

IEEE copyright notice

© 2019 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.�
�

Cascaded DMA Controller for Speedup of
Indirect Memory Access in Irregular Applications

Tomoya Kashimata
Waseda University

Tokyo, Japan
kashi@kasahara.cs.waseda.ac.jp

Toshiaki Kitamura
Waseda University

Tokyo, Japan
toshi.kitamura@aoni.waseda.jp

Keiji Kimura
Waseda University

Tokyo, Japan
keiji@waseda.jp

Hironori Kasahara
Waseda University

Tokyo, Japan
kasahara@waseda.jp

Abstract—Indirect memory accesses caused by sparse linear al-
gebra calculations are widely used in important real applications.
However, they also cause serious inefficient memory accesses and
pipeline stalls resulting in low execution efficiency even with high
memory bandwidth and much computational resource. One of the
important issues of indirect memory accesses, such as accessing
A[B[i]], is it requires two successive memory accesses: the index
loads (B[i]) and the following data element accesses (A[B[i]]).
To overcome this situation, we propose the Cascaded-DMAC
(CDMAC). This CDMAC is intended to be attached in each core
of a multicore chip in addition to a CPU core, a vector accelerator,
and a local data memory. It performs data transfers between an
off-chip main memory and an in-core local data memory, which
provides data to the accelerator. The key idea of the CDMAC is
cascading two DMACs so that the first one loads indices, then
the second one accesses data elements by using these indices.
Thus, this organization realizes the autonomous indirect memory
accesses by giving an index array and an element array, and
obtains the efficient SIMD computations by lining up the sparse
data into the local data memory. We implemented a multicore
processor having the proposed CDMAC on an FPGA board. The
evaluation result of sparse matrix-vector multiplications on the
FPGA shows that the CDMAC achieves a maximum speedup of
17⇥ compared with the CPU data transfer.

Index Terms—Cascaded DMA Controller, CDMAC, DMAC,
DMA, indirect memory access, sparse matrix vector multiplica-
tion, SpMV, SMVM

I. INTRODUCTION

Computational power has been grown every year. In this
decade, many part of this growth particularly relies on the
improvement of SIMD accelerators like GPUs. They can attain
high performance as long as the required data is continuously
supplied to their internal functional units. This kind of high-
bandwidth data transfer can be realized by regular memory
accesses.

On the other hand, many real applications, like structural
engineering and graph analysis, employ irregular memory
accesses. Indirect memory access is a representative one. It
consists of two memory accesses for one data access: index
loading and data element accessing itself. While successive
executions of index loading are regularly performed on a
memory, corresponding data elements are randomly accessed.

Part of this paper is based on results obtained from a project commissioned
by the New Energy and Industrial Technology Development Organization
(NEDO) and JSPS KAKENHI Grant Number JP18K19786.

These random memory accesses result in an expensive mem-
ory access latency. Furthermore, the long latency causes an
inefficient program execution. For instance, when computa-
tions and memory accesses are performed in a same hardware
module and processed by an instruction execution sequence as
in an ordinary CPU, the overlap execution among them cannot
be expected even with a rich set of computational resources.

Many researchers have tackled this problem. Many of them
have targeted sparse matrix-vector multiplication (SpMV),
which is a typical computational kernel employing indirect
memory accesses [1]–[4]. Yu, et al. proposed Indirect Memory
Prefetcher (IMP), which is a special prefetcher for indirect
memory accesses [5]. Tanabe, et al. proposed a special mem-
ory module, which can execute gather operations to collect
randomly scattered data elements on a memory [6].

In this paper, we propose a novel direct memory access
controller (DMAC): Cascaded DMAC (CDMAC). CDMAC
cascades two DMACs so that the first one loads indices and the
second one can access data elements by using indices loaded
by the first one. It is intended to be attached between a SIMD
or vector type accelerator having a local on-chip memory and
an off-chip memory. Thus, for the case of indirect memory
load, it gathers data elements from the off-chip memory and
stores them into an array on the local memory continuously. Its
cascaded organization can fully exploit the memory bandwidth
of a system by issuing memory requests continuously both for
indices and data elements as much as possible. In addition,
the accelerator and CDMAC can be executed simultaneously
because they are decoupled from each other. Therefore, this
organization can fully utilize both the computational resources
and the memory bandwidth. It is also useful for local memory
management and data transfer optimization techniques by
a compiler [7]. We also propose a data element cache in
CDMAC to exploit existing data locality even in the scattered
data elements. The proposed CDMAC is implemented on an
FPGA board for the evaluation.

