
Performance Evaluation on NVMM Emulator
Employing Fine-Grain Delay Injection

Yu Omori
Waseda University

Tokyo, Japan
oy@kasahara.cs.waseda.ac.jp

Keiji Kimura
Waseda University

Tokyo, Japan
keiji@waseda.jp

Abstract—The emerging technology of byte-addressable non-
volatile memory chips is expected to enable larger main memory
and lower power consumption than the traditional DRAM.
It also realizes durable data structure without ordinary file
systems. However, while enumerating the advantages of non-
volatile main memory (NVMM), its write-time expensive latency
and higher energy consumption in comparision with a DRAM
must be considered. These special characteristics of NVMM
require new compiler techniques and OS support as well as
new memory architectures. Several NVMM emulators built on
real machines have been proposed to facilitate those software
and hardware researches. Their designs were originally based
on a simple coarse-grain delay model that injected additional
clock cycles in the read and write requests sent to the memory
controller. However, they could not utilize bank-level parallelism
and row-buffer access locality, relied on by today’s memory
modules, to exploit their performance. Therefore, a fine-grain
delay model was recently proposed where the delay is injected
for the primitive memory operations issued by the memory
controller. In this paper, we implement both the coarse-grain
and the fine-grain delay models on an SoC-FPGA board along
with the use of Linux kernel modifications and several runtime
functions. Then, the program behavior differences between two
models are evaluated with SPEC CPU programs. The fine-grain
model reveals the program execution time is influenced by the
frequency of NVMM memory requests rather than the cache
hit ratio. Bank-level parallelism and row-buffer access locality
also affect the memory access delay, and the fine-grain model
shows lower execution time for four of fourteen programs than
the coarse-grain even when the former has longer total write
latency.

I. INTRODUCTION

Non-volatile main memory (NVMM) built with emerging
byte-addressable non-volatile memory devices is expected to
introduce a new trend in computer systems. Larger memory
capacity and lower power consumption in comparison with the
traditional DRAM-based main memory are achieved because
NVMM does not require the refresh operations. It can also
realize durable data structures by just storing the data to the
NVMM instead of writing it to the file system through costly
OS system calls.

Although NVMM brings these attractive features to the
system, it also introduces several drawbacks over traditional
DRAM, such as relatively longer latency and narrower band-
width than DRAM. Furthermore, its write operations usually
cause a longer latency and larger energy consumption in the
memory system than its read operations. Data durability will

also come at the cost of expensive cache eviction and memory
barrier operations [1].

A new computer system employing NVMM must take these
characteristics into account in terms of hardware, and espe-
cially software, because of the need for new OS and runtime
system supports and new compiler optimization techniques.

While there is a strong demand for the exploration of new
NVMM-related technologies, there are a few commercially
available NVMM modules, resulting in a wide use of simu-
lators and emulators by the previous studies. Software non-
volatile memory simulators are already available, which can
provide detailed models of memory modules and memory
controllers at the micro architecture level [2], [3], [4], [5],
[6]. Their detailed and cycle-accurate models are useful when
a new micro architecture is investigated; however, they take
too much time to investigate OS and compiler technologies.

In contrast, NVMM emulators built upon real machines
enables rapid evaluations for the software exploration. The
basic idea of their design is injecting an appropriate delay for
read and write memory operations. They can basically execute
at the speed of the base hardware, thus they can offer much
faster experiment cycles than the software simulators.

TUNA [7], [8] is one such NVMM emulator. It is imple-
mented on a Zynq Board with an ARM multicore-based SoC
and FPGA chip. Its first version provided a coarse-grain delay
model, where the clock cycles representing the delays for read
and write operations were injected in front of the memory
controller [7]. This model can represent the asymmetric delays
between read and write operations. However, this model is
too coarse to represent the actual latency in the memory cells,
thus, it cannot evaluate the bank parallelism and the row-buffer
access locality, which are two important factors for extracting
the best performance from the memory modules. TUNA
v2.1 introduced a fine-grain delay model, where the delay is
injected for the primitive memory operations issued by the
memory controller, hence removing the previous shortcomings
[8]. Though bank parallelism and row-buffer access locality
can be potentially evaluated by the new model, their impact on
the NVMM-employed system during actual program execution
is still unclear. Furthermore, cache eviction and memory
barrier operations, which are required to ensure durable data
structures on the NVMM, have not been investigated well on
the emulators.



