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SUMMARY The advancement of multicore technology has made hun-
dreds or even thousands of cores processor on a single chip possible. How-
ever, on a larger scale multicore, a hardware-based cache coherency mech-
anism becomes overwhelmingly complicated, hot, and expensive. There-
fore, we propose a software coherence scheme managed by a parallelizing
compiler for shared-memory multicore systems without a hardware cache
coherence mechanism. Our proposed method is simple and efficient. It is
built into OSCAR automatic parallelizing compiler. The OSCAR compiler
parallelizes the coarse grain task, analyzes stale data and line sharing in
the program, then solves those problems by simple program restructuring
and data synchronization. Using our proposed method, we compiled 10
benchmark programs from SPEC2000, SPEC2006, NAS Parallel Bench-
mark (NPB), and MediaBench II. The compiled binaries then are run on
Renesas RP2, an 8 cores SH-4A processor, and a custom 8-core Altera
Nios II system on Altera Arria 10 FPGA. The cache coherence hardware
on the RP2 processor is only available for up to 4 cores. The RP2’s cache
coherence hardware can also be turned off for non-coherence cache mode.
The Nios II multicore system does not have any hardware cache coher-
ence mechanism; therefore, running a parallel program is difficult with-
out any compiler support. The proposed method performed as good as
or better than the hardware cache coherence scheme while still provided
the correct result as the hardware coherence mechanism. This method al-
lows a massive array of shared memory CPU cores in an HPC setting or a
simple non-coherent multicore embedded CPU to be easily programmed.
For example, on the RP2 processor, the proposed software-controlled non-
coherent-cache (NCC) method gave us 2.6 times speedup for SPEC 2000
“equake” with 4 cores against sequential execution while got only 2.5 times
speedup for 4 cores MESI hardware coherent control. Also, the software
coherence control gave us 4.4 times speedup for 8 cores with no hardware
coherence mechanism available.
key words: multicore, software coherence control, parallelizing compiler,
shared memory, cache, soft core

1. Introduction

Shared memory Symetric Multi Processing (SMP) machine
or coherent cache architecture is one of the most widely used
computer architecture, from the simplest IoT devices, smart-
phones, real-time embedded systems, gaming PCs, servers
in the cloud to the record-breaking HPCs. Caches, or in gen-
eral hierarchical memory concepts, are commonly utilized
in an SMP system to hide the latency of larger and slower
memory. But, a private cache in a share memory multicore
has an inherent cache coherency problem.

Typically a hardware-based mechanism, either a
snoopy-based or directory-based, is utilized to manage the

Manuscript received July 1, 2019.
Manuscript revised October 29, 2019.
†The authors are with Department of Computer Science and

Engineering, Waseda University, Tokyo, 169–8555 Japan.
a) E-mail: boma@kasahara.cs.waseda.ac.jp

DOI: 10.1587/transele.2019LHP0008

cache coherence; it keeps every change made into a shared
line in one processor’s private cache always reflected to
all other processors’ cache line. Snoopy-based mechanism
tends to be simpler to implement in hardware, but its work-
ing principle relies on a shared bus to connect all the CPU
cores [1], which is not scalable for a large number of CPU
cores. Directory-based approach was later proposed to ad-
dress this scalability issues [2] but at the cost of additional
storage for the directory, extra latency, and increased in-
terconnect traffic as the mechanism keeps the directory up-
dated. For today’s multicore processor, the directory-based
cache coherence mechanism scales well [3], e.g. Intel Xeon
Phi [4], Tilera Tile64 [5]. But, despite its common usage
among current generation multicore processors, this kind of
hardware eventually becomes very complex, hot, and expen-
sive for the upcoming hundreds to thousands of core mas-
sively parallel multicore systems. Also, for a simple em-
bedded multicore CPU, its complexity makes designing and
verifying this mechanism difficult [6], further increasing the
development cost. FPGA based multicore also benefits as a
hardware-based coherence consumes extra FPGA resources.

