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SUMMARY Utilization of local memory from real-time embedded sys-
tems to high performance systems with multi-core processors has become
an important factor for satisfying hard deadline constraints. However, chal-
lenges lie in the area of efficiently managing the memory hierarchy, such
as decomposing large data into small blocks to fit onto local memory and
transferring blocks for reuse and replacement. To address this issue, this pa-
per presents a compiler optimization method that automatically manage lo-
cal memory of multi-core processors. The method selects and maps multi-
dimensional data onto software specified memory blocks called Adjustable
Blocks. These blocks are hierarchically divisible with varying sizes defined
by the features of the input application. Moreover, the method introduces
mapping structures called Template Arrays to maintain the indices of the
decomposed multi-dimensional data. The proposed work is implemented
on the OSCAR automatic parallelizing compiler and evaluations were per-
formed on the Renesas RP2 8-core processor. Experimental results from
NAS Parallel Benchmark, SPEC benchmark, and multimedia applications
show the effectiveness of the method, obtaining maximum speed-ups of
20.44 with 8 cores utilizing local memory from single core sequential ver-
sions that use off-chip memory.
key words: parallelization compiler, local memory management, multicore
processor, global address space, data decomposition

1. Introduction

Cache hierarchy has been widely utilized in embedded sys-
tems as a solution to mitigate the performance gap between
computation time and off-chip memory access time. In
systems with conventional cache memories, performance is
achieved by mapping and reusing data on caches with reuse
policies that did not necessarily match the characteristics of
the input program. Although caches are automatically con-
trolled by the hardware, its transparency due to cache hits
and misses becomes difficult to model data access timings
and predict program execution behaviors. As an alterna-
tive memory structure to hardware caches, modern multi-
core and embedded architectures often contain a software
controllable on-chip Local Memory (LM), or scratch-pad
memory (SPM), to control the data flow between off-chip
global memory and on-chip memory. These memory struc-
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tures allow programmers to have explicit control of the con-
tents of LM and the data flow of the program, leading to
precise predictions of program execution times.

Precise predictions of data access times are especially
critical for real-time systems with hard deadline constraints.
Unfortunately, since the software has full control of data,
the programmer has to decide and manage what data stays
in LM during the execution of the program. This is typically
done by tagging the most recently or frequently used data
inside loops in an attempt to exploit data locality. However,
decisions must also consider data locality of the input pro-
gram that exist between loop bodies and inside loops with
multiple nest levels. Another challenge for managing LM is
the mapping of data onto LM space. Since the available LM
space is typically limited for embedded architectures, data
mappings must be done in a way that maximizes LM us-
age without creating internal fragmentations or introducing
unnecessary paddings.

To effectively manage LMs, the implementation and
modification to the program code also becomes a burden to
the programmer. A practical way to tackle these problems
is to develop a LM management method to offload the code
modification task from programmers. Automating the man-
agement prevents introducing errors to the code as well as
opens opportunities to apply the LM management methods
to various types of programs.

Previous studies on LM and SPM management [1]–[5]
utilize data placement algorithms and Integer Linear Pro-
gramming (ILP) methods to map frequently used data onto
fast on-chip memory. However, these methods do not con-
sider locality that exist across coarse grain program regions
for multicore processor systems as well as efficient data
mapping techniques for on-chip memory that maximizes
LM utilization rate.

To address these challenges, this paper proposes an in-
tegrated compiler and LM mapping method to select and
map data onto LM to reduce execution time of the program.
The proposed method utilizes OSCAR, a source-to-source
multi-grain and multi-platform automatic parallelizing com-
piler, to integrate the method and generate LM management
code for multicore architectures.

The main contributions of this paper are as follows:

1. Data Selection: A compiler scheme to choose and de-
compose data from the input program for LM man-
agement. Data can be array elements from multi-
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level nested loops and loops that stretch across multiple
loops.

2. Data Mapping: A LM mapping scheme to allocate
data onto specific areas of limited LM space and maxi-
mize LM utilization rate using flexible block sizes with
integer-divisible sizes. The scheme also introduces
template structures to retain the original indices of the
mapped array for improved program code readability.

3. Integration of the data selection and LM mapping
schemes to an automatic parallelizing compiler and a
comprehensive analysis of the method.