The contributions of this paper can be summarized as
follows:

• We propose CDMAC to realize latency tolerant systems
for indirect memory accesses.

• We add a data element cache in CDMAC to exploit data
locality as much as possible.

• We implemented the proposed CDMAC on an FPGA
board for the evaluation and obtained 17⇥ speedup by
SpMV compared with the CPU data transfer.

The rest of this paper is organized as follows: Section II de-
scribes the proposed CDMAC. Section III evaluates CDMAC
with SpMV. Section IV investigates the cache parameters for
sparse matrices. Section V reviews related researches. Finally,
Section VI concludes this work.

II. PROPOSED CASCADED-DMAC
A. Cascaded DMAC

The proposed Cascaded-DMAC (CDMAC) is consists of
two DMACs and the address calculation stage between them.

The first DMAC (DMAC1) takes an address of an index
array as an input parameter. It fetches indices in a burst data
transfer manner as an ordinary DMAC.

The address calculation stage calculates addresses of the
data elements to be gathered from the fetched indices, the
base address, and the element size. The base address and
the element size are given as input parameters for CDMAC.
DMA descriptors, which are parameter sets for DMAC, can
be generated when needed.

Finally, the second DMAC (DMAC2) issues memory re-
quests along with the descriptors. Note that since the data
elements are intended to be randomly accessed, DMAC2 does
not use a burst data transfer mode.

We assumed that both the indices and the data elements
are 32bit width in this paper. Under this assumption, the same
amount of data for the indies reading and the elements writing
are transferred continuously. Therefore, the write port of the
DMAC2, which has the responsibility of reading the data,
can be connected to the DMAC1 as shown in Fig. 1, so
that the write port of the DMAC1 can have the responsibility
of writing the data elements to the memory. By using this
design, the implementation can be simplified. For instance,
the address calculation stage, which generates the descriptor,
and the DMAC2 do not have to care about the destination
addresses, and the implementation of the DMAC2 becomes
easier than ordinary DMACs. In addition, the completion of a
data transfer can be checked only by the DMAC1, instead of
both DMACs.

The DMAC1 utilized Modular Scatter-Gather DMA [8]
(mSGDMA) provided by Intel. The mSGDMA can expose
the source and sink streaming ports. The fetched data by
the memory read port can be sent to the source streaming
port, and the given data to the sink streaming port can be
sent to the memory write port. As shown in the Fig. 1, the
source streaming port of DMAC1 is connected to the address
calculation stage, and the sink streaming port is connected to
the DMAC2.

Instead of utilizing the mSGDMA, the DMAC2 was imple-
mented from scratch in this paper since the mSGDMA was not
designed for random memory accesses that are required to the
DMAC2. It receives a source address at the streaming input
port and issues a read request to the memory. The memory bus
master has to guarantee that it can always receive fetched data

when it is requested. To satisfy it, we used FIFO to manage
the number of memory requests.

DMAC1

Memory
Index Read Interface

Address
Calculation DMAC2

CPU

Memory
Data Read Interface

Memory
Write Interface

Streaming
Index

Streaming
Address

To Control & Status Registers

Streaming
Data

Fig. 1: Block diagram of the proposed CDMAC.

B. Data Element Cache

As described previously, the data elements are randomly
accessed by the DMAC2. However, there is an opportunity to
exploit data locality even in indirect accesses. For instance,
some sparse matrices, such as band matrices, have spatial
locality. When CDMAC deals with these matrices, the existing
data locality should be utilized. Note that this cache should
handle multiple cache misses simultaneously as much as
possible to fully exploit the memory bandwidth.

Fig. 2 depicts the architecture of the whole cache. This
cache system contains three components: “Cache”, “Memory
request controller”, and “Confluence FIFO”.