To eliminate such complexity, hardware-based cache
coherency can be replaced with a simpler and more scal-
able software-based solution. The research on non-coherent
cache shared memory system has been started as early as
the late ’80s. At that time, the effort was about eliminating
or simplifying the notorious complexity of hardware-based
cache coherence by using a software approach. One of the
notable early works was [7], which proposed a fast selective
invalidation scheme and version control scheme for com-
piler directed cache coherence. And later on, they showed
that their proposal was capable of maintaining comparable
performance to directory-based scheme [8]. Data Flow al-
gorithm was also used to detect stale data reference, thus
improving temporal and spatial locality [9]. Several other
approaches were to simplify the hardware cache coherence
mechanism by a timestamp-based method [10], by reducing
complicated memory sharing pattern [11], or by using a self-
invalidation scheme [12]. Another approach was to enable
compiler support for automatically inserting cache manage-
ment instruction into an OpenMP parallel program to solve
stale data problem [13].

On the other side of the story, back in 2007, we devel-
oped an 8 cores multicore CPU [14] which instead of con-
sisting a single 8 core SMP in a single coherency domain,
due to a limited budget and development time it has two sets
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of 4-cores SMP cluster with each own separate coherency
domain. To utilize all 8 cores as a single SMP system, the
software has to manage the cache coherency. We were un-
able to find any off-the-shelf solution which could work for
our purpose.

The research effort on the OSCAR Compiler has been
started since 35 years ago. OSCAR Compiler is a source-
to-source multi-grain parallelizing compiler. It is capable
of automatically generating parallelized code for an SMP
cache-coherent machine with loop optimization, cache opti-
mization, power management, and other optimization [15].
In this research, we extend the capability of the OSCAR
Compiler to automatically generate a parallel code for non-
cache-coherent SMP system. We integrated several elemen-
tal compilation techniques to solve two main problems in
a non-cache coherent multicore architecture; false sharing
by data alignment, array expansion, array padding, and non-
cacheable buffer, and stale data by self-invalidation and syn-
chronization, into our OSCAR Compiler. The new compiler
module utilizes the parallelized-sections data and def-use
data from the compiler framework to solve both fundamen-
tal non-cache-coherent architecture problems.

We first introduced our concept and the preliminary
evaluation of this research in IEEE COMPSAC 2017 [16].
Our approach is the first to integrerate an automatic par-
alellizing compiler which generates code for non-cache-
coherent platform by solving both stale data and false shar-
ing problem. In the current paper, we further explained the
algorithm. In addition to the RP2 Multicore CPU, we added
more hardware platforms, the Nios II based soft CPU SoC
on FPGA. We ran some benchmarks and obtained better or
comparable performances compared to the hardware-based
approach. This research enables automatic parallelization
with a simple, easy to program and efficient Non-Cache-
Coherent (NCC) many cores processor. Right now we start
our effort from a small embedded CPU and soft CPU for
FPGA, but the same principle could be applied to a larger
system more CPU cores.

Fig. 1 The stale data problem.

2. Problems in a Non-Cache-Coherent Architecture

In a multicore SMP system, usually, a dedicated hardware
mechanism takes care of each CPU core’s private cache co-
herency. In the absence of such mechanisms, the software
should maintain coherency by itself. Writing a correctly ex-
ecuting program for a non-cache-coherent machine by hand
is a daunting task for a programmer. To achive a compiler
controlled cache coherence, the compiler has to solve the
following two fundamental problems.

2.1 Stale Data Problem

A hardware-based cache coherence ensures every change
made to the data in one of the CPU core’s cache line is
propagated to other cores and each copy of this data in other
cores are then invalidated. The process of notifying the other
processor in a snoopy-based cache coherence may impact
the performance of the processor. With a directory-based
mechanism, simultaneous access to the directory may be-
come a performance bottleneck. Meanwhile, without any
hardware cache coherence, these bottlenecks do not exist,
but the compiler should manually manage access to stale
data.

In the absence of hardware cache coherence, stale data
reference should be avoided. An update made by one of the
processor core is invisible to other cores until the changes
are written back to memory or all copies of the same data in
other cores’ cache are invalidated.

