed
for HE-based tasks discriminates high-level based imple-
mentations in DL frameworks as Tensorflow from low-level
routines in Microsoft SEAL thus executing directly to the HE
target. Due to the tight integration between the DL-based end
(in the nGraph DL compiler) and the HE-based Microsoft
SEAL, one is able to compute tasks homomorphically for
a wider range of DL frameworks without much difficulty.
nGraph-HE supports most neural network operations - they
can be easily mapped to their equivalent in Tensorflow -
whiles others such as ReLU and MaxPool are not supported.
The existence of instruction representation means we can
develop optimized code for operations irrespective of the
underlying hardware as compilation will yield a computa-
tion graph thus rather making higher-level optimizations the
focal point. Most importantly, as the drive over the years is
to improve upon the performance of HE-DL models, this
HE-based graph compiler helps to induce optimizations in
HE via computation depth reduction, parallelizing code as
much as possible and so on.

B. ENCRYPTED INFERENCE ANALYSIS
The variation in the degree of polynomials meant we had to
manually tweak the parameters before conducting the infer-
ence operation as the dissimilar feature present is the degree
of polynomial, which affects the multiplicative depth or lev-
els, whiles others such as the network architecture is same in
each dataset evaluation. Using the CPU hardware available
(Table 6), we performed predictions on 8,192 images, though
this can be scaled for increasing amounts of main memory
and CPU cores, and we measured the execution time using
128 threads with OpenMP. The CPU hardware given is able
to offer up to 2 × 64 cores of threads for execution thus
the 128 threads in total. Considering the numerosity of the
plaintext results, we resolved to pick randomly from the lot
by considering both the best and worst outcomes. This is to
test the efficacy of reproducibility of results in the encrypted
domain which necessarily does not merit repeating all obser-
vations. The factors we considered were being able to apply
the derived polynomial in homomorphic inference, achieving
close to or bettering the plaintext classification accuracy, and
being able to replicate a plaintext result by picking randomly
from the lot whiles not being biased.

In relation to the parameters used for the inference we
were able to use batching or the plaintext packing feature
of the CKKS scheme [28] to pack as many as N/2 com-
plex scalar values into one ciphertext. This thus allowed us
to classify all the images in one inference procedure given
that in theory, the CKKS encoding mapping implies that

TABLE 13. SEAL Parameters for MNIST Homomorphic Inference.

TABLE 14. SEAL Parameters for CIFAR-10 Homomorphic Inference.

CN/2
→ R for some plaintext space R where N/2 is the

number of slots in the plaintext. We did not utilize com-
plex packing [36], an optimization feature that doubles the
throughput in inference without ciphertext-ciphertext multi-
plication. The approximated polynomials require a multipli-
cation operation in some variable say x when raised to some
integer power or degree thus as complex packing does not
support this, we did not utilize it. We chose a 30-bit prime
to be the first and last element in q whiles the intermediate
primes were 24-bit. With this, we were able to use at least q
and the scale factor of 24 as shown in the Tables 13 and 14
for inference.

We also stated in Section IV-D that applying folding in
the activation polynomial function reduces the multiplicative
depth and this is as shown in Tables 16 and 18 via the factors
of the polynomials. As seen, we have a scalar coefficient
which can be evaluated in a convolution and/or dense layer
leaving the polynomial with a reduced level in its highest
degree to use in computation. Also, it is observed that some
polynomials in either a particular degree (or much generally)
have varying number of terms as compared to others and
this is characteristic of the polynomial being unique to the
activation function it was derived from using least squares
method. The difference in inference time for the same degree
of polynomial used can vary to some extent or be negligible
and if it is the former, the inference becomes more significant
for much larger network models, complexity of datasets, and
the quantity of images to predict.

C. INFERENCE ON MNIST
An important baseline we considered was using the square
and ReLU functions as references to assess the performance
of others. This is as a result of the square being the first
proposed function (and mostly used in earlier works) uti-
lized as an approximation to the ReLU whiles the ReLU
(considered as one of the best to use) can be assumed that
its approximated polynomial equivalent will achieve close
to the best performance as compared to others. For logical
coherence, we used the same network architecture shown

118286 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

TABLE 15. Results of Encrypted Inference on MNIST Dataset.