In this paper, we build an NVMM emulator employing
both the fine-grain and the coarse-grain delay models. We
also write memory-allocation functions in C language for
the NVMM region, which are compatible with the ordinary
C standard library functions, such as malloc, calloc, realloc,
and free. Furthermore, we develop a kernel module to use a
cache flush instruction, which is a privileged instruction in
ARMv7-A ISA. After completing the build, first, we run a
micro benchmark on the emulator to investigate the effect of
the bank parallelism. Then, we execute programs from the
SPEC CPU 2017 benchmark to evaluate the impact of the
bank parallelism, row-buffer access locality, and frequency
of memory requests. The overhead for the cache operations
emulating the persistent operations are also evaluated by using
SPEC programs.

The contributions of this paper can be summarized as
follows:

• We develop an NVMM evaluation environment on an
ARM-SoC and FPGA platform employing both the fine-
grain and coarse-grain delay models. Additionally, we de-
velop the memory allocation and cache eviction functions
for that environment.

• We evaluate the impact of the bank parallelism, row-
buffer access locality, frequency of memory requests, and
cache eviction overhead on the emulator with SPEC CPU
2017 benchmark programs.

The rest of paper is organized as follows: Section II reviews
related works on NVMM evaluation. Section III explains the
implementation of the NVMM emulator environment. Section
IV presents the experimental evaluation results. Finally, Sec-
tion V concludes this paper.

II. RELATED WORK

There are mainly two types of NVMM evaluation environ-
ments: simulators and emulators.

Gem5, NVMain, PCMSim, and HMMSim are examples of
NVMM simulators [2], [3], [4], [5], [6]. They are implemented
as software simulators that represent the micro architecture
of target memory modules. While they enable cycle-accurate
simulation with the flexible parameters and configuration
settings, they require too much time to evaluate system-wide
performance for OS and compiler explorations.

TUNA and Quartz are examples of NVMM emulators [7],
[8], [9], [10]. TUNA is built on an ARM-based SoC with
FPGA chip. It originally employed a coarse-grain delay model
such that the delay clock cycles were injected for the read
and write operations given to the memory controller. Then,
it introduced a fine-grain delay model in v2.1 [8]. It now
injects a delay for the primitive memory operations issued by
the memory controller and thus, offers a more realistic delay
model. However, the impact of bank parallelism and row-
buffer access locality that can be observed in a fine-grain delay
model is still unclear. In this paper, we evaluate the programs
in terms of these two points as well as the frequency of the
memory requests that can lead to further software optimization
techniques for OSs and compilers.

Fig. 1. Emulator Overview

TABLE I
SPECIFICATION OF BASELINE PLATFORM FOR EMULATOR

FPGA Xilinx Zynq-7000 SoC ZC706
Device Zynq-7000 XC7Z045-2FFG900C SoC

CPU Core Cortex-A9 Dual Core, 667 MHz
L1 Cache I=32 KB/core, D=32 KB/core
L2 Cache 256 KB/processor

PS DRAM 1 GB, DDR3-1066, 16b×2 components
PL DRAM 1 GB, DDR3-1600, 8b×8, SO-DIMM

PL Frequency 200 MHz
OS GNU/Linux 4.14.0-xilinx-00081-g88cc987 [11]