A trivial example can be seen in Fig. 1. Assume 3
integer-typed global variables are declared in the main mem-
ory, a, b, and c. All of them are stored in a single memory
line and shared by both core 0 and core 1. At first, core 1
assigns b to a. Then core 1 fetches the data into its cache
and starts updating the data, b = a. Please note that because
a, b, and c share the same line, all of them are copied into
core 1’s cache. And because of that, both a and b are zero,
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so no variable is updated. Then, core 0 would like to change
the value of a to 20. Core 0 fetches all the variable into its
cache and start to change the value of a. In the absence of
hardware coherence control, the change is not reflected in
the main memory nor core 1, hence cache coherence is not
maintained. Next, core 1 would like to change c equal to a.
Here we can see that the change made by core 0 is not re-
flected in the core 1’s cache. Therefore, c would be updated
with the stale or out of date data from the core 1 cache in-
stead of the correct data from core 0. In the end, none of the
core has the correct calculation result. The values of a, b,
and c are different in both core 0 and core 1. None of them
are correct.

2.1.1 Stale Data Handling

Based on the coarse grain scheduling result, to manage the
stale data problem, the compiler generates explicit cache
manipulation instructions to the processor, i.e., writeback,
self-invalidate, and purge. Writeback command tells the
processor to write the modified cache line to the main mem-
ory. The self-invalidate is a command for invalidating the
line of the cache memory. The purge command executes the
self-invalidate after the writing back (writeback) of the data
stored in the line of the cache memory.

The cache manipulation code is inserted into the code
segment in which communications occur between tasks run-
ning in different cores. Figure 2 is an example of the
compiler-generated code to prevent stale data reference.
Core 0 defines a new value of a shared variable A. The com-
piler automatically inserts a writeback instruction and a syn-
chronization flag on core 0’s code. The compiler also inserts
a self-invalidate instruction on core 1 right after the syn-
chronization flag. For this purpose, OSCAR Compiler uses
static scheduling. The compiler then optimize the schedules
for the task in a way to minimize the delay caused by the
synchronization. Besides, if multiple cores retain the same
data at the same time, the compiler schedules all cores in a
way to prevent the data from being simultaneously updated.

Fig. 2 Cache control code inserted by the compiler to prevent reference to stale data.

These behaviors are originally part of the OSCAR Compiler
default behaviors [17], but those behaviors also improve the
performance of the NCC architecture. These cache manipu-
lation instructions are inserted only for Read-after-Write and
Write-after-Write data dependence. Meanwhile, for Write-
after-Read, only synchronization instruction is inserted. The
OSCAR Compiler also manages the memory consistency of
the program similar to OpenMP. So, in this case, it guaran-
tees that the memory is consistent at the end of each macro
task [18]. By using this approach, stale data can be avoided.
Moreover, the overhead caused by the transmission of inval-
idating packets associated with hardware-based mechanism
can be eliminated.

2.1.2 Selective Cache Operation in Loop Parallelization

DOALL loop and reduction loop typically has no inher-
ent stale data problem because of the fact that there is
no data dependency between iterations [19]. On the other
hand, DOACROSS loop has dependency between each iter-
ation [19], hence the possibility of stale data problem. Run-
ning such DOACROSS loop in a multicore NCC architec-
ture requires insertion of cache invalidation instruction in
each inner loop iteration. While this is possible, it effec-
tively disables the function of the cache as all data should
be fetched from the shared memory. To mitigate this prob-
lem, the compiler analyzes the access pattern of the loop.
Stale data problem only exists if the array element which
is accessed by parallelized iteration shares the same cache
line [20]. Hence, the compiler inserts the cache invalidation
instruction only when required.

2.2 False Sharing Problem

False sharing is a condition in which two or more indepen-
dent data share a single cache line. Whenever one of those
data is updated, inconsistency may occur. This is due to the
granularity of the cache writeback mechanism which works
on line level instead of a single byte or word.
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Fig. 3 The false sharing problem.

