
Automatic Design Exploration Framework for
Multicores with Reconfigurable Accelerators

Cecilia González-Álvarez1,2, Haruku Ishikawa1, Akihiro Hayashi1, Daniel
Jiménez-González2, Carlos Álvarez2, Keiji Kimura1, and Hironori Kasahara1

1 Waseda University
2 Universitat Politècnica de Catalunya

{cecilia,iharuku,ahayashi}@kasahara.cs.waseda.ac.jp,
{djimenez,calvarez}@ac.upc.edu,

kimura@apal.cs.waseda.ac.jp, kasahara@waseda.jp

Abstract. Despite their promising improvements in performance and power
efficiency, the possibilities of reconfigurable computing in multiprocessor
environments are still mainly unexplored. This paper presents a new frame-
work for rapid testing of multicores with application-specific reconfigurable
accelerators. The design exploration is a multi-step flow that performs au-
tomatic generation of fine-grained accelerators, automatic parallelization,
and testing. The automatic generation of accelerators is accomplished by
an in-house developed software. Automatic parallelization is performed by
OSCAR (Optimally SCheduled Advanced multiprocessoR) source-to-source
compiler. The testing platform is configured from 1 up to 8 cores, and each
core has a private reconfigurable space to implement application-specific
accelerators. We test the design process with applications from the media
domain (Optical Flow, AAC encoder, MPEG2 encoder and MPEG2 de-
coder). The results show that the multicore configuration outputs of our
design exploration framework for 8 CPUs with reconfigurable accelerators
achieve a maximum speedup of 6.57x for the Optical Flow application.

1 Introduction

Recently, heterogeneous multicores have emerged as a solution for the high-
performance and low-power market [1]. However, the enormous range of possi-
bilities of heterogeneous multicore systems makes it difficult to join the easiness
to program of homogeneous systems and the performance and power savings of
heterogeneous multicores. Besides, reconfigurable technologies for application-
specific accelerators have shown performance improvement and flexibility of
design at low cost. The addition of reconfigurable hardware to such systems
increases the challenge of designing and programming them. Therefore, design
exploration of new reconfigurable heterogeneous architectures is necessary. How-
ever, it requires considerable programming effort [2].

To address the aforementioned problems, we propose an automatic design ex-
ploration framework for a reconfigurable heterogeneous multicore architecture.

2

Our proposal helps to: significantly reduce the programming effort by automa-
tically generating reconfigurable accelerators, and automatically integrate those
accelerators into the target application. This integration is done in such a way
that OSCAR compiler [3] can auto-parallelize and synchronize them with the rest
of tasks of the application. The target architecture is a reconfigurable heteroge-
neous multicore architecture that uses tightly coupled reconfigurable units in an
otherwise homogeneous multicore to join the best of the two worlds. The recon-
figurable heterogeneous system is easily and automatically programmable with
the help of the OSCAR compiler. At the same time, the use of a new automatic
framework to program the reconfigurable units takes profit of the performance
benefits of such units. Although the use of reconfigurable functional units has
been previously studied for uniprocessors [4–7], this work explores the synergies
between reconfigurable accelerators and multicores. OSCAR API [8] supports
OSCAR parallelizing compiler and the target multicore, and it also supports the
proposed framework as a bridge between the accelerator compiler and OSCAR
compiler; thus we can easily explore the design space for accelerated multicores.

Therefore, the main contributions of this work are: (1) rapid validation frame-
work for testing of design alternatives for reconfigurable accelerators; (2) testing
of the automatic parallelization in reconfigurable multicore architectures with
accelerators automatically generated; (3) exploration of the feasibility of multi-
processor cores with reconfigurable tightly-coupled accelerators for applications
of the media domain.

The rest of the paper is organized as follows. First, Section 2 describes the
heterogeneous multicore architecture that this paper targets. Section 3 defines
the framework for the exploration of new architecture designs and explains the
methods and tools involved. Section 4 establishes the experimental setup for the
results presented in Section 5. We finalize in Section 6 with the conclusions.