The rest of the paper is organized as follows. Section 2
overviews related work. Section 3 introduces the target ar-
chitecture and the compiler model. Section 4 introduces the
proposed method. Sections 5 and 6 presents the data selec-
tion and mapping schemes. Section 7 shows the evaluation
results of the proposed method. Finally, Sect. 8 concludes
the paper.

2. Related Work

There are several prior studies that have investigated opti-
mization strategies for optimizing LM and SPM manage-
ment.

For single core environments, Li et al. [6] proposed a
SPM partitioning method that splits arrays and inserts data
transfer instructions between on-chip and off-chip memory.
Their method adopts graph coloring techniques to map ar-
rays to the partitioned SPMs. The method proposed in this
paper is similar in the sense that the target on-chip memory
is partitioned to map arrays. However, the proposed method
in this paper is also applicable for multicore processor en-
vironments. Panda et al. [7] proposed an off-line variable
partitioning method for SPM and off-chip memory to map
constants and variables onto SPM and larger arrays onto
off-chip memory. Avissar et al. [8] proposed an automated
compiler optimization technique that performs data partition
and allocation into multiple memory units. Similarly, Hiser
and Davidson [9] proposed an algorithm to partition and as-
sign variables into arbitrary memory hierarchies. Steinke
et al. [10] proposed a compiler strategy for embedded sys-
tems that statically map most frequently used data onto on-
chip LM. Sjodin and Platen [1] proposed an ILP formulation
method to allocate variables to on-chip memory and point-
ers to cheap pointer types. Although ILP approaches give an
exact method, they can be expensive when applied to large
program arrays whose live ranges span across multiple func-
tions.

For multicore environments, Che et al. [11] proposed
an integrated model using ILP and heuristics for allocat-
ing data onto SPM. Their proposed method incorporates
code overlay costs and inter-core communication overhead
costs for multicore processor environments. Although their
model exhibits performance on stream applications, it does
not present explicit data mapping and management methods
for LM. Kandemir et al. [3] proposed a compiler optimiza-

tion technique that reduces power consumption and memory
access latency. Their method utilizes data tiling for array
partitioning to optimize inter-core communications and data
sharing opportunities. Their method, however, mainly con-
siders data locality within loops and does not consider lo-
cality among coarser tasks. Similarly, Ozturk [2] proposed a
compiler technique for multi-processor systems using ILP
methods to map objects to different memory hierarchies.
Guo et al. [12] proposed regional data placement algorithms
to reduce memory access costs, where the algorithms re-
duces the total memory access cost of parallelizable regions
which have single or multiple copies of data in SPMs of each
core. However, this method does not incorporate explicit
data management methods for data onto LM. Meftali et
al. [13] proposed an ILP model for memory allocation to all
types of memory on a multiprocessor environment. Issenin
et al. proposed a data reuse method for loops structures on
multicore processor systems [4]. Their method exploits data
locality within loops, but does not consider data locality
that exists on a coarse grain of the program. Angiolini et
al. [14] proposed a SPM partitioning algorithm that maps
memory locations to partitioned SPM locations for multi-
core processors using a Dynamic Programming approach.
According to their analysis, the presented algorithm has a
time and space complexity that is polynomial in the input
data size. Verma et al. [15] proposed a data allocation algo-
rithm for SPM that inserts data copy instructions at runtime
using variable liveness analysis and ILP methods. Similarly,
Suhendra et al. [5] proposed an ILP-based SPM optimiza-
tion method that perform task mapping, scheduling, SPM
partitioning, and data mapping.

To summarize, previous optimization techniques do not
focus on extracting locality across coarse grain program
regions. Parallelization granularities in multicore proces-
sors include loop-level parallelization such as do-loops and
coarse grain parallelism among multiple loops. To obtain
performance in scientific and embedded systems, it is criti-
cal to exploit localities that cover all types of parallelization
granularity levels.

This paper develops a LM management method that al-
locates decomposed data extracted from coarse-grain tasks
onto LM. The proposed method extracts locality from single
and multi-dimensional arrays within nested loops, and maps
them onto memory blocks with block sizes decided from
the features of the input program. This paper builds upon
the work by Yoshida et al. [16] and Yamamoto et al. [17] by
considering the available LM size and implementing addi-
tional memory block size choices for applications that re-
quire more LM space to create an improved and efficient
mapping of data onto LM. Moreover, this paper provides
additional analysis for evaluation from the previous works.