Fig. 4 (A) Cache aligned loop decomposition is applied to a one-dimension matrix to avoid false
sharing. (B) Array padding is applied to a two-dimention matrix to avoid false sharing.

A simple example is provided in Fig. 3. Assume there
are 2 global variables declared in the shared main memory,
a and b. Both a and b are not related, but both share a sin-
gle cache line due to their small size. Assume a parallelized
code which requires 2 different cores to update a and b inde-
pendently at the same time. Therefore, both processor cores
have the same line in their respective cache. While core 0
only updates a and core 1 only updates b, core 0 is not aware
of the change made by core 1 on b and vice versa. Therefore,
without hardware cache coherence scheme, the final value
of a and b is always incorrect. The final result depends on
the line replacement sequence of both cores. A simple data
alignment to the beginning of each cache line usually solves
the problem, but it is not always an ideal solution. There are
several other kinds of false sharing especially in arrays that
should be handled differently.

2.2.1 Variable Alignment and Array Expansion

To prevent unrelated variables from sharing a single cache
line, the compiler aligns each variable to the beginning of a
cache line. Not only for scalar variables, but this approach

is also applicable for small sized one-dimension array. The
array can be expanded so that each element is stored in a
single cache line. While not very efficient due to potentially
wasting cache space, this approach effectively prevents false
sharing. Data alignment works best for one-dimension array
whose size is smaller than the number of cache line in all
available processor cores. It also works well for indirect ac-
cess array where the compiler has no information regarding
the access pattern of the array.

2.2.2 Cache Aligned Loop Decomposition

Loop decomposition distributes a loop inside a certain task
to several partial tasks which are then run on different pro-
cessor cores. Instead of equally distribute the number of it-
eration to each partial task, the compiler decomposes a loop
with respect to cache line size as seen in Fig. 4 (A).

2.2.3 Array Padding

A two-dimension array is not always possible to be splited
cleanly along the cache line. This is due to the lowest dimen-



ADHI et al.: COMPILER SOFTWARE COHERENT CONTROL FOR EMBEDDED HIGH PERFORMANCE MULTICORE
89

Fig. 5 Non-cacheable buffer is used to avoid false sharing.

sion of the array is not an integer multiply of the cache line
size. In this case, the compiler inserts a padding to the end
of the array to match the cache line size. This approach is
depicted in Fig. 4 (B). It should be noted that this approach,
while insignificant, may also waste cache space.

2.2.4 Data Transfer Using Non-Cacheable Buffer

In the case that cache aligned loop may cause a significant
imbalance or array padding is not preferred due to cache
space restriction or due to the structure of the program none
of the former approach cannot be applied, a non-cacheable
buffer may be used. The compiler utilizes a small area in
the main memory that should not be copied to the cache
along the border between area modified by different proces-
sor core. Figure 5 depicts the usage of non-cacheable buffer.

3. Software Cache Coherent Control by Parallelizing
Compiler

In this paper we extend the capability of the OSCAR Com-
piler. A new compiler module is written. It takes bene-
fits of the existing extensive OSCAR Compiler framework
to handle non-cache-coherent architecture. The OSCAR
Compiler is a multi-grain parallelizing compiler. The com-
piler generates a parallelized C or Fortran program using
OSCAR API [15] that allows us to automatically generate
parallel multicore code relying on a sequential compiler for
any shared-memory multicore targets available in the mar-
ket. The OSCAR Compiler currently is capable of auto-
matically generating parallelized code for an SMP cache-
coherent machine with loop optimization, cache optimiza-
tion, power management, and other optimization.

The OSCAR compiler starts the compilation process
by dividing the source program into three types of coarse-
grain tasks, or Macro Tasks (MTs): Basic Blocks (BBs),
Repetition Blocks (RBs), and Subroutine Blocks (SBs).
RBs and SBs are hierarchically decomposed into smaller
MTs if coarse-grain task parallelism still exists within the
task. Then, as all MTs for the input program are generated,

they are analyzed to produce a Macro Flow Graph (MFG).
An MFG is a control flow graph among the MTs having
the data dependence edges. Based on this information, the
compiler detects and data usage patterns, inserting self in-
validation for any suitable def-use pattern. Then A Macro
Task Graph (MTG) is generated by analyzing the Earliest
Executable Condition (EEC) of every MT and tracing the
control dependencies and data dependencies among MTs on
the MFG [15], [18].