FIGURE 12. From the sample of results in inference, we illustrate
graphically how memory consumed varies with runtime of prediction for
encrypted MNIST (a) and encrypted CIFAR-10 (b).

in Table 4 but then this time it was used for inference instead
of training as we have our pre-trained weights from the
plaintext implementation. Shown in Table 15 is the results
of inference on the MNIST dataset with the accompanying
polynomials we used in Table 16.
A huge factor in privacy-preserving machine learning is

the duplicability of plaintext results in ciphertext domain and
thus, as we were able to replicate approximate results, just

sampling a few from the pool of results can demonstrate the
efficacy of our proposed solution. From Table 15, it can be
noted that the inference has a small accuracy tolerance or
margin with the amortized time being the time of execution
for predicting a single image.

Fig. 2a shows how memory consumption varies with run-
time (of prediction) for varying degrees of the approximated
polynomial. From the graph, we can note how a polynomial
of some degree is expected to consume memory and per-
form prediction within some boundary. From the degree 2,
through the degree 3 to the degree 4 region, we can observe
how the curve rises gradually showing how a change in
the polynomial degree used affects the strain that is put on
resources and the involved costs of computation. TheMNIST
task, being the less complex one of the two datasets, has
much reduced inference time and memory consumption as
compared to the more sophisticated CIFAR-10 task as seen
in Fig. 12b.

D. INFERENCE ON CIFAR-10
The rather complex dataset meant that obviously the execu-
tion time for inference will be much longer and will require
more memory in operation but like the MNIST, we also con-
sidered the baseline of using the square and ReLU functions
as a reference to assess the performance yield from employing
the other polynomials derived. In inference, we utilized the
network architecture shown in Table 5 and the parameters
were set using the values in Table 14. Shown in Table 17
is the results of inference on the CIFAR-10 dataset with the
polynomials used shown in Table 18.

In Fig. 12b, the curve which gives the variation of memory
consumptionwith runtime of inference for CIFAR-10 ismuch
steeper with the magnitudes of the parameters being very
substantial. The regions of the degree of polynomials where
results can be anticipated are clearly delimited and given the
nature of the curve, we can clearly tell how much the extent
of complexity in the task can have an impact in inference,
which herein is protracted with accompanying large amounts
of memory being consumed.

VOLUME 9, 2021 118287



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

TABLE 16. Least Square Polynomial Representation of Functions used on MNIST.

TABLE 17. Results of Encrypted Inference on CIFAR10 Dataset.

TABLE 18. Least Square Polynomial Representation of Functions used on CIFAR-10.

VII. CONCLUSION AND FUTURE WORK
In our proposed work of implementing image classifica-
tion using homomorphic encryption, we took the approach
of introducing several polynomials into convolutional neu-
ral networks whiles combining each instance with other
arguments as HE-feasible pooling methods and considered
diverse ranges to use for approximation in order to replace the
overly used Square and ReLU variants. We also showed that
by utilizing the Batch normalization technique and approxi-
mating polynomials close to 0, accuracy can be considerably
increased. We thus derived a pool of approximated polyno-
mial functions to use for homomorphic inference, with not
only being viable to train CNNs in plaintext with a favourable
output accuracy, but also capable of replicating approximate

results in encrypted domain. It becomes much easier to make
design considerations without much limitations especially in
terms of selecting the HE-feasible polynomial which impacts
the latency, throughput and the hardware resource to utilize.

In comparison to most proposed solutions, our work
focused on performing the inference task using the set of
procedures stated under Section IV as in some cases per-
formance might drop particularly concerning this area of
privacy-preserving machine learning where such instances
can be common.

Based on our findings and future research work, we will
look into applying approximation methods to other machine
learning areas, such as advanced regression and real-
world tasks. We will also employ more sophisticated CNN

118288 VOLUME 9, 2021



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

architectures and use a dataset such as CIFAR-100, which
serves as an industry standard and is also a benchmark in the
area of machine learning to design more sophisticated models
in the application of approximation theory to predictive tasks.

Looking ahead, it would deem fit to apply some robust
or state-of-the-art search techniques or algorithms in these
predictive tasks to sort of automate the way to generate a
much optimal parameter being in the pooling method and the
range which yields the best accuracy and makes the task more
efficient. If possible, polynomials derived this way should
be able to generalize more to several other machine learning
tasks implemented like how ReLU does in having a very
consistent and desirable effect across most tasks, and not
just being tailored to a particular neural architecture being
utilized. We will also look at being able to implement this
inference task on a GPU as it presents much larger number of
cores and thus giving a huge ratio in comparison to the CPU
which will therefore greatly improve speedup considerably.