2 Target Architecture
The target multicore architecture is based on the OSCAR architecture abstrac-
tion [9]. It is composed of general-purpose processor cores with tightly-coupled
reconfigurable accelerators. Each one of the cores in the multicore architec-
ture can be seen as an OpenSPARC-based core with a run-time reconfigurable
functional unit that can implement several configurations of application-specific
hardware accelerators [7]. The reconfigurable accelerator is integrated in the
general-purpose processor pipeline as an additional functional unit; therefore
it accesses the general register file. Data memory transfers are handled by the
general-purpose processor memory controller. Additionally, the reconfigurable
accelerator has an internal register file with a flexible number of configurable en-
tries to allow computations with a variable degree of instruction parallelism. We
use special instructions added to the general-purpose processor instruction set to
control the accelerator execution. We also define three extra instructions to move
multiple data from the processor register file to the accelerator, and another ins-
truction to move accelerator output data of arbitrary size back to the processor
registers, which enables multiple input and multiple output computations.

3

1.
Accelerator
exploration

2.
Hardware
generation

(Vivado
HLS)

3.
Accelerator
source-to-

source
compilation

4.
Automatic

parallel
compilation
(OSCAR)

5.
Prototyping
/ simulation

Dynamic

 profile

App

source

code

Accelerator

candidates

Accelerator

implementation

Accelerator

information

with latency

Parallelization

performance results

Executable

Source code

with hint

directives

Accelerator performance results

Fig. 1. Framework for the design of reconfigurable accelerators in a hetero-
geneous multiprocessor.

3 Design exploration and automatic parallelization
The design exploration targets the architecture of multicores with a reconfi-
gurable area for hardware accelerators described in Section 2. The exploration
enables rapid prototyping of the accelerators relying on tools for automation.
We use a feedback-based approach for constant improvement of the design. Re-
configuration gives the flexibility to adapt the design to different applications.
In our proposal programmers do not rewrite the applications because no specific
programming model is needed.

Figure 1 shows the high-level diagram of our framework implementation. The
Accelerator explorer (box 1 in Figure 1) is implemented on top of LLVM com-
piler [10]. Its inputs are the source code and the dynamic execution profile of the
application. As a result of this step, we get those parts of the application that
can be executed as custom instructions on a new accelerator. The Hardware
generator (box 2) uses information about the previous accelerator candidates
to generate the accelerator implementation in a hardware description language
(HDL), and to obtain the latency information. For this step, we rely on the pro-
prietary Vivado High-Level Synthesis (HLS) tool from Xilinx driven by our code.
The Accelerator source-to-source compiler (box 3) performs a source-to-source
compilation of the application based on the accelerator description and the ac-
celerator latency. After this step, we can pass on the transformed application
code for parallelization to the Automatic parallelizing compiler (box 4). Here,
the source code includes hint directives, which provide information about the
accelerators, such as the accelerable code fragments and their execution cost as
shown in Section 3.4, which are required for the scheduling phase in the compiler.
We use the OSCAR parallelizing compiler to schedule the parallel tasks on the
CPUs and the custom instructions on the accelerators. The OSCAR compiler au-
tomatically parallelizes C or Fortran77 programs on various multicore processors
with the help of OSCAR API[8, 3], which is an extended subset of OpenMP. The

4

compiler outputs an executable to run on the Prototype/simulator (box 5), that
is configured with the accelerator implementation information. The execution of
the application with accelerators may provide feedback about the performance
results to the Accelerator explorer and the Automatic parallelizing compiler.

In the coming subsections, we explain details about some of the design ex-
ploration steps.

3.1 Accelerator exploration
The accelerator explorer objective is to analyze the target application source
code to provide a list of the most promising accelerators to be used in the target
architecture of choice. It is divided into the Analysis and Selection phases.

Analysis This phase analyzes the source code of the application to enumerate
the groups of instructions that can be scheduled together as a new instruction
to be executed on a hardware accelerator.

The objective is to find all the maximal valid subgraphs3 of a data flow
graph for a given basic block. These subgraphs include only instructions that
can be executed in the accelerators and that satisfy the convexity constraint.
We exclude memory and branch instructions since they are regarded as invalid
instructions in the search. The search is done with a fast implementation of the
algorithm presented by Li et al. [11] using binary structures.

Selection The selection phase provides a list of possible accelerators, ordering
them by their likeliness to improve the speedup of the application. We developed
a heuristic selection of the best accelerators among the subgraphs of groups
of instructions. The heuristics are based on the profile data of the dynamic
execution of the application, the frequency of execution of the basic block and
the latency gain estimation, which is derived from the critical path in cycles
obtained in the Vivado HLS synthesis.