The general idea of the proposed method is that a par-
allelizing compiler analyzes and decomposes the program
based on its control flow and data dependence, then it parti-
tions the data according to the size of the cache and checks
for false sharing possibility, then it automatically inserts
cache manipulation instruction to the program. To achieve
the goals, we made some changes to the compilation process
of OSCAR Compiler. Figure 6 depicts the proposed compi-
lation process. The grayed boxes are new steps introduced
to handle cache coherency.

As a parallelizing compiler, after figuring out the EEC
and creating coarse grain schedule, the OSCAR Compiler
automatically creates parallel sections. It also collects def-
use pattern by tracing the control and data dependency in
addition to array distribution & array access analysis and
pointer analysis [18]. Based on both informations, the pro-
posed compiler module analyzes write sharings between
parallel sections. All variables or arrays shared between
two or more parallel sections at the same time are marked.
For each of those shared variables, a simple decision tree is
taken. Depending on the kind of the shared array, a different
approach is taken to minimize the impact of false sharing.
A simple scalar variable is aligned to the cache line. Also,
a small 1-dimensional array is aligned and expanded. The
decomposition of the loop considers the size of the array to
prevent false sharing. For two-dimensional array, depend-
ing on its innermost dimension, it is padded to fit into the
cache line. If all effort fails, Non-cacheable buffer is used.
Then, for each read-after-write conflicts between simulta-
neous parallel sections the compiler inserts a self-invalidate
and synchronization. The process is described in Fig. 7.
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Fig. 7 Pseudocode for detecting and mitigating stale data and false sharing.

Fig. 6 Proposed compilation sequence.

4. Target Architecture

The target architecture of the proposed method is a non-
coherent cache architecture multicore processor which is de-
picted in Fig. 8. All processors share a single shared mem-
ory. The system should have a private cache for each core
with no hardware coherency scheme. Each of the cache line
has 2 flags, “Valid” and “Dirty”, which is just like an ordi-
nary processor. The states of each line can be explicitly ma-
nipulated by software. The compiler prevents multiple pro-

cessor to enter “Modified” state at the same time. The com-
piler also forbids load/store operation during “Stale” state.

One of the example of such architecture is the RP2
which is 8 cores multicore processor developed by Renesas
Electronics, Hitachi Ltd., Waseda University and supported
by NEDO Multi core processors for real-time consumer
electronics project [14]. Other than the RP2, we also eval-
uated our proposed method on a simple multicore Nios II
CPU on Altera FPGA. A more detailed information about
these processors is available in the performance evaluation
section.

Our proposed method can be applied to almost any kind
of inter-processor networking as our method uses the main
shared memory for synchronization and does not rely on
communication between CPU cores.

5. The OSCAR Compiler API for Non-Cache-Coherent
Architecture

The OSCAR compiler has an API to support its opera-
tion [15]. The OSCAR compiler takes a sequential C pro-
grams and generates a parallelized C code with OSCAR API
directives. The API consists of many directives for different
purposes, like power management, cache operation, and so
on. Some of the directives are subset of OpenMP directives
such as parallel section, flush and critical.

To support the NCC architecture, several new direc-
tives are added to the API [15].

• noncacheable: to indicates that a variable must not
be stored in cache.
• aligncache: to indicates that a variable should be

aligned to the beginning of the cache line.
• cache writeback: to writeback dirty cache line to the

memory.
• cache selfinvalidate: to change the state of the
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Fig. 8 Proposed cache coherency scheme.

current cache line in a local core to invalid.
• complete memop: to mark the end of cache operation.