Ubuntu 16.04 LTS

III. IMPLEMENTATION

A. Overview

The NVMM emulator in this paper is built on a Xilinx
Zynq-7000 SoC ZC706 board with FPGA (Table I). A ZC706
board has two sections: PS and PL – the PS contains two
CPU cores and peripheral circuits and the PL has the FPGA.
The ZC706 has two DRAM modules: one is connected to the
PS, the other is connected to the PL. The DRAM connected
to the PL is taken as NVMM, and the memory interface
generator (MIG) on the PL is used as the memory controller
for the NVMM, as depicted in Figure 1. The following
steps have been implemented to provide the NVMM emulator
environment:

1) Implementation of delay injection logic
2) Linux kernel modification for making the NVMM

cacheable
3) Implementation of a kernel module to enable cache flush

operations from user programs
4) Implementation of functions in C language for allocating

and deallocating the NVMM region

B. NVMM Behavior Model

The following behavior model is employed for the emulator
in this paper:

• NVMM will be operated according to the existing main
memory interface depicted in Figure 2 consisting of
primitive requests, such as ACT, READ, WRITE, and
PRE.



Fig. 2. NVMM behavior model

1) Open pages and read memory cells into row buffers
(ACT)

2) Read/write to row buffer (RW)
3) Write back row buffers to memory cells and close

pages (PRE)
• Memory cells are accessed only by ACT and PRE. Write

command only writes data into row buffers and row
buffers are written back to memory cells by PRE.

• Memory controllers are extended to manage the dirt of
row buffers. Row buffers do not need to be written back
if they are not dirty. In the extended model, only dirty
row buffers are written back by PRE.

C. Coarse-Grain Delay Injection

The coarse-grain delay model is implemented by inserting
a delay injection logic between the last level cache (LLC) and
the MIG for the memory requests from the LLC (“0. READ-
/WRITE (from LLC)” in Figure 2). It injects the specified
read/write delay clock cycles for all memory requests from
the LLC.

D. Fine-grain Delay Injection

The fine-grain delay injection model is implemented by
modifying the RTL code of the MIG to inject the additional
latency for ACT and PRE (“1. ACTIVATE (tRCD)” and “3.
PRECHARGE (tRP)” in Figure 2).

The MIG waits for tRCD ns after issuing ACT, and waits
for tRP ns after issuing PRE, respectively. We modify the
MIG to inject additional latency into tRCD and tRP . Addi-
tional latencies can be set by the user as required. Successive
memory requests are not delayed if they are issued to the same
bank and row by introducing this fine-grain injection.

E. Kernel Modification

The mmap system call is employed to allocate NVMM
region to the user memory space. The address space of PL-
DRAM used as the NVMM region is allocated as “non-
cacheable” by the Linux kernel provided by Xilinx [11].
Consequently, the NVMM is insufficient to be used by user
applications instead of DRAM.

Therefore, we modify the kernel to allocate NVMM as a
cacheable region. The region cacheability can be specified

through the mmap system call. When the target address within
the NVMM region is specified, if “O SYNC” is not specified
along with it, the region will be allocated as “cacheable”,
otherwise “non-cacheable”.

F. Cache Flush Operatoin

NVMM can guarantee data persistency only when the data
reach NVMM. If the CPU cache is enabled, the data will
firstly be written into only the cache and not the main memory.
Therefore, the data need to be explicitly evicted from the CPU
cache to the NVMM to ensure the data persistency. The ARM
Cortex-A9 core (ARMv7-A ISA) on ZC706 has cache flush
instructions for this purpose. However, they are privileged,
thus rendering them unusable directly by the user programs.

We develop a kernel module that enables the user appli-
cations to issue CPU cache flush operations. The user can
also specify the target address range to reduce the system call
overhead. The flush instructions running in a loop evicts the
data in the cache lines within the specified address region and
they are performed in parallel by the hardware as much as
possible. The memory barrier instructions are executed before
and after the cache flush loop to ensure the data consistency.