3.2 Accelerator generation

The accelerator generation converts the direct acyclic graph representations of
the most promising accelerators into their RTL implementation.

In a first step, we generate the equivalent C code of each accelerator with
the extra information needed for the C to HDL conversion. The resulting code
is passed to the Vivado HLS tool, which transforms that code into the RTL
design that implements the accelerator in hardware. From the real hardware
implementation, we obtain the latency of the design that we are going to use in
the integration with the OSCAR compilation framework for heterogeneous ar-
chitectures. That latency does not include the communication of the accelerator
inputs and outputs. We calculate the total latency (communication of data and
computation), with the following formula:

Totallat = Baselat +Tmem +(N/2)+M

3 A subgraph S of a graph G is maximal and valid if it is the largest possible subgraph
that does not violate some given restrictions, for instance, the convexity constraint.

5
void optflow_main_loop_bb10_1 (int *o0, int i2, int i3, int i1, int i0) {

*o0= i2<i0-1&&i3<i1-1;
}

(a) Accelerator function stub definition

#pragma oscar_hint accelerator_task (ACC_0) cycle(5)
optflow_main_loop_bb10_1(&(main_flag), i, j, NUMBERBLOCKS_X, NUMBERBLOCKS_Y);

(b) OSCAR hint directive and call to function stub

Fig. 2. Application codes with OSCAR hint directives. (a) Encapsulated code
of the part of the application that is marked to be accelerated. (b) OSCAR hint directive
with the accelerator latency, 5 for this accelerator, and the call to the stub that defines
the accelerator behaviour.

where Baselat is the latency of the design from Vivado HLS, Tmem is the
measurement of the average memory transfers latency, and N and M are the
number of inputs and outputs of the accelerator, respectively. As it can be derived
from the formula, we suppose a 2 read ports and 1 write port bank register.

3.3 OSCAR integration
The original code of the application is source-to-source compiled to include the
generated accelerators in a way that can be recognized by the OSCAR compiler.

To accomplish that, for every accelerator, first we encapsulate the involved
code in a function stub. Second, we substitute the code that targets the accelera-
tor by an OSCAR hint directive with the calculated accelerator latency, followed
by a call to the function stub with the appropriate parameters. Figure 2 shows
an example of this substitution.

3.4 OSCAR parallelizing compiler

The OSCAR parallelizing compiler takes a source code with hint directives and
automatically generates a parallelized executable for the prototyping platform
as shown in Figure 1.

Hint Directives for OSCAR Compiler OSCAR hint directives before a
function [3] indicate that the specified function can be executed on the specified
accelerator in the given latency. For example, the directive #pragma oscar hint
accelerator task (ACC 0) cycle(5) in Figure 2.b tells the OSCAR compiler that
the function optflow main loop bb10 1 takes 5 cycles on the accelerator called
ACC 0. This latency information is used in the task scheduling scheme of the
OSCAR compiler. Description of that task scheduling follows.

Multigrain Parallel Processing and Task Scheduling The OSCAR com-
piler decomposes a program into coarse grain tasks, namely macro-tasks (MTs),
such as basic block (BPA), loop (RB), and function call or subroutine call (SB)
hierarchically. OSCAR compiler can exploit not only loop level parallelism, but
also coarse-grain task parallelism and near fine-grain statement-level parallelism
[9].

6

T
im

e

MT1

MT1

MT2

MT8

MT11

MT3

MT6

MT13

MT4
MT5
MT7

MT9

MT10

MT12

MT13

CPU2
+

ACC2

EMT

MT2 MT3

MT4
w/directive

MT5
w/directive

MT6

MT8

MT11

MT7
w/directive

MT9
w/directive

MT10
w/directive

MT12
w/directive

MT13
w/directive

(a) Macro-Task Graph(MTG) (b) Scheduling Result

CPU0
+

ACC0
CPU1
+

ACC1

Fig. 3. Macro-Task Scheduling Scheme for Heterogeneous Multicore. Macro-
tasks in Subfigure (a) are mapped by OSCAR compiler in Subfigure (b) to the proce-
ssors considering data dependencies; the compiler estimates the latency of each task,
except for the accelerator latency given by hint directives.