REFERENCES
[1] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and

J. Wernsing, ‘‘CryptoNets: Applying neural networks to encrypted data
with high throughput and accuracy,’’ in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201–210.

[2] C. Gentry, ‘‘Computing arbitrary functions of encrypted data,’’ Commun.
ACM, vol. 53, no. 3, pp. 97–105, Mar. 2010.

[3] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, 2009.

[4] A. Krizhevsky, V. Nair, and G. Hinton. (2009). The CIFAR-10
Dataset. Accessed: Oct. 8, 2020. [Online]. Available: https://www.cs.
toronto.edu/~kriz/cifar.html

[5] P. Xie, M. Bilenko, T. Finley, R. Gilad-Bachrach, K. Lauter, and
M. Naehrig, ‘‘Crypto-nets: Neural networks over encrypted data,’’ 2014,
arXiv:1412.6181. [Online]. Available: http://arxiv.org/abs/1412.6181

[6] E. Hesamifard, H. Takabi, and M. Ghasemi, ‘‘CryptoDL: Deep neural net-
works over encrypted data,’’ 2017, arXiv:1711.05189. [Online]. Available:
http://arxiv.org/abs/1711.05189

[7] A. Al Badawi, J. Chao, J. Lin, C. F. Mun, J. J. Sim, B. H. M. Tan,
X. Nan, K. M. M. Aung, and V. R. Chandrasekhar, ‘‘The AlexNet moment
for homomorphic encryption: HCNN, theFirst homomorphic CNN on
encrypted data with GPUs,’’ 2018, arXiv:1811.00778. [Online]. Available:
http://arxiv.org/abs/1811.00778

[8] S. Wagh, D. Gupta, and N. Chandran, ‘‘SecureNN: 3-party secure com-
putation for neural network training,’’ Proc. Privacy Enhancing Technol.,
vol. 2019, no. 3, pp. 26–49, 2019.

[9] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, ‘‘{GAZELLE}: A
low latency framework for secure neural network inference,’’ in Proc. 27th
USENIX Secur. Symp. (USENIX Secur.), 2018, pp. 1651–1669.

[10] H. Chen, R. Gilad-Bachrach, K. Han, Z. Huang, A. Jalali, K. Laine, and
K. Lauter, ‘‘Logistic regression over encrypted data from fully homo-
morphic encryption,’’ BMC Med. Genomics, vol. 11, no. S4, p. 81,
Oct. 2018.

[11] Z. Zhang, ‘‘Revisiting fully homomorphic encryption schemes and their
cryptographic primitives,’’ Ph.D. dissertation, School Comput. Sci. Softw.
Eng., Univ. Wollongong, Wollongong, NSW, Australia, 2014.

[12] A. Torralba, R. Fergus, and W. T. Freeman, ‘‘80 million tiny images: A
large data set for nonparametric object and scene recognition,’’ IEEETrans.
Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958–1970, Nov. 2008.

[13] E. Y. Remez, ‘‘Sur le calcul effectif des polynomes d’approximation de
Tschebyscheff,’’ CR Acad. Sci. Paris, vol. 199, no. 2, pp. 337–340, 1934.

[14] Y. LeCun, C. Cortes, and C. J. C. Burges. (2019). The Mnist Database
of Handwritten Digits. Accessed: Oct. 8, 2020. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[16] T. Ishiyama, T. Suzuki, and H. Yamana, ‘‘Highly accurate CNN
inference using approximate activation functions over homomorphic
encryption,’’ 2020, arXiv:2009.03727. [Online]. Available:
http://arxiv.org/abs/2009.03727

[17] J. W. Bos, K. Lauter, and M. Naehrig, ‘‘Private predictive analysis
on encrypted medical data,’’ J. Biomed. Inform., vol. 50, pp. 234–243,
Aug. 2014.

[18] J. H. Cheon, J. Jeong, J. Lee, and K. Lee, ‘‘Privacy-preserving computa-
tions of predictive medical models with minimax approximation and non-
adjacent form,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur. Cham,
Switzerland: Springer, 2017, pp. 53–74.

[19] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, ‘‘(Leveled) fully homo-
morphic encryption without bootstrapping,’’ ACM Trans. Comput. Theory,
vol. 6, no. 3, pp. 1–36, Jul. 2014.

[20] J. Fan and F. Vercauteren, ‘‘Somewhat practical fully homomorphic
encryption,’’ IACR Cryptol. ePrint Arch., vol. 2012, p. 144, Mar. 2012.