The OSCAR Compiler generated code with OSCAR
API annotation is then processed by an API Analyzer to
convert the directives to a platform specific driver level func-
tion call such as alt dcache flush on NiosII platform to
implement OSCAR API whole data cache flush directives
flush. Another example is, on RP2 platform, the OSCAR
API aligncache directive is converted into a proper back-
end compiler API call on Renesas SuperH C Compiler to
align the cache while taking the actual configured cache line
size into account.

6. Performance Evaluation

This section shows the performance of the proposed method
on an embedded multicore the Renesas RP2, also soft CPU
core Nios II and an Intel Xeon SMP cache coherent machine
for benchmark programs from SPEC, NAS Parallel Bench-
mark and MediaBench.

6.1 The RP2 Processor

The Renesas RP2 is an 8-core embedded processor config-
ured as two 4-core SH-4A SMP clusters, with each clus-
ter having MESI protocol, jointly developed by Renesas
Electronics, Hitachi Ltd., Waseda University and supported
by METI/NEDO Multicore Processors for Real-time Con-
sumer Electronics Project in 2007 [14]. Each processor core
has its own private cache. However, there is no hardware
coherence controller between the cluster for hard real-time
applications like automobile engine control; hence, to use
more than 4 cores across the cluster, a software based cache
coherency must be used. The MESI hardware coherence
mechanism can be disabled completely. The RP2 board
as configured for this experiment has 16kB of data cache
with 32-byte line size and 128MB shared memory. The lo-
cal memory, which was provided for hard real-time control
application was not used in this evaluation. The RP2 proces-

Fig. 9 Diagram of the 8-core Nios II SoC.

sor supports several native instructions in NCC mode: write-
back operation (OCBWB instruction), cache invalidate (OCBBI
instruction), cache flush (OCBP instruction).

6.2 Eight-Core Nios II System on FPGA

To test the scalability of our system, we designed our mul-
ticore system based on Altera Nios II soft CPU core. Fig-
ure 9 is a simplified block diagram of the multicore sys-
tem. The system consists of eight Nios II CPUs with 16kB
data cache and a separate instruction cache for each cpu
core. The caches are configured as a direct-mapped, 32
bytes wide, write-back cache. All 8 cores share two banks
of 1 GB DDR4 1066 MHz main memory connected over
two Altera External Memory Controllers. The CPU cores
are connected through a series of Avalon bus, adapter, clock
bridge and Altera Platform Designer generated interconnect.
No special interconnect is required. Also, no any hardware-
based cache coherency mechanism is implemented. The
system is designed and sythesized on Altera Quartus II 18.1
and implemented on Altera Arria 10 SoC Board Develop-
ment Kit.

Each of the Nios II CPU has its own memory sections
to run the Altera HAL which provides basic C library sup-
port. Then the benchmark programs and data were run from
the main shared memory. The Nios II CPU has several na-
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tive instructions to manage its data cache manually; cache
flush (flushd instruction) and cache invalidate (initd in-
struction).

6.3 Intel Xeon Based SMP Cache Coherent Machine

To further investigate the performance impact of the pro-
posed false sharing mitigation on an SMP cache coherent
system, we ran the same OSCAR Compiler parallelized
benchmark application on such system with the self inval-
idation method turned off. The SMP system used is Intel
Xeon E5-2699 v3 CPU with 128 GB of DDR4 memory.

6.4 Benchmark Applications

To evaluate the performance of the proposed method, 10
benchmark applications from SPEC2000, SPEC2006, NAS
Parallel Benchmark (NPB), and Mediabench II were used.
The selection of the benchmark program is somewhat lim-
ited due to several factors. Our implementation runs on
a bare-metal configuration as most operating systems cur-
rently rely on an SMP system to function correctly. Also,
the Nios II SoC implementation currently does not have a
proper file system, preventing SPEC benchmark and Media-
bench from running. The RP2 board has only 128MB of
shared memory, which also limits the data sets used in the
benchmark. These benchmarks were written in C and con-
verted to Parallelizable C [21] by hand, which is similar to
MISRA-C [22] used in the embedded field.