After that, the OSCAR compiler analyzes control flow and data dependencies
among macro-tasks and generates macro-flow graphs (MFG). MFGs are trans-
formed to macro-task graphs (MTG), which show coarse-grain parallelism, after
earliest executable condition analysis [12, 13].

Then, the OSCAR compiler maps all macro-tasks to the processors stati-
cally, considering the overhead for data-transfers and synchronizations [14]. Fi-
gure 3(a) shows an example of a macro-task graph with some macro-tasks that
contain accelerator hint directives. Figure 3(b) shows the scheduling result in
a system with three CPUs (CPU0-CPU2), each one of them with their own
accelerator (ACC0-ACC2). First, the compiler assigns initially ready MT1 to
CPU0+ACC0. After that MT2 and MT3 are assigned to CPU0+ACC0 and
CPU1+ACC1 respectively, since MT2 and MT3 are ready after the execution of
MT1 on CPU0+ACC0 finishes. Similarly, the compiler assigns each task until
all tasks have been assigned. The OSCAR compiler is aware of the performance
gain with accelerators by referring the hint directives information, and otherwise
estimates the latency in the CPUs from the middle-path intermediate represen-
tation information.

4 Experimental Setup
For the results presented in this paper, our framework uses a software-based
cycle-accurate simulator called tomato for rapid testing. tomato simulates the
execution of an input application on a shared-memory multicore architecture
with the possible addition of accelerators. It can be configured with different ar-

7

1.15x

1,30x

1.23x

1.18x

1.09x

0

1

2

3

4

5

6

7

1cpu
 2cpu
 4cpu
 8cpu
 1cpu
 2cpu
 4cpu
 8cpu
 1cpu
 2cpu
 4cpu
 8cpu
 1cpu
 2cpu
 4cpu
 8cpu
 1cpu
 2cpu
 4cpu
 8cpu

OpticalFlow
 ACC encoder
 MPEG2 encoder
 MPEG2 decoder
 Average

S
p

e
e

d
u

p
 r

a
ti

o
 (

v
s

.
1

 c
p

u
)!

Speedup results for media benchmarks

No Accelerators
 Accelerator with 1 configuration
 Accelerator with all configurations

Fig. 4. Speedup results for the media benchmarks.

chitecture parameters such as number of processors, instruction set architecture,
memory model, memory latency and interconnection network type.

In this paper, we use tomato with the SPARC V9 instruction set. The number
of cores in the experiments ranges from 1 to 8. The centralized shared memory
size is 1 GB, and its latency is 60 cycles. Each general purpose processor core is
configured with a snoop cache. L1 cache size is 32 KB, and its latency is 1 cycle,
while L2 cache size is 512 KB, with 4 cycles latency. Codes where cross-compiled
for SPARC with gcc 4.2.4, optimization level flag -O3.

5 Results
In this section, we evaluate the proposed reconfigurable multicore architecture
framework. In particular, we show the performance results obtained for a set of
applications with automatically obtained configurations. Therefore, we provide
in this evaluation not only results for just sequential accelerated applications,
but specially for various parallelized applications that use accelerators.

The C benchmarks used in this evaluation are AAC encoder, Optical Flow,
MPEG2 encoder and MPEG2 decoder. These benchmarks are from known bench-
mark suites such as Mediabench [15] and OpenCV [16].

Figure 4 shows the performance results for the benchmarks in several mul-
ticore configurations. The horizontal axis is divided by application. At last it

8

shows the average values of all the performance results. For each application,
the horizontal axis shows the number of CPUs targeted in the parallelization,
from 1 to 8. For each CPU group, we show 3 type of results: CPUs without ac-
celerators (red bar), CPUs with accelerators with only 1 configuration (the most
promising one) fixed at the beginning of the execution (green bar), and CPUs
with accelerators that use all the configurations found (blue bar). This later case
may be only possible in a system with reconfiguration at execution time. The
vertical axis shows the speedup ratio. The speedup baseline is 1 CPU without
accelerators. Note that when accelerators are present all CPUs have their own
accelerator. For instance, in a system with 8 CPUs, we have 8 accelerators, one
attached to each CPU. Numbers above the bars indicate the relative speedup
between the system without accelerators and the system with all the accelerator
configurations. The total number of configurations depends on the application:
3 different configurations in Optical Flow, 20 in AAC encoder, 3 in MPEG2
encoder and 8 in MPEG2 decoder.