3. Target Architecture and Compiler Model

In this paper, the target architecture has processor-coupled
LMs that are visible and controllable by software. The pro-
posed method assumes architectures that have several clus-
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ters of multicore processors and a shared centralized off-
chip memory. Each multicore processor consists of soft-
ware controllable LM units reserved for private data and a
distributed shared memory for data shared between cores.
The proposed method utilizes these software controllable
LM units to exploit data locality present in core-private data.
The OSCAR multicore processor is an example architecture
that implements this processor and memory structure [18].

To generalize LM management, the proposed method
utilizes the OSCAR multi-grain and multi-platform auto-
matic parallelizing compiler’s coarse-grain parallelization
technique. The OSCAR compiler takes sequential C and
Fortran programs as input, and converts them into paral-
lelized programs that can be compiled into executables for
multicore processors.

The OSCAR Compiler detects parallelism that exists
in multiple parallelism granularity levels. The levels of par-
allelism include loop parallelism, coarse grain parallelism,
and fine grain parallelism. To fully extract the parallelism
of the input program, the compiler detects data locality that
exists in all levels of parallelism. To integrate the pro-
posed method with the compiler, the method utilizes struc-
tures generated by the OSCAR compiler. The OSCAR com-
piler divides the input program into coarse-grain tasks called
Macro Tasks (MT), which will be the base structure for the
proposed method. The details of the parallelizing techniques
and the utilized structures of the OSCAR compiler are be-
yond the scope of this paper.

4. Data Selection and Mapping Scheme for LM

The main idea of the proposed method is to decompose data
appropriately to safely fit them onto LM space to achieve
locality. Specifically, the method can be divided into the
following two schemes.

1. Data Selection Scheme: The first scheme selects and
decomposes data used inside each coarse-grain tasks.
The scheme selects data that exploits locality across
multiple coarse-grain tasks. Moreover, the scheme de-
composes these data to map them onto LM space for
multicore processors.

2. Data Mapping Scheme: The second scheme allocates
the decomposed data onto LM utilizing flexible block
sizes and template mapping structures. The memory
blocks are hierarchically divided and determined by ap-
plication features to maximize the utilization rates of
LM. The proposed mapping structures create a map-
ping of the decomposed data onto LM space to main-
tain the original indices of the decomposed data and to
improve the program readability.

The following sections explain the proposed method in de-
tail.

5. Data Selection Scheme for LM

The first scheme of the proposed method is to select appro-

Fig. 1 An example TLG from a sample program code with two loops.

priate data to exploit data locality for multicore processors,
and decompose the selected data to fit them onto LM space.

5.1 Data Selection from Loops by Target Loop Groups

The first step for efficient LM management is to select data
that exploits data locality from the input program. To ensure
data locality and continuous memory access, array elements
accessed by multiple adjacent loops must be mapped onto a
common processor core’s LM. The proposed scheme selects
array elements within multi-level nested loops and array el-
ements that are accessed by multiple loops. In the OSCAR
compiler, these loops correspond to coarse grain tasks, or
MTs called Repetition Blocks (RBs).

To keep track of the loops and its data, the proposed
scheme introduces a structure called Target Loop Group
(TLG). TLGs help organize localities within programs by
combining adjacent loop bodies that access common array
elements. A TLG extracted from a sample program code is
shown in Fig. 1. The loops within each TLG have the fol-
lowing properties:

1. Loops that are adjacent on the original input program
are grouped into a single TLG

2. Indices of the arrays inside the loops are represented as
a linear function of the loop index variable

3. There is a unique standard loop defined as the loop with
the largest estimated cost within each TLG. The cost is
calculated based on arithmetic, load, and store instruc-
tions. Loops that are not chosen as the standard loop
are called non-standard loops.

5.2 Dividing Loop Iteration Ranges for Locality through
Inter-Loop Dependency Analysis

Data locality is exploited when array elements on LM are
continuously accessed by loops on the same processor core.
While gathering loops into TLGs keeps the arrays close to-
gether for locality, the loops must have a common iteration
range for continuous access and sharing of array elements
between processor cores. To solve this, the Inter-Loop De-
pendency analysis (ILD) detects data dependence between
each loops and calculates appropriate iterations ranges for
each TLG. The detailed steps of the ILD are shown in the
following sub-sections.