[21] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ 2015, arXiv:1502.03167.
[Online]. Available: http://arxiv.org/abs/1502.03167

[22] F. Scheid, Schaum’s Outline of Numerical Analysis, 2nd ed. NewYork, NY,
USA: McGraw-Hill. 1989, p. 480.

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, and M. Kudlur, ‘‘TensorFlow: A system
for large-scale machine learning,’’ in Proc. 12th USENIX Symp. Operating
Sys. Design Implem. (OSDI), 2016, pp. 265–283.

[24] G. Brain. (2016). An End-to-End Open Source Machine
Learning Platform. Accessed: Nov. 29, 2020. [Online]. Available:
https://www.tensorflow.org/

[25] Microsoft Research. (2017). Microsoft SEAL. Accessed:
Nov. 29, 2020. [Online]. Available: https://www.microsoft.com/en-
us/research/project/microsoft-seal/

[26] S. J. Miller. (2006). The Method of Least Squares. Mathematics
Department Brown University. Accessed: Apr. 25, 2020. [Online].
Available: https://web.williams.edu/Mathematics/sjmiller/public_html/
BrownClasses/54/handouts/MethodLeastSquares.pdf

[27] H. Chen, K. Laine, and R. Player, ‘‘Simple encrypted arithmetic library-
SEAL v2. 1,’’ in Proc. Int. Conf. Financial Crypt. Data Secur. Cham,
Switzerland: Springer, 2017, pp. 3–18.

[28] J. H. Cheon, A. Kim, M. Kim, and Y. Song, ‘‘Homomorphic encryption
for arithmetic of approximate numbers,’’ in Proc. Int. Conf. Theory Appl.
Cryptol. Secur. Cham, Switzerland: Springer, 2017, pp. 409–437.

[29] C. Gentry, ‘‘A fully homomorphic encryption scheme,’’ Ph.D. dissertation,
Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, 2009.

[30] C. Gentry and D. Boneh, ‘‘Fully homomorphic encryption using ideal
lattices,’’ in Proc. Stoc, 2009, vol. 9, no. 2009, pp. 169–178.

[31] H. Chabanne, A. deWargny, J.Milgram, C.Morel, and E. Prouff, ‘‘Privacy-
preserving classification on deep neural network,’’ IACR Cryptol. ePrint
Arch., vol. 2017, p. 35, Mar. 2017.

[32] K. Laine. (2020). Microsoft SEAL. Accessed: May 8, 2020. [Online].
Available: https://github.com/microsoft/SEAL

[33] P. Ramachandran, B. Zoph, and Q. V. Le, ‘‘Searching for
activation functions,’’ 2017, arXiv:1710.05941. [Online]. Available:
http://arxiv.org/abs/1710.05941

[34] S. Elfwing, E. Uchibe, and K. Doya, ‘‘Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning,’’ in
Neural Networks, vol. 107. Amsterdam, The Netherlands: Elsevier, 2018,
pp. 3–11.

[35] F. Boemer, Y. Lao, R. Cammarota, and C. Wierzynski, ‘‘NGraph-HE: A
graph compiler for deep learning on homomorphically encrypted data,’’ in
Proc. 16th ACM Int. Conf. Comput. Frontiers, Apr. 2019, pp. 3–13.

[36] F. Boemer, A. Costache, R. Cammarota, and C. Wierzynski, ‘‘nGraph-
HE2: A high-throughput framework for neural network inference on
encrypted data,’’ in Proc. 7th ACM Workshop Encrypted Comput. Appl.
Homomorphic Cryptogr., 2019, pp. 45–56.

[37] M. Albrecht, M. Chase, H. Chen, J. Ding, S. Goldwasser, S. Gorbunov,
S. Halevi, J. Hoffstein, K. Laine, K. Lauter, S. Lokam, D. Micciancio,
D. Moody, T. Morrison, A. Sahai, and V. Vaikuntanathan, ‘‘Homomor-
phic encryption security Standard,’’ in Proc. HomomorphicEncryption,
Toronto, ON, Canada, 2018, p. 33.