The best results are for the Optical Flow application with a maximum
speedup of 6.57x for 8 CPUs with all the accelerator configurations. For this
application, the speedup for 8 CPUs with accelerators is 6.57x, 1.15x more than
the 8 CPU speedup with no accelerators (5.69x). For this concrete application,
the speedup difference between each configuration with and without accelerators
is 1.35x in average. In the case of AAC encoder, though, the best speedup ratio
between the non-accelerated and the accelerated version is 1.22x. This is because
the floating-point burden of the computation is not suitable for the reconfigu-
rable silicon we target. MPEG2 encoder has a speedup of 4.78x for 8 CPU +
8 accelerators, 1.12x more than the 4.23x result of the 8 CPU version without
accelerators. MPEG2 decoder application shows poor scalability in the regular
parallelization because of the characteristics of slice level parallelism exploited
by this application. The accelerator version is influenced also from this paralleli-
zation issue, and its speedup compared to the non-accelerated version goes from
1.18x (1 CPU) to 1.09x (8 CPU). Finally, the average numbers show a speedup
up to 4.56x for 8 CPU with accelerators, in contrast with the 4.19x without ac-
celerators for the same CPU configuration. The average relative speedup for all
applications and all the multicore variations is 1.2x. Note that all the speedups
achieved with accelerator configurations require no effort to the programmer be-
cause the accelerator configurations and the hint directives for OSCAR compiler
are generated automatically.

The results presented above depend highly on the total percentage of exe-
cution time of the application where the accelerators are being used. For the
MPEG2 encoder, the average speedup of the code fragments that executes on
accelerators is 12.51x, while for the Optical Flow benchmark it is a mere 5x.
However, Optical Flow speedup results are better because its accelerators tar-
get 40% of the code, whereas the MPEG2 encoder ones cover only 25.71% of
the code. Besides, the AAC encoder has a 6.35x speedup in the 21.28% part of
the code that is accelerated. In the case of the MPEG2 decoder, only 3.04x of
speedup is obtained in 21.28% of accelerated part. These results lead to think

9

about Amdahl’s law, since a more intensive use of accelerators will result in an
overall speedup increase. Therefore, future efforts should be directed towards im-
proving the accelerators capabilities to cover more parts of the application that
for this work were excluded, as well as taking into account data-level parallelism
for super-linear speedups.

The results regarding the number of configurations used differ depending
on the application. Optical Flow has a great performance improvement with
just one accelerator added (green bar against blue bar). However, applications
AAC encoder and MPEG2 encoder can benefit from having more than only 1
accelerator. In that case, a fast reconfigurable accelerator will be desirable.

6 Conclusions
This paper has proposed an automatic design exploration framework for multi-
core architectures with tightly-coupled reconfigurable accelerators automatically
generated. We can use the framework for rapid prototyping and constant im-
provement of the design through feedback mechanisms. The automation both in
the generation of accelerators and in the parallelization with OSCAR compiler
allows the rapid prototyping to be effective. Furthermore, to our knowledge, this
is the first work that explores the use of a reconfigurable unit in a multicore
environment.

We have evaluated the framework with benchmarks from the media domain.
Results show a speedup up to 6.57x for the Optical Flow benchmark with 8
CPUs and accelerators, while the same configuration of CPUs without accel-
erators gives 5.69x of speedup. In average, for all the evaluated applications,
we reach a speedup up to 4.56x for 8 CPU with accelerators, in contrast with
the 4.19x without accelerators. It is noteworthy that the addition of accelerators
gives performance improvements over the version without accelerators that scale
regardless of the number of cores considered. This fact highlights the importance
of adding reconfigurable units to heterogeneous multicores as they provide new,
orthogonal gain to the system, otherwise impeded by Amdahl’s law.

As a future work we plan to improve the performance obtained with the
accelerators, although the speedup gain will depend on the implicit parallelism
in the code, as well as on the workload that impacts the data transfer cost.
Other future research direction includes the analysis of power reduction in the
presented architecture. Finally, we consider that in a future work we should also
include an accelerator scheduling aware of reconfiguration time, instead of the
idealized solution presented here.