The ILD begins by setting the TLG’s standard loop as a
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Fig. 2 Direct Inter-Loop Data dependence (DirILD) of the loops from
the TLG of Fig. 1.

reference point to analyze data dependence between loops.
The main idea is that the standard loop retains its original
iteration ranges, while the other loops in the TLG adjusts
to the standard loop’s iteration range while considering data
dependence among loops.

To analyze data dependence within TLGs, the ILD ini-
tially calculates the indices for each loop, or RB, that has
dependence with its adjacent loops. This is done by ex-
tracting inter-loop dependence which has data dependence
between adjacent loops. These are called Direct Inter-Loop
Data dependence (DirILD) vectors, and are calculated for
each adjacent loop pair in every TLG. DirILD vectors from
the example TLG of Fig. 1 is shown in Fig. 2 by the red and
blue arrows.

For multi-dimensional arrays, the ILD creates DirILD
vectors that contain the data dependence for each array di-
mension as its components. DirILDs are the building blocks
for calculating the iteration ranges of the non-standard loops
that has direct and indirect data dependence with the itera-
tions of the standard loop.

Next, the adjusted iteration ranges of the non-standard
loops are calculated by the Direct and Indirect Inter-Loop
Data dependence (DI ILD). DI ILD vectors are calculated
by the following equation, where s is the standard loop Rep-
etition Block (RB) number and SucDep(x) is a set of suc-
cessor RBs of block x that have dependence with x.

for i = s − 1 to 1 :

DI ILD(RBi,RBs) =
⋃

RB j∈SucDep(RBi)⋃

t∈DI ILD(RBj,RBs)

⋃

x∈DirILD(RBi,RB j)

x + t (1)

The DI ILD vectors represent the relative inter-loop depen-
dence of the non-standard loops with the standard loop. The
inverse relationship of the DI ILD vectors is represented as
the Inverse DI ILD (IDI ILD) vector, and is calculated by
utilizing the DI ILD vectors as shown in the following for-
mula, where i is the target RB number.

IDI ILD(RBi,RBs) =
⋃

x∈DI ILD(RBi,RB j)

−x (2)

Once the relationships of the iterations between the non-
standard loops and the baseline standard loop are resolved,
the scheme now calculates the new iteration ranges for each
loop. The IDI ILD vectors are used to calculate the Con-
verted Index Range (CIR) of each loop. CIRs represent the

converted iteration ranges of the loops with respect to the
iteration ranges of the standard loop. The equation for CIRs
is shown below, where IR(x) represents the iteration range
of block x.

CIR(RBi) = {x ∈ IR(RBi) |
min(IR(RBi)) + max(IDI ILD(RBi,RBs))

≤ x ≤ max(IR(RBi)) + min(IDI ILD(RBi,RBs))} (3)

Furthermore, the CIRs of the individual loops are combined
to generate a common iteration range for all of the loops
within TLGs. Creating a common iteration range for each
TLG is a key step to extract locality within the loops. This
iteration range is called the Group Converted Index Range
(GCIR) of a TLG, and is represented by the following equa-
tion.

GCIR =
⋃

1≤i≤s

CIR(RBi) (4)

Since the GCIRs encapsulate a common iteration range
of the loops, the scheme can split the loops into iteration
ranges that are accessed by a single core or shared between
multiple cores. Localizable Regions (LRs) are loop itera-
tion regions that contain arrays accessed only by a single
processor core. In other words, these regions contain loop
iterations that can continuously reside on the same core’s
LM for data locality. In contrast, Commonly Accessed Re-
gions (CARs) are loop iteration regions that contain arrays
accessed and shared by multiple processor cores.

Initially, the GCIR is split into P equal ranges, where P
is the number of available processor cores. To generate the
CARs, the scheme takes the overlapping iteration regions,
or the iteration regions that are shared and accessed by dif-
ferent processor cores, of the adjacent iteration ranges for
each divided loop. The CAR for processors P and P + 1 are
calculated by the following equation.

IR(RB<P,P+1>
i )

=
⋃

t∈DGCIRP

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

t∈ILD(RBi,RBs)

x + 1

⎞⎟⎟⎟⎟⎟⎟⎠
⋂

⋃

t∈DGCIRP+1

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

t∈ILD(RBi,RBs)

x + 1

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

The LRs are calculated by subtracting the overlapping
iteration regions from the divided loops and taking the itera-
tion ranges that are accessed only by a single processor core.
The formula for LR for processor P is shown below.

