
Automatically Parallelizing Compiler Cooperative
OSCAR Vector Multicore

Keiji Kimura, Kazuki Fujita, Kazuki Yamamoto, Tomoya Kashimata,
Toshiaki Kitamura and Hironori Kasahara

Department of Computer Science and Engineering, Waseda University
27 Waseda-cho, Shinjuku-ku, Tokyo, Japan

Email: keiji@waseda.jp, {kazuki fujita,kyamamoto,kashi,kitamura}@kasahara.cs.waseda.ac.jp, kasahara@waseda.jp

I. INTRODUCTION

The importance of vector computation has been still in-
creasing in embedded area as well as HPC area because
of the widely spread machine- and deep-learning applica-
tions. Particularly, autonomous driving cars require rich vector
computation ability to realize highly accurate surrounding
environment recognition with low power consumption.

To implement a learning application in an embedded system,
only providing rich vector computation power is not enough.
The computation result is usually used in other information
processing part in the system such as decision and opera-
tion parts. These parts are not always vector intensive. In
other words, scalar processors and vector processors must be
integrated, and they must cooperatively work in a system.
However, utilizing such a heterogeneous system has introduced
program difficulty.

To overcome this problem, we have developed the OS-
CAR compiler cooperative vector multicore processor, named
OSCAR Vector Multicore. Each core in this multicore has
its own vector accelerator core. The compiler automatically
exploits hierarchical parallelism from a source program. Then,
it assigns coarse grain tasks to CPU cores and inner loop
parallelism in a task to a vector processor attached to a CPU
core.

In the later part of this paper, we will describe the overview
of the OSCAR vector multicore and its compilation flow. Then,
the evaluation result will be shown.

II. OSCAR MULTIGRAIN PARALLELIZING COMPILER

This section gives an overview of the OSCAR multigrain
parallelizing compiler [1], [2]. Here, multigrain means three
kinds of parallelism: (1) loop iteration level parallelism also
used by conventional parallelizing compilers, (2) coarse grain
task parallelism among loops or loops and subroutine calls,
and (3) statement level near fine grain parallelism.

In hierarchical coarse grain task parallel processing on the
OSCAR compiler, a source C or Fortran sequential program is
decomposed into three kinds of coarse grain tasks, or Macro
Tasks (MTs), such as basic block (BPA), loop (RB), and
subroutine call (SB). After generating Macro Tasks, the com-
piler analyzes both control flow and data dependencies among
Macro Tasks, and represents them as a Macro Flow Graph

(MFG). Next, the compiler applies the earliest executable con-
dition analysis, which can exploit parallelism among Macro
Tasks considering with both control dependencies and data
dependencies. The analysis result is represented as a Macro
Task Graph (MTG).

If a Macro Task is a subroutine call or a loop that has
coarse grain task parallelism, the compiler generates inner
Macro Tasks inside that Macro Task hierarchically. When an
MT is a parallelizable loop (doall or forall loop), the compiler
decomposes it into multiple MTs to utilize its parallelism as
coarse grain task parallelism, or execute it in loop iteration
level parallel processing. When an nested loop has parallelism
in both of the outer-most nest level and the inner-most nest
level, the outer level parallelism can be processed by multiple
cores and the inner level parallelism can be processed by a
vector accelerator in each core.

After exploitation of the parallelism, when an MTG in a
source program has no conditional branch, MTs in it are stat-
ically scheduled, otherwise dynamic scheduling is employed.
Then the compiler generates the parallelized C or Fortran pro-
gram as a result. It contains OSCAR API directives for parallel
processing [3]. OSCAR API is defined based on OpenMP [4],
therefore an OpenMP compiler can generate a parallelized exe-
cutable binary. If the local memory optimization and the power
control optimization by the OSCAR compiler are required, an
API translator is employed in front of an back-end compiler
like gcc and llvm to translate the directives into runtime library
calls and target specific directives .

III. OSCAR VECTOR MULTICORE[5]

Fig. 1 depicts an overview of the OSCAR vector multicore
architecture. Each core in a chip contains a CPU, an instruction
cache (I-CACHE), a data cache (D-CACHE), a local data
memory (LDM), a vector accelerator (Vector), and a data
transfer unit (DTU).