Parallelizable C is a guideline to write a C program
that allows a parallelizing compiler to extract the full poten-
tial of a conventional compiler framework for parallelization
and data locality optimization, mainly targeting arrays and
loops. Converting to Parallelizable C is very straight for-
ward and trivial. For example, in the case of lbm benchmark,
only 3 lines of pointer related modification are required, and

Fig. 10 The performance of the proposed method on RP2 Processor for SPEC Benchmark and MediaBench.

the rest of the lbm benchmark can be parallelized automati-
cally. Aside from lbm, most other benchmark program does
not need to be changed at all.

Then, for the next step, these programs were compiled
by the OSCAR Compiler. The output C program by the
OSCAR compiler was compiled by the Renesas SuperH C
Compiler (SH C) for the RP2 processor, by Nios II GCC for
the eight-core Nios II CPU and GCC for the Intel Xeon plat-
form. The SPEC benchmark programs were run in their de-
fault configuration and datasets except lbm, which were run
with 100×100×15 matrix. All NPB benchmarks were con-
figured with CLASS S data size considering the size of the
RP2 processor board main shared memory size (128 MB).
But for the evaluation on Intel Xeon machine, we used Class
A and Class B data size in order to measure the running time
reliably.

6.5 Experimental Results and Analysis

Figures 10, 11, and 12 show the speedups by multiple cores
of the proposed method on RP2 Processor and Nios II mul-
ticore system. The blue bars show the baseline performance
on a RP2 Symmetric Multiprocessor (SMP) cluster with
MESI hardware coherence control. The orange bars show
the performance of RP2 processor with the proposed soft-
ware coherence control method on NCC architecture. The
single core performance on SMP machine was selected as
the baseline. Meanwhile, the green bars show the perfor-
mance of Nios II multicore systems. The Nios II system
performances are measured relative to its respective single
thread performance.

As shown in Fig. 10, the software coherence provides
a similar speedup compared to hardware-based coherence.
Moreover, the compiler-controlled coherency allows 8 core
CPU execution, which is formerly impossible due to the
lack of hardware coherence mechanism. It also gives a
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Fig. 11 The performance of the proposed method on RP2 Processor system for NAS Benchmark.

Fig. 12 The performance comparison of RP2 Processor and Nios II system for NAS Benchmark.

respectable speedup compared to the 4 core performance.
The performance of the proposed software cache coherence
method give us roughly 4%–14% better performance com-
pared to hardware based coherence. With hardware based
coherence, an overhead is imposed due to frequent transmis-
sion of invalidation packet between processor cores via the
interconnection bus. On the other hand, the software does
not require the transmission of such packet as the compiler
will insert self-invalidate instruction to the required proces-
sor core. For “art”, “quake” and “lbm” benchmark, is posi-
tively affected by this performance benefit of software based
coherence. In Fig. 11, we see similar performance gain for
NPB, albeit not as strong as the SPEC benchmark. NPB cg
is a conjugate-gradient calculation with many DOACROSS
loops. Selective cache operation allows it to have a better
performance by reducing the number of self-invalidation. In
Fig. 12, we can see the Nios II soft CPU SoC could run the
benchmark with respectable speed up automatically. With-
out the compiler support, writing parallel a program with a
good speedup for this platform is difficult.

Then, we would like to see the impact of each mitiga-
tion method on the performance regardless the usefulness of

the computation. We varied the combination of the method
used to run the benchmark. Figure 13 depicts the perfor-
mance impact of each proposed methods: SMP is a normal
shared memory architecture with native hardware based co-
herence. This is selected as the baseline of the measure-
ment. Stale Data Handling with Hardware Coherence:
stale data handling method with hardware based coherence
control still turned on. We can see here that the perfor-
mance is negatively impacted. This is expected since stale
data handling method is just wasting CPU clock and adding
unnecessary delay to the program with hardware coherence
control still active. But we can see here the effect of the
stale data handling negatively impacted the performance of
“lbm”. False Sharing with Hardware Coherence: false
sharing handling which comprises data alignment, cache
line aligned data decomposition, and other layout transfor-
mation with hardware coherence control still turned on. We
can see here that there is almost no significant performance
impact. The cache line wasting effect is insignificant. In
certain benchmarks, most notably “lbm”, this approach im-
proves the performance. This is to be expected since false
sharing is also bad even for hardware based cache coherence
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Fig. 13 The performance impact of software cache coherence.