IR(RB<P>
i ) =

⋃

t∈DGCIRP

⎛⎜⎜⎜⎜⎜⎜⎝
⋃

t∈ILD(RBi,RBs)

⎞⎟⎟⎟⎟⎟⎟⎠

− IR(RB<P−1,P>
i ) − IR(RB<P,P+1>

i ) (6)

Figure 3 shows an ILD analysis step with LRs and CARs
on a single dimension array with two loops. Figure 4 also
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Fig. 3 ILD on a 1D array with two loops.

Fig. 4 ILD on a 2D array with two loops.

Fig. 5 GCIRs and DGCIRs from Fig. 4.

shows an ILD analysis step with LRs and CARs on a two
dimensional array with two loops. The extracted GCIRs and
DGCIRs from the example ILD step from Fig. 4 is shown in
Fig. 5.

5.3 Decomposing Data of Localizable Regions and Com-
monly Accessed Regions

A key idea of the proposed scheme is to decompose arrays
into smaller sub-arrays that fit safely onto LM space. Once
adjacent loops are gathered into TLGs and data dependen-
cies of loop iteration regions are analyzed to form LRs and
CARs, the scheme decomposes the corresponding arrays of
the analyzed loop iterations.

To create a LM space aware working set size, the it-
erations of the LRs and CARs are equally divided by a de-
composition count. The decomposition count defines the
number of smaller sub-arrays each array should be divided
into. To mitigate the calculation cost, the proposed scheme
defines the decomposition count of the arrays to be large

enough to allow all arrays existing in each TLG to reside
simultaneously onto each processor core’s LM. The decom-
position count for each TLG is decided by the following
steps.

1. Estimate the array access size, or the working set size,
of the loops within each TLG.

2. Compare the size of the available LM with the esti-
mated working set size.

3. Choose a decomposition count that divides the arrays
into sub-arrays that have the largest possible size or
matches the available LM size.

For multi-dimensional arrays, the decomposition count
is calculated by dividing the outermost loop level, or at the
RB granularity level, to calculate the decomposition count.
However, if dividing only the outer-most loop layer fails to
create an array size small enough for LM, the scheme re-
cursively decomposes each layer of the loop, deciding the
decomposition count for each loop-nest level. This corre-
sponds to recursively executing steps 2 and 3 of the decom-
position count deciding mechanism shown above.

5.4 Task Scheduling with Data Localizable Groups

The decomposed LRs and CARs within TLGs achieve data
locality only when they are allocated onto LM space of the
same processor core in multicore systems. To schedule them
onto appropriate processor cores, the proposed scheme de-
fines LRs and CARs as new coarse-grain tasks, or MTs.
By defining these divided LRs and CARs into generalized
tasks, the proposed scheme creates opportunities for other
compiler optimization techniques such as task fusion and
restructuring. Moreover, the proposed scheme gathers MTs
(LRs and CARs) into Data Localizable Groups (DLGs) to
allow simplified locality-aware scheduling.

6. Data Mapping Scheme for LM

The second scheme of the proposed method is the mapping
of the decomposed array onto LM space.

This step is invoked after creating DLGs and DLG
scheduling results. This step performs memory mapping of
the decomposed array. The data mapping step utilizes soft-
ware configurable memory blocks called Adjustable Blocks,
and mapping structures called Template Arrays. Adjustable
Blocks are hierarchically divisible memory block structures
that divide LM into constant sized blocks that suit the de-
composed array. Template Arrays are mapping structures
that create mappings of arrays to blocks on LM to maintain
the original array indices for improved code readability.

6.1 Flexible Memory Block Sizes

The mapping of data depends on the data usage character-
istics and the features of the input program. A straightfor-
ward approach to allocate these data onto LM is to map them
through arbitrary sized memory blocks. However, utilizing
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Fig. 6 Structure of Adjustable Blocks, where N and L are integers.

arbitrary size LM blocks could trigger performance degra-
dations due to internal memory fragmentations. To mitigate
these inefficiencies, the proposed scheme allocates data onto
LM through flexible memory block structures called Ad-
justable Blocks. A sample structure of Adjustable Blocks
is shown in Fig. 6.

Adjustable Blocks are built from constant size memory
blocks which are hierarchically aligned to map and match
data with varying sizes and dimensions. This hierarchical
characteristic with constant memory block sizes is the key
feature to achieve efficient utilization rates of LM.