An LDM is shared by a CPU and a Vector in a core.
An LDM can be accessed by a CPU in a different core. A
CPU can access an I-CACHE and a D-CACHE in addition
to an LDM as well as an on-chip centralized shared memory
(CSM) and an off-chip CSM, or a main memory. On the other
hand, a Vector can access only an LDM in a same core. This
limitation can prevent a Vector from exposing its required



CORE 1

D-Cache LDM

DTUCPU Vector

I-Cache

Interconnect Network

Off-chip Centralized Shared Memory (CSM)

CHIP

CORE n

On-chip Centralized 
Shared Memory (CSM)

Fig. 1. Overview of OSCAR Vector Multicore

memory bandwidth outside a core, and results in saving a cost
for the memory modules.

A DTU is a kind of a direct memory access controller
(DMAC). It performs data transfer among an LDM in a core,
LDMs in other cores, an on-chip and an off-chip CSMs. A
CPU, a Vector and a DTU can be processed simultaneously
to improve their utilization. The OSCAR compiler schedules
tasks on them to overlap their execution as much as possible.

Fig. 2 depicts an overview of a Vector in a core. It contains
a vector pipeline and a scalar pipeline. “vadd/vsub”, “vmul”,
“vdiv” are a vector function units (FUs) for additions and sub-
tractions, multiplications, and division, respectively. Similarly,
“add/sub”, “mul”, and “div” are a scalar FUs for them. The
Vector fetches its instructions from the LDM in a same core.
Scalar and vector memory accesses are also performed on the
LDM.

The scalar pipeline supports scalar integer and floating point
operations and, has 32 integer registers and 32 floating-point
registers. It can work as a simple in-order scalar pipeline.

The vector pipeline has a vector register file and a mask
register file. The pipeline consists of 8 lanes for double
precision elements, which means 8 double precision operations
can be performed at a time.

The capacity of a vector register file is 32 registers × 256
bytes. A vector register can have different number of elements
according to the element size: For instance, when an element
size is 32 bit (4 byte) floating point, the number of elements
becomes 64. Similarly, when an element size is 8 bit (1 byte)
integer, the number of elements becomes 256. The vector
length for vector operations can be changed dynamically. The
pipeline also supports a chaining execution to reduce the vector
instruction execution overhead when a set of two successive
instructions has a read-after-write (RAW) dependency.

Vector Register Mask 
Register

Scalar 
Register

Vector
LD/ST
Unit

Scalar
LD/ST
Unit

LDM

Instruction
Fetch
Unit

vadd/
vsub vmul vdiv

add/sub mul div

Fig. 2. Overview of Vector Accelerator Module

IV. COMPILATION FLOW OF OSCAR VECTOR MULTICORE

Fig.3 depicts an overview of the compilation flow of the
OSCAR vector multicore processor. It consists of the OS-
CAR compiler, the host CPU compiler, the vector processor
compiler based on Clang/LLVM compiler [6], and a linker to
generate parallel executable binary file from the object files
for the host CPU compiler and the vector processor compiler.

Firstly, the OSCAR compiler takes a sequential C program
as a source file. It exploits multigrain parallelism from that
program. Simultaneously, the compiler detects vector paral-
lelizable loops from the program and separates them into
newly prepared functions. The compiler generates a multigrain
parallelized C program for the host CPU. In addition, the
compiler also generates a vector parallelized C program for
the vector accelerator. Note that the vector operations are
represented as C intrinsic functions defined for the vector
accelerator.

Then, the host compiler takes a multigrain parallelized C
program and generates an object file for the host CPU. The
generated multigrain parallelized C program is parallelized by
OSCAR API as explained in Section II.

Similarly, the vector compiler takes a vectorized C program
and generates an object file for the vector processor. We
extended the Clang/LLVM compiler for this purpose. It can
recognize vector intrinsic functions, which covers the vector
instruction set of the OSCAR vector multicore. It also em-
ploys basic compiler optimizations, such as loop unrolling
and redundant instruction removing, as well as instruction
scheduling.

Finally, the linker generates a parallelized executable binary
file from the object files for the host CPU and the vector pro-
cessor. To keep the portability for different kinds of host CPU
processors, the object file for the vector processor is formed
as array variable objects for the host CPU. In other words, the
vector instructions and initialized data are embedded as array
objects for the host CPU. Thus, we can easily replace the
host CPU architecture without modifying the vector processor
compiler, the assembler and the final linker.