G. NVMM Management Library

We develop a library for the memory allocation of NVMM
region whose interface is compatible with the standard C
library functions, such as malloc, calloc, realloc, and free.
The functions in the library are implemented by wrapping
mmap/mummap system calls described in Section III-E. The
implemented functions are as follows.

void *NVMM_Malloc(size_t size)
void *NVMM_Calloc(size_t nmemb, size_t size)
void *NVMM_Realloc(void *ptr, size_t size)
void NVMM_Free(void *ptr)

IV. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of the
NVMM emulator environment. Two parameters, ARL and
AWL, used throughout this section are defined as follows:

• ARL: Additional read latency in nanoseconds
coarse-grain: additional read latency on memory bus
fine-grain: additional tRCD

• AWL: Additional write latency in nanoseconds
coarse-grain: additional write latency on memory bus
fine-grain: additional tRP

A. Bank Parallelism

First, we evaluate the impact of the bank parallelism on
NVMM. Today’s memory modules rely on this parallelism
to extract higher bandwidth because the successive memory
requests can be processed in parallel if they are issued to
different banks, thus hiding their access latency.

The following micro benchmark is used to measure the av-
erage NVMM access latency through the changing NBANK
values, which represents the number of banks to be accessed
in parallel.



TABLE II
AVERAGE READ LATENCY

NBANK Coarse-Grain [ns] Fine-Grain [ns]
1 1071.0 634.0
2 1068.9 405.0
3 1061.6 399.5
4 1061.6 423.0

TABLE III
AVERAGE WRITE LATENCY

NBANK Coarse-Grain [ns] Fine-Grain [ns]
1 1072.6 3468.2
2 1067.3 1827.3
3 1060.9 1337.6
4 1061.8 1357.7

#define NROW (16384)
#define NBANK (8)
#define SZROW (8*KiB)
#define SZBANK (128*MiB)

base := return value of mmap()
start = clock();
for (offr = 0; offr < NROW*SZROW; offr += SZROW) {

for (off = offr; off < offr + NBANK*SZBANK;
off += SZBANK) {

#if defined(READ)
val = *((volatile unsigned long *)(base+off));

#elif defined(WRITE)
*((volatile unsigned long *)(base+off)) = 0L;

#endif
}

}
end = clock();

Table II and Table III show the measurement results of
the average read/write latencies, respectively. Here, ARL and
AWL are set to 1000.

These tables clearly reveal that the bank parallelism has a
significant impact in the cases of the fine-grain model, while
it has little impact for the cases of the coarse-grain model. For
instance, comparing NBANK = 4 with NBANK = 1 in
the fine-grain model, the average read latency is 33% lower
(634.0 ns → 423.0 ns), and the average write latency is 61%
lower (3468.2 ns → 1357.7 ns), respectively. On the other
hand, the coarse-grain model shows almost the same latency
(around 1066 ns) for both read and write operations even after
changing the values of NBANK.

B. Normalized Execution Time of SPEC 2017 Benchmark
Programs

Next, the fine-grain delay model is compared with the
coarse-grain model by using SPEC CPU 2017 benchmark
[12]. Fourteen programs that are written in C/C++ and can
be successfully compiled and executed on the emulator are
chosen from among 24 SPEC CPU rate benchmark programs.
We replaced all malloc, calloc, realloc, and free functions
with NVMM Malloc, NVMM Calloc, NVMM Realloc, and
NVMM Free described in Section III-G to allocate heap

objects on the NVMM. Figure 3 shows the evaluation result as
the normalized execution time for each program. The normal-
ized execution time is calculated by dividing the execution
time when both ARL and AWL are set to 1000 by that
when both ARL and AWL are set to 0. Each program is
executed both on the coarse-grain and the fine-grain models.
These bars are sorted by normalized execution time of the
fine-grain model in ascending order from left to right. Note
that the total write latency of the fine-grain model tends to be
larger than that of the coarse-grain because the former model
takes 1,000 ns of tRCD for an ACT and another 1,000 ns
of tRP for a write-back at a PRE, while the latter takes only
1,000 ns.