The main advantage of Adjustable Blocks is the soft-
ware controllable feature of memory block sizes which can
be adjusted according to the requested data sizes of the in-
put program. The memory blocks of Adjustable Blocks are
aligned in specific levels in the hierarchy, and can be di-
vided into smaller sub-blocks with powers-of-two divisible
sizes or integer divisible sizes of its parent block.

Each level in the hierarchy has a distinct block size
chosen from each decomposed data sizes of the input pro-
gram. The choice of integer divisible block sizes of Ad-
justable Blocks bring flexibility to the input program, differ-
ing from buddy memory allocators used in Operating Sys-
tems as well as from previous methods of LM managements
where memory block sizes were always chosen to be multi-
ples of powers-of-two.

Before choosing the memory block sizes for each Ad-
justable Block level, the decomposed arrays are sorted by
descending order in size and arranged into a list. Once
sorted, each array is checked whether its parent array, or
the preceding array in the list, is an integer multiple of the
current array. If it is an integer multiple, the current array is
mapped to a new level with a memory block size divided by
that integer factor.

To illustrate the effectiveness of integer divisible
blocks, an example is shown below. In previous researches
where memory block sizes were always adjusted to mul-
tiples of powers-of-two, multi-dimensional arrays with di-
mensions [5][5][9] require memory blocks with dimensions
of [8][8][16]. The array sizes become 5 ∗ 5 ∗ 9 = 225 for
the original array, and 8 ∗ 8 ∗ 16 = 1024 for the adjusted ar-
ray. With this approach, the utilization rate of memory only
achieves 225/1024 = 0.22

Low utilization rates become a bottleneck especially
for embedded systems where LM space is typically limited.
In contrast, if memory blocks with block sizes adjusted to
multiples of powers-of two fail to allocate LM space, the

Fig. 7 Overview of Template Arrays for each dimension.

Fig. 8 Mapping of LM arrays onto Template Arrays.

proposed scheme divides memory blocks into integer divis-
ible sizes of its parent memory block to reduce the memory
allocation size required by the input application.

6.2 Templates for Arrays

For conventional mapping techniques, allocating multi-
dimensional data onto LM required complicated index cal-
culations with offsets variables since memory is internally
represented as a single dimensional array. To reduce such
calculation complexity and overhead, the proposed scheme
introduces an array mapping technique called Template Ar-
rays. Template Arrays are structures that prepare the same
size, dimension, and type as the chosen Adjustable Block
size of the input program. An overview of Template Arrays
for 1D, 2D, and 3D arrays is shown in Fig. 7, and an assign-
ment example of Template Arrays is shown on Fig. 8.

Template Arrays holds a mapping between memory
blocks on LM and empty array entries with multiple di-
mensions. These empty arrays have an additional dimen-
sion augmented to store the block number that corresponds
to the original block on LM. By using these block numbers
as tags, the scheme decides the region and block of memory
appropriate for the decomposed data. Moreover, by prepar-
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ing the same size and dimensions as the original arrays,
Template Arrays keeps a mapping that maintains the di-
mensions of the original array without changing the indices.
This preserves the original array indices, avoiding complex
index calculations for performing multi-dimensional array
accesses.

7. Evaluations

In this section, the effectiveness of the proposed local mem-
ory management method is shown through evaluation re-
sults on benchmark applications. The method was imple-
mented on the OSCAR automatic parallelizing compiler and
executed on the Renesas RP2 8-core multicore processor.

7.1 Architecture of the Renesas RP2 Multicore Processor

The Renesas RP2 multicore processor is an embedded pro-
cessor based on the OSCAR multicore architecture [19].
The chip was developed by Renesas Electronics, Hitachi,
and Waseda University and was supported by NEDO Multi-
core Processors as a real-time consumer electronics project.
An overview of the RP2 architecture is shown in Fig. 9. The
RP2 processor has two SMP clusters, each with 4 SH4A
cores running at 600MHz. Each processor core has its own
private LM. The access latency of this LM is 1 clock cycle.
Each processor core can also access a common processor-
wide 128MB off-chip centralized shared memory (CSM),
which has 55-clock cycle latency.