The “Cache” is different from an ordinary cache in terms
of its behavior at a cache miss. If it hits, it sends the address
and the data to the Confluence FIFO. If it misses, it sends
the address to the Confluence FIFO and the memory request
controller. It does not handle the missed request anymore.
When the fetched data arrives from the memory request
controller, it replaces a cache line according to the FIFO
algorithm. We implemented a fully associative cache, which
has 32byte line and 512byte in total.

“Memory request controller” prevents duplicated requests
to memory and manages memory interface signals.

“Confluence FIFO” is a key feature of this cache system.
It receives requested address and hit data from the cache.
Also it receives the fetched data and its address from the
memory request controller. When it receives the fetched data,
it compares the address with the stored address and updates
the stored data. We have to prepare a deep FIFO because the
number of overlapping memory accesses can be limited by its
depth. 256 elements can be stored in our implementation.

We implemented this cache using Chisel [9], which is
a high–level HDL using Scala. The cache contents can be
invalidated by a control register.

C. CDMAC Data Transfers

1) Scatter Transfers: The scatter data transfer can be real-
ized by setting read/write direction of the second DMAC in
CDMAC (DMA2) opposite to that of the gather data transfer.

Cache

Memory request
controller

Confluence FIFO

Memory

Gathered Data

Address

Miss address

New data

Address, Hit data

Fig. 2: Block diagram of the implemented cache system

2) Nested Indirect Accesses: CDMAC can also realize
nested indirect accesses as shown in Fig. 3 by employing
each indirect array access from the innermost index loading
to the outermost index loading one by one. At this time,
inner index loading requires a temporal array to store the
loaded index. This requires some code restructuring. Fig.
4 depicts an example of a restructured code. The first and
second loops perform the nested indirect array accesses in the
right side of the original code by introducing temporal arrays,
tmparr1 and tmparr2. Then, the third loop performs the
store operations of indirect array accesses (scatter operation).

for(i = 0; i < N; i++)
out[idxout[i]] = in[idxin1[idxin2[i]]];

Fig. 3: Example code of a nested indirect memory accesses

for(i = 0; i < N; i++)
tmparr1[i] = idxin1[idxin2[i]]

for(i = 0; i < N; i++)
tmparr2[i] = in[tmparr1[i]]

for(i = 0; i < N; i++)
out[idxout[i]] = tmparr2[i]

Fig. 4: Code restructuring example of a nested indirect mem-
ory accesses

III. EXPERIMENTAL EVALUATION

A. Evaluation environment
We implemented Cascaded DMAC on DE5a-Net (DDR4)

having Intel Arria 10 FPGA [10]. Fig. 5 depicts a block
diagram of the total multicore system built on the FPGA.
The system consists of multiple cores, or processing elements
(PEs), each of which has a CPU, a vector accelerator, a DMAC
for continuous data transfer, and a CDMAC. The modules
in a PE are connected to a local memory, and the PEs are
connected to the main memory (DDR4) through a memory
bridge (Bridge) and a memory controller (Memory Controller).
We used a system-integration tool named Qsys. It generates
interconnects automatically. Multiple requests on them can be
performed simultaneously as long as there is no contention
among them.

The board has two SODIMM DDR4 ports and some outer
memories, but this implementation uses only one SODIMM
port. Its memory frequency is 1200MHz. However, it is too
fast because the PEs and their buses are driven at 50MHz.

CPU Vector
Accelerator

Local Memory

CDMACNormal
DMAC

Memory
Controller DDR4

Interconnect

PE 0

PE 1
PE 2

PE 3
Throughput Limiter (Bridge)

256bit Avalon-MM bus
10MHz
30MHz
50MHz

$

50MHz

300MHz

Fig. 5: Block diagram of the system architecture implemented
on FPGA. We implemented six types of hardware that changed
presence of the cache and the throughput limiter frequency.

Therefore, we limited the memory throughput by two clock
crossing bridges. The first bridge connects a bus driven at 50
MHz with another bus driven at either 10MHz, 30MHz, or
50MHz. Its bus width is 256bit. The second bridge connects
the low–frequency bus with a 300MHz bus because the
clock frequency for the memory controller’s user logic is
300MHz. We used 30MHz as the standard bus speed because
a commercially available processor and memory have a similar
frequency ratio. The 50MHz bus assumes that the memory has
a high throughput to show the DMAC potential.