This graph shows the additional latency due to NVMM,
and the delay models affect the latency differently depending
on each program. For instance, the normalized execution time
of 544.nab r and 511.porvray r are both almost 1.0 for both
models. However, for 519.lbm r, the normalized execution
time of the coarse-grain model is 8.3 while that of the fine-
grain model is 13.4; thus, the fine-grain model has a 1.61
times longer execution time than the coarse-grain one. In
addition, for 531.deepsjeng r, 520.pmnetpp r, 505.mcf r, and
510.parest r, the coarse-grain model shows higher execution
time than the fine-grain model, while the fine-grain model
shows higher values for other programs.

For detailed investigation, memory access characteristics,
such as the number of read/write requests to NVMM, the num-
ber of ACT and PRE, and bank parallelism, are also measured.
Memory requests between LLC and MIG are counted. Bank
parallelism (BANK PARA) is defined as follows:

1) If successive requests use different rows, add 1
2) Divide result of 1) by the total number of requests

Activate per requests (ACT/REQ) is defined by dividing the
number of ACT by the total number of requests.

Table IV shows BANK PARA and ACT/REQ for each
program. The programs are sorted similar to that shown in
Figure 3. This table shows that 531.deepsjeng r has low
ACT/REQ (0.633), showing high row-buffer access locality.
It also shows that 520.omnetpp r and 505.mcf r have high
BANK PARA (0.270, 0.280), showing high bank paral-
lelism. The values show why these programs shows the fine-
grain model attains a lower execution time in comparison
with the coarse-grain model, and also prove that the fine-grain
model can capture the effect of row-buffer access locality and
the bank parallelism.

Although 510.parest r is also an exception, its bank paral-
lelism and row-buffer locality values are low. In the coarse-
grain injection, read and write requests can be processed in
parallel, and any one of read or write requests having a larger
total number of requests can cause more impact on the total
execution time than the ones with lesser number of requests.
510.parest r has high read/write ratio (25.0), which is defined
by dividing the number of read requests by write requests, to
NVMM. The significantly high read-write ratio for the coarse
grain model spoils the delay processing parallelism and results
in a longer execution time than expected.



Fig. 3. Normalized Execution Time of SPEC CPU 2017 Programs

TABLE IV
BANK PARA AND ACT/REQ FOR EACH PROGRAM

Benchmark BANK PARA ACT/REQ

544.nab r 0.000 0.989
511.povray r 0.000 0.844

531.deepsjeng r 0.170 0.633
525.x264 r 0.070 0.964
508.namd r 0.080 0.945

520.omnetpp r 0.270 0.882
541.leela r 0.000 0.913
557.xz r 0.050 0.921

523.xalancbmk r 0.000 0.970
538.imagick r 0.000 0.987

505.mcf r 0.280 0.809
510.parest r 0.001 0.936
519.lbm r 0.220 0.934

There still exists an important question: Which of the
characteristics of an application mainly affect on the ex-
ecution time? BANK PARA and ACT/REQ shown in
Table IV are important factors. However, 505.mcf r has high
BANK PARA (0.280) and low ACT/REQ (0.809), while
the normalized execution time is longer than 538.imagick r.
To investigate this question, the cache hit ratio for LLC and the
frequency of memory requests to NVMM are also measured.
The frequency of memory requests is the number of memory
requests per second. For this measurement, both ARL and
AWL are set to 0.

Table V shows the measurement result for each program.
As the normalized execution time of the fine-grain model gets
longer from top to bottom, it is expected that the cache hit
ratio will decrease and the memory requests frequency will
increase. However, there are several exceptions, as shown by
the underlined values in the table. One reason is attributed
to the data location of each program, because the cache hit
ratio takes into account all memory requests not only to the
heap area that is located on the NVMM but also to the whole
memory area. Thus, the frequency of memory requests to the