[38] S. Cyphers et al., ‘‘Intel nGraph: An intermediate representation, compiler,
and executor for deep learning,’’ 2018, arXiv:1801.08058. [Online]. Avail-
able: http://arxiv.org/abs/1801.08058

VOLUME 9, 2021 118289



J. T. Agyepong et al.: Secure Image Inference Using Pairwise Activation Functions

[39] A. Kulkarni. (2020). Intel nGraphT Compiler and Runtime
for Tensorflow. Accessed: Dec. 8, 2020. [Online]. Available:
https://github.com/tensorflow/ngraph-bridge

[40] F. Chollet. (2020). Keras: Deep Learning for Python. Accessed:
Dec. 8, 2020. [Online]. Available: https://github.com/keras-team/keras

JONAS T. AGYEPONG received the B.Sc. degree
in computer science and engineering from the Uni-
versity of Mines and Technology, Tarkwa, Ghana,
in 2017. He is currently pursuing the master’s
degree with the Department of Computer Science
and Engineering, Egypt-Japan University of Sci-
ence and Technology, Alexandria, Egypt. He was
a Research and Teaching Assistant, from 2017 to
2018. Previously, he worked on optimizing renew-
able power generation systems using machine

learning to increase output and cut down costs. His current research interests
include privacy-preserving machine learning, with a focus on homomor-
phic encryption applications in computer vision for which his thesis is
based on applications of cryptography in cloud-connected smart devices and
high-performance computing on the cloud to improve the performance of
such systems incorporating security technologies in machine learning.

MOSTAFA SOLIMAN received the B.Sc. and
M.Sc. degrees in computer science and engi-
neering from the University of Assiut, Egypt,
in 1994 and 1998, respectively, and the Ph.D.
degree in computer science and engineering from
The University of Aizu, Japan, in 2004. He is a
Full Professor at Aswan University, Egypt. His
research interests include computer architecture,
parallel processing, vector/matrix processing, per-
formance evaluation, parallel algorithms, FPGA,

and SystemC implementations.

YASUTAKA WADA (Member, IEEE) received the
B.S. andM.S. degrees in electrical engineering and
the Ph.D. degree in computer science and engi-
neering from Waseda University, Tokyo, Japan.
He is currently an Associate Professor with the
Department of Information Science, Meisei Uni-
versity, Tokyo. Before joining Meisei University
in 2015, he was an Assistant Professor at Waseda
University, an Assistant Professor at The Uni-
versity of Electro-Communications, Tokyo, and a

Junior Researcher and a Research Associate at Waseda University. He was
also an Associate Professor at Egypt-Japan University of Science and Tech-
nology (E-JUST), Alexandria, Egypt, from 2010 to 2012. He has served
as the Program Committee Vice Chair of the IEEE COOL Chips Confer-
ence Series, since 2015. His research interests include parallel processing
and applications, green computing, heterogeneous computing, automatic
parallelizing compilers, and multicore/manycore processor architecture. His
research and development activities cover various systems from embed-
ded systems to high-performance computing environments to realize high-
performance, energy efficient, and easy-to-use computer systems. He is a
member of ACM, IEEE Computer Society, IEICE, and IPSJ.

KEIJI KIMURA (Member, IEEE) received the
Ph.D. degrees in electrical engineering from
Waseda University, in 2001. He was an Assis-
tant Professor, in 2004; an Associate Professor,
in 2005; and a Professor, in 2012, at Waseda
University. He has been the Director of the
Green Computing System Research Organization,
Waseda, since 2019. His research interest includes
multicore processor architecture and parallelizing
compiler technologies. He is a member of IPSJ

and ACM. He has served on the program committee of many conferences.
He was a recipient of 2014 Ministry of Education, Culture, Sports, Science
and Technology in Japan (MEXT) Award.

AHMED EL-MAHDY (Senior Member, IEEE)
received the B.Sc. andM.Sc. degrees fromAlexan-
dria University and the Ph.D. degree from the
School of Computer Science, The University of
Manchester, U.K., where he contributed to one of
the early multicore processors (JAMAICA). He is
a Full Professor at the Computer Science and
Engineering Department, Egypt-Japan University
of Science and Technology (E-JUST). He is also
on leave from the Computer and Systems Engi-

neering Department, Alexandria University. He has visited the Group of
Advanced Processor Technologies contributing to porting the IBM Jikes
dynamic compiler for JAMAICA. He has also been a Visiting Scientist at
IBM Centre for Advanced Studies, Cairo, where he was the first inventor of
many issued patents in high-performance computing and image processing.
He is currently the Founding Director of the Parallel Computing Laboratory
at E-JUST, with many funded research grants/support from IBM, Amazon,
ITIDA, STDF, Academy of Science, and Technology in embedded compil-
ers, high-performance GPU acceleration, and high-performance computa-
tion on the cloud. He is a Senior Member of the ACM. He is also a TPC
Member of ICCD and ARCS conferences.

118290 VOLUME 9, 2021