We used NIOS II [11] as the main CPU which has 32KB
instruction cache and 32KB data cache. We also used Floating
Point Hardware 2 for NIOS II [12].

We used the implemented multicore as a bare-metal system,
and there is no address translation. There is also no cache
coherence hardware in the system. Instead, the software has a
responsibility of cache coherence [13].

Resource usage of the system with 30MHz bus and cache
is shown in Table I. The other hardware has similar resource
usage. The number of ALMs used in Cache looks too big
because our implementation does not use block memory at all
and it has many comparators for the confluence FIFO.

TABLE I: Resource usage

ALMs M20K DSPs
Whole system 208,546 952 392

PE0 49,486 218 98
Cascaded DMAC 2,728 17 2

First DMAC 2,273 16 0
Second DMAC 45 1 0

Cache 20,031 0 0
Vector core 11,018 121 89

We used a vector processor as a SIMD accelerator in a
PE for this implementation. It is similar to RISC-V vec-
tor extension [14]. It has 8 single–precision floating point
adders/subtractors and multipliers/dividers each. It can access
only to the local memory within the same PE. We suppose that
DMACs transfer data between the main memory and the local
memory. The implemented accelerator is an in-order processor,
but it can overlap scalar operations and vector operations. This

feature enables reducing overhead of scalar calculations such
as address calculations and conditional branches.

B. Implementation of software
We used SpMV for the evaluation of CDMAC. We used

7 matrices that are also used in literature [3] except a one
that uses complex numbers. They are obtained from University
of Florida Sparse Matrix Collection [15]. Table II shows the
specification of each matrix. All of them are square matrices.
N is the length of one side of the matrices. NNZ represents the
number of non–zero values in them. Fig. 6 shows distributions
of non-zero values of each matrix.

TABLE II: Charactoristics of each matrix

matrix N NNZ NNZ/N NNZ ratio
dw8192 8,192 41,746 5.1 0.06%

epb1 14,734 95,053 6.5 0.04%
psmigr 2 3,140 540,022 172 5.48%
raefsky 3,242 294,276 91 2.80%
scircuit 170,998 958,936 5.6 0.003%
t2d q9 9,801 87,025 8.9 0.09%
torso2 115,967 1,033,473 8.9 0.008%

(a) dw8192 (b) epb1 (c) psmigr 2 (d) raefsky1

(e) scircuit (f) t2d q9 (g) torso2

Fig. 6: Distribution of non-zero value of each matrix [15]

dw8192, epb1, raefsky, t2d q9, and torso2 are band ma-
trices. Especially, raefsky has wide band and high NNZ ratio.
On the other hand, psmigr 2 and scircuit are random matrices.
psmigr 2 has many non–zero values while its size is small.
scircuit is larger and more random than psmigr 2. It has
similar NNZ/N to the band matrices.

We converted the storage format of these sparse matrices
from COO to SELL [16]. The SELL slice parameter is set to
256 because the vector length of the vector processor is 256
at most. All floating values and integers are converted to 32bit
floating–point number and 32bit integer type, respectively. We
used consecutive numbers starting from 1 as an input vector.
They are 32bit floating–point type.

Processing an input vector of SpMV requires gather opera-
tion along with column number of the input sparse matrix. We
measured the performance on three cases: gathered by CPU,
gathered by CDMAC without cache, and gathered by CDMAC
with cache.

The input data was initially placed on the off-chip DRAM
memory as constant arrays. The input data and the program
were compiled separately to prevent constant propagation by
the compiler optimization.

C. Result
Fig. 7 shows the evaluation results. As shown in the figure,

the performance of CDMAC is better than that of CPU. Espe-
cially, when psmigr 2 is executed with 50MHz-bus and 1PE,
the CDMAC without cache attains 15.8⇥ speedup compared
to the CPU (0.57 MFLOPS ! 8.97 MFLOPS). Furthermore,
the CDMAC with cache attains 16.9⇥ speedup (0.57 MFLOPS
! 9.62 MFLOPS) under the same conditions.