7.2 Benchmark Applications

To evaluate the performance of the proposed method, the
following 6 applications written in C were used: BT
from Nas Parallel Benchmark (NPB), Tomcatv and Swim
from SPEC95, AACEncoder from Renesas Electronics,
Mpeg2Enc from MediaBench Benchmark Suite, and Track-
ing from SD-VBS. The applications were first converted
to Parallelizable C [18], which is a dialect of C similar to

Fig. 9 The RP2 Multiprocessor with the OSCAR Multicore
Architecture.

MISRA-C.
The applications were then compiled by the OSCAR

source-to-source automatic parallelizing compiler, where
the proposed method ran as part of the OSCAR compiler’s
analysis and optimization phase. Finally, the parallelized
output C program was compiled into binaries by the Renesas
SuperH C Compiler as a backend compiler.

7.3 Evaluation Results

Figure 10 presents the evaluation results of the benchmark
applications executed on the RP2 mutlicore processor. For
the figures shown in this section, the results using only
the off-chip shared memory of RP2 are labeled as “Paral-
lelized”, and the results utilizing the proposed LM manage-
ment method are labeled as “Parallelized with LM”.

Loop intensive applications such as BT, Swim, and
Tomcatv showed large speedups utilizing the proposed
method compared against executions that only utilize off-
chip shared memory. For example, the speedups of the off-
chip shared memory version for BT were 3.55 for 4 cores,
and 6.66 for 8 cores. On the other hand, the speedups for
BT using the presented method were 1.70 for 1 core, 3.99
for 2 cores, 6.71 for 4 cores, and 12.79 for 8 cores. The
speedup comes from decomposing multi-dimensional arrays
and keeping the working set reside on the low-latency LM.

The evaluation results of the proposed method for me-
dia applications such as AACenc and Mpeg2enc also show
speedups against its shared memory execution counterparts.
In AACenc, the speedups of the off-chip shared memory
version were 3.42 for 4 cores and 6.84 for 8 cores compared
to the single core environment. In contrast, the speedups for
AACenc with LM management were 1.99 for 1 core, 4.37
for 2 cores, 8.72 for 4 cores, and 20.44 for 8 cores.

Fig. 10 Speedups of the proposed method with LM.
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Figures 11 and 12 shows the total memory read and
write overheads for the “Parallelized” and “Parallelized with
LM” versions for singe core executions. For each applica-
tion, the versions utilizing the on-chip LM shows a signifi-
cant decrease in overhead latencies for both memory reads
and writes compare to their off-chip shared memory coun-
terparts. The read overhead of the LM version of Mpeg2enc
decreased to 37% compared to the shared memory version.
Similarly, the write overhead for BT’s LM version was re-
duced to 35% relative to its shared memory version. The
decrease in memory overhead comes from the proposed
method minimizing the use of shared memory that incurs
55-clock cycle latency for every memory access.

The CSM access frequencies of core 1 for multicore
environments of the benchmark applications are shown in
Figs. 13 to 18. The results for versions using only the off-
chip CSM are labeled as “Parallelized”, and the results uti-
lizing the proposed LM management method are labeled as
“Parallelized with LM”. The results show the relative fre-
quency compared to the 1 Core Parallelized version. For
the evaluated RP2 environment, the latencies is 55 clock cy-
cles for CSM accesses and 1 clock cycle for LM accesses.
For each application, the counts of CSM data transfer de-
creases as the number of processor core increases. When
utilizing the proposed LM management method, the CSM
accesses further decreases since portions of the accesses are

Fig. 11 Total memory reads of the proposed LM and the CSM versions.

Fig. 12 Total memory writes of the proposed LM and the CSM versions.

replaced with the faster LM accesses with 1 clock cycle. For
the shared memory version of Swim, the number of CSM
data transfer decreases to 50%, 25%, and 13% for 2, 4, and
8 core processor environments compared to the 1 core Par-
allelized environment. In contrast, the LM management ver-
sion of Swim has a greater decrease in CSM data transfers of

Fig. 13 Number of CSM accesses for Tracking.

Fig. 14 Number of CSM accesses for MPEG2enc.

Fig. 15 Number of CSM accesses for AACenc.
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Fig. 16 Number of CSM accesses for Swim.

Fig. 17 Number of CSM accesses for Tomcatv.

Fig. 18 Number of CSM accesses for BT.