Sequential C 
Program

OSCAR Compiler

Vector Compiler
(based on 

Clang/LLVM)

Parallel 
Executable
Binary File

Host CPU 
Compiler

Parallelized C
program for
host CPU

Vectorized C
loops exploited
from original C program

Object file
for host CPU

Object file
for Vector accelerator

Fig. 3. Overview of Compilation Flow

V. PRELIMINARY EVALUATIONS

We implemented the OSCAR vector multicore on an Intel
Arria10 SoC FPGA chip. We used NIOS II with FPU as a
CPU core in the evaluated systems. The clock frequency for
the CPU used in this evaluation is 50MHz. About the vector
processor, 16 single precision operations can be performed
at a cycle. The clock frequency for the vector processor is
40MHz. The bandwidth of LDM to the vector processor is 32
byte/clock cycle.

In this preliminary evaluation, the LDM size is 1MB to show
the performance of the vector processor module. Therefore, all
data is located on the LDM instead of off-chip DDR memory
module. Similarly, only one CPU and one vector processor are
used.

We used a matrix-multiply (MM), a 2D-convoluion
(2D-Conv), 1D-FFT (FFT), and Cholesky decomposition
(Cholesky) in this evaluation. The data size of each program is
as follows: 256×256 for MM, 256×256 for 2D-convolution,
2048 for FFT, and 64 × 64 for Cholesky. All of them used
single precision (32bit) data elements.

Fig. 4 shows the evaluation result. Each bar shows the
speedup obtained by the vector processor compared with the
CPU. The vector processor achieves 25.01× speedup at max-
imum for 2D-conv, 9.57× speedup at minimum for FFT, and
16.17× speedup on average. The performance improvement
depends on the available vector length exploited from the
target kernel loops. More performance improvement can be
expected when multiple cores are available.

VI. CONCLUSION

This paper introduced the OSCAR Vector Multicore. This
multicore consists of multiple cores, each of which has a vector
accelerator beside a CPU core and a data transfer unit (DTU).
The OSCAR compiler controls them to to provide sufficient
data to the vector accelerator, as well as the exploitation
of the parallelism hierarchically from a source program. A
preliminary evaluation was conducted on the OSCAR Vector
Multicore implemented on an FPGA evaluation board. We
used four kernel loop programs to evaluation the performance
improvement by the vector accelerator module compared with

18.27

25.01

9.57
11.83

0.0

5.0

10.0

15.0

20.0

25.0

30.0

MM 2D-Conv FFT Cholesky

Sp
ee

du
p 

vs
. C

PU

Fig. 4. Performance Improvement by Vector Processor

an CPU core. The evaluation shows the vector accelerator
achieves 25.01× speedup at maximum and 16.17× speedup
on average.

ACKNOWLEDGEMENT

Part of this paper is based on results obtained from a project
commissioned by the New Energy and Industrial Technology
Development Organization (NEDO).

REFERENCES

[1] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara, and S. Narita,
“A multi-grain parallelizing compilation scheme for oscar (optimzally
scheduled advanced multiprocessor),” in Proc. 4th Intl. Workshop on
LCPC, August 1991, pp. 283–297.

[2] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and H. Kasahara,
“Hierarchical parallelism control for multigrain parallel processing,” in
Proc. 15th Intl. Workshop on LCPC, August 2002.

[3] K. Kimura, M. Mase, H. Mikami, T. Miyamoto, J. Shirako, and H. Kasa-
hara, “Oscar api for real-time low-power multicores and its performance
on multicores and smp servers,” Lecture Notes in Computer Science, vol.
5898, pp. 188–202, 2010.

[4] The openmp api specification for parallel programming. [Online].
Available: https://www.openmp.org/

[5] T. Kashimata, T. Kitamura, K. Kimura, and H. Kasahara, “Cascaded
dma controller for speedup of indirect memory access in irregular
applications,” in 9th Workshop on Irregular Applications: Architectures
and Algorithms, November 2019.

[6] The llvm compiler infrastructure. [Online]. Available:
http://www.llvm.org/