Higher frequency bus system has shorter memory latency
and higher memory throughput in this system. Theoretically,
the 10MHz-bus, 30MHz-bus, and 50MHz-bus have 320MB/s,
960MB/s, and 1600MB/s transfer throughput, respectively.
Also, our preliminary evaluation reveals that their memory
latencies are about 155 cycles, 68 cycles, and 51 cycles,
respectively. For the 4PEs and 50MHz-bus system, the CD-
MAC without cache obtains 4.96⇥ speedup compared to
that with the 10MHz-bus in scuircuit (2.91 MFLOPS !
14.4 MFLOPS). Also, the CDMAC with cache obtains 4.1⇥
speedup compared to that with the 10MHz-bus for epb1 (37.1
MFLOPS ! 153 MFLOPS).

The performance of CDMAC with cache is better than that
of without cache. Fig. 7 shows that the CDMAC with cache
attains 3.8⇥ speedup compared to the CDMAC without cache
in psmigr 2 with 3PEs and 10MHz-bus (1.95 MFLOPS !
7.32 MFLOPS). For the 50MHz-bus system, its difference is
appeared in the scalability. For example, the CDMAC with
cache on the 50MHz-bus obtains 3.2⇥ speedup from 1PE to
4PEs in torso2 (57.5 MFLOPS ! 185 MFLOPS) while that
without cache obtains only 1.4⇥ speedup (54.1 MFLOPS !
73.9 MFLOPS). This result shows that the CDMAC without
cache exhausts memory bandwidth soon, and the cache re-
duces required bandwidth for the main memory.

For all bus speeds, the performance of psmigr 2 and scircuit
are worse than other matrices because the SELL format is not
suitable for them. A random matrix needs more padding than
a regular matrix when it is converted to the SELL format. This
problem can be solved by changing store formats of the sparse
matrix. However, the applicability of store formats is outside
the scope of this paper.

IV. CACHE PARAMETER EXPLORATION

We confirmed that the CDMAC can process indirect ac-
cesses faster than a CPU through the experiments. However,
suitable parameters for the data element cache are not con-
sidered yet. To reveal appropriate parameters of the cache for
the sparse matrices, we examined cache performance on the
matrices used in the evaluation. We made a simple software
simulator for this evaluation to investigate the cache behavior
in detail. We used both FIFO and LRU as replacement policies,
but we show only the FIFO result in this paper because they
have only a few differences. Fig. 8 shows miss ratio when the
cache size and the line size are changed. Fig. 9 shows miss
ratio when the cache size and the associativity are changed.
Fig. 10 shows rates of increasing transfer bytes after cache.

As shown in Fig. 9, the miss ratio of the direct map is
worse than the other associativities. In dw8192 with 64 byte

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 1 2 3 4

dw8192 epb1 psmigr_2 raefsky scuircuit t2d_q9 torso2 dw8192 epb1 psmigr_2 raefsky scuircuit t2d_q9 torso2 dw8192 epb1 psmigr_2 raefsky scuircuit t2d_q9 torso2

10MHz 30MHz 50MHz

Ex
ec

ut
io

n
Pe

rfo
rm

an
ce

 o
f S

pM
V

(M
FL

O
PS

)

Frequency / Matrix / # PE

CPU transfer CDMAC w/o Cache CDMAC w/ Cache

Fig. 7: Performance comparison between CPU, CDMAC w/o and w/ cache

line, the miss ratio of the direct map is 54% higher than that
of the two-way set associative.

As shown in Fig. 8, the miss ratio of the cache for the band
matrices has less relationship with the cache size. Especially,
epb1 and t2d q9 have no sensitivity for cache size. However,
for the random matrices, the cache size has higher relationship
with it. Especially for psmigr 2, the miss ratio was lower than
0.07% in 32KiB cache because the cache affords to have the
whole of the input vector.