Fig. 14 The performance benefit of false sharing avoidance in Intel SMP cache coherent machine on
NAS Parallel Benchmark class A data size.

control. Removing false sharing problem will improves the
performance of a hardware based coherence control. Stale
data Handling + False Sharing with Hardware Coher-
ence: this graph measures the overhead of both proposed
method for handling stale data and false sharing with hard-
ware coherence still active. Stale Data Handling + False
Sharing without Hardware Coherence: this graph shows
the performance of the proposed method with hardware co-
herence control completely turned off.

Even on an SMP cache coherent machine, while the
self invalidation scheme is not useful, the false sharing pre-
vention still helps to improve the performance as seen on
Figs. 14 and 15. But we can observe a slowdown on class B
data size due to a reduction in cache utilization.

In this paper we proposed several method to avoid false

sharing. Based on the usage statistic on Fig. 16, a simple ar-
ray alignment is deemed sufficient by the compiler. Array
padding only consist of about 2% and non-cacheable buffer
is almost never used. This is due to the relative size of the
array in the benchmark program is usually much larger com-
pared to the cache-line size, hence false sharing happened
rarely only at the edge case.

7. Conclusions

This paper proposes a method to manage cache coherency
by an automatic parallelizing compiler for non-coherent
cache architecture. The proposed method incorporates con-
trol dependence, data dependence analysis and automatic
parallelization by the compiler. Based on the analyzed
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Fig. 15 The performance benefit of false sharing avoidance in Intel SMP cache coherent machine on
NAS Parallel Benchmark class B data size.

Fig. 16 Typical False Sharing Mitigation Method Usage average on
NPB.

stale data, any possible false sharing is identified and re-
solved. Then, software cache control code is automati-
cally inserted. The proposed method is evaluated using 10
benchmark applications from SPEC2000, SPEC2006, NAS
Parallel Benchmark and MediaBench II on Renesas RP2 8
core multicore processor and a custom 8-core Nios II mul-
ticore processor on Altera FPGA. The performance of the
NCC architecture with the proposed method is similar or
better than the hardware-based coherence scheme. For ex-
ample, the hardware coherent mechanism using MESI pro-
tocol gave us 2.52 speedup on 4 cores RP2 against one
core SPEC2006 “equake”, 2.9 times speedup on 4 cores
RP2 for SPEC2006 “lbm”, 3.34 times speedup on 4 cores
RP2 for NPB “cg”, 3.17 times speedup on 4 cores RP2 for
MediaBench II “MPEG2 Encoder”. On the other hand, the
proposed software cache coherence control method imple-
mented on OSCAR Multigrain Parallelizing Compiler gave

us 2.63 times on 4 cores RP2, 4.37 times on 8 cores RP2
speedup for “equake”, 3.28 times on 4 cores RP2 and 4.76
times on “lbm”, 3.71 times on 4 cores RP2 and 5.66 times
on 8 cores RP2 for “cg”, 3.02 times on 4 cores RP2 and 4.92
times on 8 cores RP2 for “MPEG2 Encoder”.

The proposed method also allows us to automatically
parallelize and easily run the benchmark program on 8-cores
Nios II CPU which is not designed for cache coherent op-
eration. Those result shows the proposed software coherent
control method allow us to obtain comparative performance
with the traditional hardware coherence control mechanism
for the same number of processor cores. Furthermore, it pro-
vides a good speedup automatically and easily for any num-
ber of processor cores without the hardware coherent control
mechanism, while so far application programmers had to
spend huge development time to use the non-coherent cache
architecture. Further research on optimizing data reuse on
limited cache space with software-controlled cache coher-
ence should be conducted. Also, a scalability evaluation for
more CPU cores on FPGA should be further investigated.
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