TABLE V
CACHE HIT RATIO AND FREQUENCY OF MEMORY REQUESTS TO NVMM

FOR EACH PROGRAM

Benchmark Cache Hit Ratio [%] Memory Requests [/s]
544.nab r 99.998 2,615

511.povray r 99.983 85,219
531.deepsjeng r 99.784 623,954

525.x264 r 99.926 493,471
508.namd r 99.858 669,040

520.omnetpp r 97.968 1,561,328
541.leela r 99.785 852,818
557.xz r 99.596 1,824,788

523.xalancbmk r 99.516 1,295,606
538.imagick r 99.356 1,540,642

505.mcf r 93.501 4,170,876
510.parest r 95.384 5,967,728
519.lbm r 88.551 11,812,742

NVMM has more impact than the cache hit ratio for this
evaluation.

Regarding the relationship between 505.mcf r and
538.imagick r, the former has twice the number of frequency
accesses to NVMM as the latter. This implies that the
impact of the frequency of memory requests exceeds that of
BANK PARA and ACT/REQ for latency reduction. The
same situation is found in 519.lbm r and 510.parest r.

As described previously, the fine-grain model has a higher
execution time than the coarse-grain model for most pro-
grams (except 531.deepsjeng r, 520.omnetpp r, 505.mcf r,
and 510.parest r). This is, of course, caused by the difference
of the total write latency, but ACT/REQ is another important
factor. According to Table IV, the average ACT/REQ is
about 0.90. This implies that most requests are processed with
ACT and PRE together, resulting in the additional latency
equaling ARL+AWL(= 2, 000ns) in the fine-grain model.

C. Cache Flush Overhead

As described in Section III-F, the data in the cache must
be evicted to NVMM to make it durable. We insert cache



TABLE VI
CACHE FLUSH OVERHEAD AND FLUSHED LINES

Overhead [s]
Benchmark zero coarse fine Total Flushed Lines
508.namd r 0.31 0.33 0.27 922,288
541.leela r 0.30 0.35 0.28 248,525
557.xz r 0.03 0.04 0.02 166,898

519.lbm r 5.49 5.55 5.46 1,859,045

flush instructions into each program in the SPEC CPU to
make their main data structure durable. Four programs having
the following characteristics are chosen: 508.namd r has high
data parallelism. 541.leela r allocates a lot of small regions
(20 Byte × 200,000). 557.xz r allocates a large region and
is an in-memory application. 519.lbm r requires quite a high
bandwidth. Table VI presents the evaluation result of the
overhead caused by the cache flush. In this table, an overhead
of “zero” denotes the additional execution time caused by the
cache flush operations when both ARL and AWL are set
to 0. Similarly, an overhead of “coarse” and “fine” are the
additional execution time when both ARL and AWL are set to
1,000 with coarse-grain and fine-grain injection models. “Total
Flushed Lines” is the number of total cache lines flushed by
the inserted flush instructions.

This table shows that “fine” is less than “coarse” and
“coarse” is more than “zero”. The former observation is due
to high data locality. Memory requests caused by flushing the
region have high row buffer access locality and additional
latency is reduced. The latter observation shows that overhead
is affected by additional latency.

Regarding the amount of the overhead for each program,
Table VI indicates that it is mainly affected by the number of
total flushed lines. However, 508.namd r flushes about four
times more lines than 541.leela r and shows almost the same
overhead, which is due to the granularity of flush operations.
For 508.name r, the large area is specified for each cache flush
operation. Therefore, when the data is flushed, most part of it
has been already evicted from the cache by line replacement,
and resulting the small number of NVMM access. On the
other hand, the small area is specified at a cache flush time
for 541.leela r, thus, when 541.leela r flushes the data, most
part of it is still in the cache and evicted by this flush
operation. These cases indicate that the overhead caused by the
explicit data eviction is affected by the cache flush granularity.
However, it must be noticed that the data durability cannot
be ensured until the end of a cache flush operation and the
following memory barrier operation.