31%, 18%, and 10% for 2, 4, and 8 core environments com-
pared to the 1 core Parallelized environment. For AACenc’s
shared memory version, the CSM data transfers are 52%,
27%, and 15% for 2, 4, and 8 core environments against the
1 core Parallelized environment. For AACenc’s LM man-
agement version, these CSM data transfers are further re-

Table 1 Local memory usage of the benchmark applications.

Applications Local Memory Sizes
Tracking 24.6KB

Mpeg2Enc 32KB
AACenc 30.5KB

Swim 30.7KB
Tomcatv 32KB

BT 30KB

duced to 20%, 10%, and 6% for 2, 4, and 8 cores against
the 1 core Parallelized environment. The decreasing trend
in CSM data transfer frequency shows that the application
has a smaller portion of data transfer to and from CSM as
more processor cores are added. Moreover, for the proposed
LM management method versions, the accesses of the 55
clock cycle CSM is reduced compared to the shared mem-
ory counterparts.

By mapping data and utilizing LM, the applications
with the proposed method show improved scalability with
increased processor core counts. The speedups of the pro-
posed LM management method from the shared memory
versions come from successfully mapping working sets onto
LM using Adjustable Blocks. Since the sizes of these blocks
are extracted from the features of the input program, they
generate a unique configuration for each application. The
maximum LM usage for the benchmark applications are
summarized in Table 1. Since the RP2 processor has a 32KB
LM, the method successfully allocates and uses LM for each
application that fit onto the available LM size. Given n as the
block size of the first level, the Adjustable Block sizes for
Tracking are

Level2 : n/2 (7)

Level3 : n/2/2, (8)

and the block sizes for Tomcatv are

Level2 : n/2 (9)

For Mpeg2enc, the Adjustable Block sizes begin with a size
of 16384 bytes, and halves each level until the block size
becomes 4 bytes. Similarly, AACenc has a block size of
4096 bytes for first level, and halves until the block size be-
comes 4 bytes. Swim only allocates 1 level. As presented
in Sect. 6.1, the proposed Adjustable Blocks can also gener-
ate integer divisible block sizes which are not multiples of
powers of two. For BT, the block sizes are

Level2 : n/3 (10)

Level3 : n/3/5. (11)

The required block sizes for BT are 960 Bytes for the third
level, 4800 Bytes for the second level, and 14400 Bytes for
the first level. If the block sizes were powers-of-two, the
block sizes increases to 1536 Bytes for the third level, 12288
Bytes for the second level, and 49152 Bytes for the first
level, which exceeds the available LM size when multiple
array variables use these block sizes. By allowing flexible
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Fig. 19 Speedups of the proposed method against and an ILP-based
method.

block sizes for LM mapping, the proposed method gener-
ated block sizes that matches the target application and fits
onto the available LM.

To compare the proposed method with other studies,
Fig. 19 shows the speedup of the LM management method
against the speedup obtained applying one of the ILP-
based SPM optimization approaches by Suhendra et al. [5]
on three benchmark applications: Tracking, Tomcatv, and
Swim. Both methods with single core executions are com-
pared with the original sequential versions of the applica-
tions.

The speedups of the ILP-based method were 1.19, 1.23,
and 1.04 for the three benchmarks. In contrast, the speedups
of the three applications by the proposed LM management
method were 1.99, 2.06 and 1.56. Since all applications
have large variables, the ILP-based method has difficulty
allocating them onto LM, forcing some variables to be al-
located onto the off-chip shared memory. However, the pro-
posed method decomposes large data by the working set size
and successfully allocates them onto LM, minimizing off-
chip memory accesses.

8. Conclusions

This paper proposes an integrated compiler and Local Mem-
ory (LM) management method that automatically decom-
poses data and assigns them to LM on multicore proces-
sors for applications that focus on predictability and per-
formance. The presented Data Layout scheme safely de-
composes large multi-dimensional arrays into smaller sub-
arrays that fit onto limited sized LM. Moreover, the pro-
posed Data Mapping scheme avoids memory fragmentation
through application specific flexible memory blocks called
Adjustable Blocks and preserves the original indices of ar-
ray codes through multi-dimensional structures called Tem-
plate Arrays. The method is implemented on the OSCAR
source-to-source automatic parallelizing compiler and eval-
uated on 6 benchmark applications executed on the RP2
8-core processor. The method obtained a maximum speed
up of 20.44 against single threaded versions with off-chip
shared memory.
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