On the other hand, the bigger cache line intuitively seems
to introduce smaller miss ratio resulting in better performance.
However, as shown in Fig. 10, the bigger line increases the
amount of transferred data. For example, in scurcuit, the miss
ratio decreases to 28%, but the transferred bytes increases
2.3⇥ as the line size is changed from 8 bytes to 64 bytes.
Hence, the cache line should be determined by the trade–off
between the amount of transferred data and the number of
requests.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

dw8192 epb1 psmigr_2 raefsky1 scircuit t2d_q9 torso2

M
is

s
ra

ti
o

Matrix / Cache size

8 16 32 64Line size (bytes)

Fig. 8: Relationship between miss ratio, cache size and line
size (Associativity is fixed to 2 way set associative)

V. RELATED WORK

A. SpMV optimization on general purpose processors and
accelerators

Williams, et al. optimized SpMV on various multi–core
platforms [17]. They tried several algorithm optimization
techniques as well as cache optimization techniques.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64 8 16 32 64

dw8192 epb1 psmigr_2 raefsky1 scircuit t2d_q9 torso2

M
iss

 r
at

io

Matrix / Line size (byte)

Direct map 2way 4way Full-assiciative

Fig. 9: Relationship between miss ratio, line size and associa-
tivity (Cache size is fixed to 8192KiB)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

2K
iB

8K
iB

32
Ki

B

dw8192 epb1 psmigr_2 raefsky1 scircuit t2d_q9 torso2

D
at

a
tr

an
sf

er
 in

cr
ea

ce
 r

at
e

by
 c

ac
he

Matrix / Cache size

8 16 32 64Line size (bytes)

Fig. 10: Relative transfer bytes before and after passing
through cache (Associativity is fixed to 2way set associative)

Bell and Garland implemented SpMV in some sparse–
matrix formats on a GPU [18]. Also, Shan, et al. used a
GPU for SpMV calculation of [2]. They reported 30⇥ speedup
compared to the CPU execution.

B. List vector in vector processors

Vector processors show high execution efficiency on the
HPCG ranking list [19]. List vector is a mechanism to process
indirect accesses in parallel. Its target is a rich memory system
that can deal with many memory accesses simultaneously.
List vector enables parallel execution by sending many small
memory accesses using this many narrow memory channels.

However, this mechanism causes stalls because the load-store
unit processes it directly. The CDMAC is decoupled from a
processor instruction stream. Therefore, the processor is not
involved in the low efficiency of indirect accesses.

C. Special hardware for SpMV

Some researches implemented SpMV calculation on FPGA
for speedup. Nagar, et al. proposed a novel streaming reduction
method [4]. Its system has a shared cache for matrices and lo-
cal caches for an input vector. Fowers, et al. proposed a suited
format of a sparse matrix for their implemented architecture
[3]. Its system has many memory banks for the input vector
and executes gather operations in parallel. The paper shows
good power efficiency. Sadi, et al. co-optimized algorithm
and hardware. The proposed hardware is a combination of
an accelerator for SpMV and 3D stacked HBM [1]. Shan, et
al., who used GPU for SpMV, also implemented on FPGA [2].
They reported 29⇥ speedup compared to the CPU execution.

These solutions are not general for indirect accesses. Pro-
posed CDMAC is a general solution for indirect accesses and
it can be used in situations where applications and kernels are
switched frequently.

D. DIMMnet

A special memory module for indirect accesses was pro-
posed by Tanabe and et al [6], [20]. The module gathers
elements and store them in it. After that, processors load
the elements from it. This method can maximize effective
bandwidth between the module and the processors. It is
suitable for highly random accesses that a cache insufficiently
work for. However, if the indices are duplicated, the transfer
data contains the same data.

E. Indirect Memory Prefetch

Yu and et al. proposed a hardware prefetcher for indirect
memory accesses [5]. They hide the long memory latency by
detecting an index array and element size, and prefetching data
according to them. Their method can be used transparently. On
the other hand, our method does not require prediction. Also,
Ainsworth and Jones proposed automatic software prefetch in-
sertion by compiler [21]. Our method does not need additional
calculations for software prefetching.

VI. CONCLUSION

In this paper, we proposed Cascaded DMA Controller (CD-
MAC), which can efficiently handle indirect memory accesses.
It can overcome the latency bottleneck by adopting a streaming
manner. We also proposed a suitable cache for CDMAC, which
can withstand many cache misses. We implemented them and
vector accelerators on an FPGA board and evaluated using
sparse matrix–vector multiplication (SpMV). The CDMAC
with the cache shows a maximum speedup of 17⇥ compared
to the CPU transfer.

REFERENCES

[1] F. Sadi, L. Fileggi, and F. Franchetti, “Algorithm and hardware co-
optimized solution for large spmv problems,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, Sep.
2017.