Acknowledgments
This work is supported by the Ministry of Science and Technology of Spain
and the European Union (FEDER funds) under contracts TIN2007-60625 and
CSD2007-00050, by the Generalitat de Catalunya (contract 2009-SGR-980), and
by the Japanese Ministry of Technology and Education (Monbukagakusho scho-
larship). We would also like to thank the Xilinx University Program for its
hardware and software donations.

10

References
1. The Green500 List November 2012. Heterogeneous systems re-claim green500 list

dominance. http://www.green500.org/lists/green201211, 2012.
2. Jason Cong, Vivek Sarkar, Glenn Reinman, and Alex Bui. Customizable Domain-

Specific Computing. IEEE Design & Test of Computers, 28(2):6–15, March 2011.
3. Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe, Takeshi Sekiguchi,

Masayoshi Mase, Jun Shirako, Keiji Kimura, and Hironori Kasahara. Parallelizing
compiler framework and api for power reduction and software productivity of real-
time heterogeneous multicores. In The 23rd International Workshop on Languages
and Compilers for Parallel Computing (LCPC2010), Oct. 2010.

4. Scott Hauck and TW Fry. The Chimaera reconfigurable functional unit. IEEE
Transactions on VLSI Systems, 12(2):206–217, 2004.

5. Jesse Benson, Ryan Cofell, Chris Frericks, and CH Ho. Design Integration and Im-
plementation of the DySER Hardware Accelerator into OpenSPARC. Proceedings
of 18th, (Section 3), 2012.

6. Jonathon Evans, Kyle Rupnow, and Katherine Compton. Reconfigurable Func-
tional Units for Scientific Superscalar Processors. 2007 International Conference
on Field-Programmable Technology, pages 73–80, December 2007.

7. Cecilia González-Álvarez, Mikel Fernández, Daniel Jiménez-González, Carlos Al-
varez, and Xavier Martorell. Automatic Generation and Testing of Application
Specific Hardware Accelerators on a New Reconfigurable OpenSPARC Platform.
In Workshop in Reconfigurable Computing, HiPEAC, number 1, 2011.

8. K. Kimura, M. Mase, H. Mikami, T. Miyamoto, and J. Shirako H. Kasahara. Oscar
api for real-time low-power multicores nad its performance on multicores and smp
servers. Proc of The 22nd International Workship on Languages and Compilers
for Parallel Computing(LCPC2009), 2009.

9. Keiji Kimura, Yasutaka Wada, Hirofumi Nakano, Takeshi Kodaka, Jun Shirako,
Kazuhisa Ishizaka, and Hironori Kasahara. Multigrain parallel processing on com-
piler cooperative chip multiprocessor. In Proc. of 9th Workshop on Interaction
between Compilers and Computer Architectures (INTERACT-9), Feb. 2005.

10. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. International Symposium on Code Generation and
Optimization, 2004. CGO 2004., (c):75–86.

11. T. Li, Z. Sun, W. Jigang, and Xicheng Lu. Fast enumeration of maximal valid sub-
graphs for custom-instruction identification. In Proceedings of the 2009 interna-
tional conference on Compilers, architecture, and synthesis for embedded systems,
pages 29–36. ACM, 2009.

12. H. Honda, M. Iwata, and H. Kasahara. Coarse grain parallelism detection scheme
of a fortran program. Trans. of IEICE, J73-D-1(12):951–960, Dec. 1990.

13. H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara, and S. Narita. A multi-
grain parallelizing compilation scheme for OSCAR (Optimally scheduled advanced
multiprocessor). In Proceedings of the Fourth International Workshop on Languages
and Compilers for Parallel Computing, pages 283–297, August 1991.

14. Y. Wada, A. Hayashi, T. Masuura, J. Shirako, H. Nakano, H. Shikano, K. Kimura,
and H. Kasahara. Parallelizing compiler cooperative heterogeneous multicore. In
Proceedings of Workshop on Software and Hardware Challenges of Manycore Plat-
forms, SHCMP’08, Jun. 2008.

15. Chunho Lee, Miodrag Potkonjak, and William H. Mangione-smith. Mediabench:
A tool for evaluating and synthesizing multimedia and communications systems.

16. G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