V. CONCLUSION

In this paper, we built an NVMM emulator environment
on a Xilinx Zynq board having the ARM Cortex A9 cores
with FPGA. This emulator implemented two types of delay
injection models: coarse-grain and fine-grain. The fine-grain
model can better capture the effects of the bank parallelism and
the row-buffer access locality because it injects delay into the

primitive memory requests issued by the memory controller.
We also provided the cache flush software interface required
for the persistent operations, as well as the standard C library
compatible NVMM allocation functions for this environment.

The evaluation investigated the performance difference be-
tween two models by using a micro benchmark program and
SPEC CPU 2017 benchmark. It also assessed the impact on
the execution time due to bank parallelism, row-buffer access
locality, and frequency of the NVMM requests. The evaluation
results with SPEC benchmark demonstrate that the frequency
of the NVMM requests has a higher impact on the execution
time than the cache hit ratio for the total execution time. In
addition, high bank parallelism and high row-buffer access
locality can reduce the NVMM access latency. These three
parameters should be considered when software optimization
techniques for OSs and the compilers are explored.

VI. ACKNOWLEDGEMENTS

This work was partly executed under the cooperation of or-
ganization between Toshiba Memory Corporation and Waseda
University.

REFERENCES

[1] S. Pelley, P. M. Chen, and T. F. Wenisch, “Memory persistency,”
in Proceeding of the 41st Annual International Symposium
on Computer Architecuture, ser. ISCA ’14. Piscataway, NJ,
USA: IEEE Press, 2014, pp. 265–276. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2665671.2665712

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, Aug. 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[3] M. Poremba and Y. Xie, “Nvmain: An architectural-level main memory
simulator for emerging non-volatile memories,” in 2012 IEEE Computer
Society Annual Symposium on VLSI, Aug. 2012, pp. 392–397.

[4] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: A user-friendly
memory simulator to model (non-)volatile memory systems,” IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 140–143, Jul. 2015.

[5] J. Wang and B. Wang, “Pcmsim: A hybrid memory system simulator for
the cloud storage,” in 2017 Fifth International Conference on Advanced
Cloud and Big Data (CBD), Aug. 2017, pp. 81–86.

[6] S. Bock, B. R. Childers, R. Melhem, and D. Mosse, “Hmmsim: a
simulator for hardware-software co-design of hybrid main memory,” in
2015 IEEE Non-Volatile Memory System and Applications Symposium
(NVMSA), Aug. 2015, pp. 1–6.

[7] T. Lee, D. Kim, H. Park, S. Yoo, and S. Lee, “Fpga-based prototyp-
ing systems for emerging memory technologies,” in 2014 25nd IEEE
International Symposium on Rapid System Prototyping, Oct. 2014, pp.
115–120.

[8] T. Lee and S. Yoo, “An fpga-based platform for non volatile memory
emulation,” in 2017 IEEE 6th Non-Volatile Memory Systems and Appli-
cations Symposium (NVMSA), Aug. 2017, pp. 1–4.

[9] H. Volos, G. Magalhaes, L. Cherkasova, and J. Li, “Quartz: A
lightweight performance emulator for persistent memory software,”
in Proceedings of the 16th Annual Middleware Conference, ser.
Middleware ’15. New York, NY, USA: ACM, 2015, pp. 37–49.
[Online]. Available: http://doi.acm.org/10.1145/2814576.2814806

[10] A. Koshiba, T. Hirofuchi, S. Akiyama, R. Takano, and M. Namiki,
“Towards write-back aware software emulator for non-volatile memory,”
in 2017 IEEE 6th Non-Volatile Memory Systems and Applications
Symposium (NVMSA), Aug. 2017, pp. 1–6.

[11] Xilinx. (2019) Xilinx/linux-xlnx: The official linux kernel from xilinx.
[Online]. Available: https://github.com/Xilinx/linux-xlnx

[12] spec.org. (2019) Spec cpu(r) 2017. Standard Performance Evaluation
Corporation. [Online]. Available: https://www.spec.org/cpu2017/