[2] Y. Shan, T. Wu, Y. Wang, B. Wang, Z. Wang, N. Xu, and H. Yang,
“Fpga and gpu implementation of large scale spmv,” in 2010 IEEE 8th
Symposium on Application Specific Processors (SASP), pp. 64–70, June
2010.

[3] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt,
“A high memory bandwidth fpga accelerator for sparse matrix-vector
multiplication,” in 2014 IEEE 22nd Annual International Symposium
on Field-Programmable Custom Computing Machines, pp. 36–43, May
2014.

[4] K. K. Nagar and J. D. Bakos, “A sparse matrix personality for the convey
hc-1,” in 2011 IEEE 19th Annual International Symposium on Field-
Programmable Custom Computing Machines, pp. 1–8, May 2011.

[5] X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP: Indirect memory
prefetcher,” in Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48, (New York, NY, USA), pp. 178–190,
ACM, 2015.

[6] N. Tanabe, Y. Ogawa, M. Takata, and K. Joe, “Scaleable sparse
matrix-vector multiplication with functional memory and gpus,” in 2011
19th International Euromicro Conference on Parallel, Distributed and
Network-Based Processing, pp. 101–108, Feb 2011.

[7] K. Yamamoto, T. Shirakawa, Y. Oki, A. Yoshida, K. Kimura, and
H. Kasahara, “Automatic local memory management for multicores
having global address space,” in Languages and Compilers for Parallel
Computing (C. Ding, J. Criswell, and P. Wu, eds.), (Cham), pp. 282–296,
Springer International Publishing, 2017.

[8] Intel, “Embedded Peripherals IP User Guide,” 2019.
[9] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,

J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a
scala embedded language,” in DAC Design Automation Conference 2012,
pp. 1212–1221, June 2012.

[10] Intel, “Intel Arria 10 Device Overview,” 2018.
[11] Intel, “Nios II Processor Reference Guide,” 2019.
[12] Intel, “Nios II Custom Instruction User Guide,” 2019.
[13] B. A. Adhi, M. Mase, Y. Hosokawa, Y. Kishimoto, T. Onishi, H. Mikami,

K. Kimura, and H. Kasahara, “Software cache coherent control by
parallelizing compiler,” in 30th International Workshop on Languages
and Compilers for Parallel Computing(LCPC), October 2017.

[14] RISC-V Foundation, “RISC-V ”V” Vector Extension Version 0.7.2-
draft-20190616,” 2019.

[15] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, pp. 1:1–1:25, Dec. 2011.

[16] A. Monakov, A. Lokhmotov, and A. Avetisyan, “Automatically tuning
sparse matrix-vector multiplication for gpu architectures,” in Proceed-
ings of the 5th International Conference on High Performance Em-
bedded Architectures and Compilers, HiPEAC’10, (Berlin, Heidelberg),
pp. 111–125, Springer-Verlag, 2010.

[17] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Dem-
mel, “Optimization of sparse matrix-vector multiplication on emerging
multicore platforms,” in SC ’07: Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing, pp. 1–12, Nov 2007.

[18] N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, pp. 1–11, Nov 2009.

[19] R. Egawa, K. Komatsu, S. Momose, Y. Isobe, A. Musa, H. Takizawa, and
H. Kobayashi, “Potential of a modern vector supercomputer for prac-
tical applications: Performance evaluation of sx-ace,” J. Supercomput.,
vol. 73, pp. 3948–3976, Sept. 2017.

[20] N. Tanabe, B. Nuttapon, H. Nakajo, Y. Ogawa, J. Kogou, M. Takata,
and K. Joe, “A memory accelerator with gather functions for bandwidth-
bound irregular applications,” in Proceedings of the first workshop on
Irregular applications: architectures and algorithm, IA3 2011, Seattle,
WA, USA, November 13, 2011, pp. 35–42, 2011.

[21] S. Ainsworth and T. M. Jones, “Software prefetching for indirect
memory accesses,” in Proceedings of the 2017 International Symposium
on Code Generation and Optimization, CGO ’17, (Piscataway, NJ,
USA), pp. 305–317, IEEE Press, 2017.

