Static Coarse Grain Task Scheduling with
Cache Optimization Using OpenMP

Hirofumi Nakanot, Kazuhisa Ishizaka}, Motoki Obataf,
Keiji Kimuraf, Hironori Kasaharaf
{hnakano,ishizaka,obata,kimura,kasahara}@oscar.elec.waseda.ac.jp

tWaseda University,
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
tWaseda University & Advanced Parallelizing Compiler Project

Abstract. Effective use of cache memory is getting more important
with increasing gap between the processor speed and memory access
speed. Also, use of multigrain parallelism is getting more important to
improve effective performance beyond the limitation of loop iteration
level parallelism. Considering these factors, this paper proposes a coarse
grain task static scheduling scheme considering cache optimization. The
proposed scheme schedules coarse grain tasks to threads so that shared
data among coarse grain tasks can be passed via cache after task and data
decomposition considering cache size at compile time. It is implemented
on OSCAR Fortran multigrain parallelizing compiler and evaluated on
Sun Ultra80 four-processor SMP workstation, using Swim and Tomcatv
from the SPEC fp 95. As the results, the proposed scheme gives us 4.56
times speedup for Swim and 2.37 times on 4 processors for Tomcatv
respectively against the Sun Forte HPC 6 loop parallelizing compiler.

1 Introduction

With increasing gap between processor and memory access speeds, locality op-
timization for cache is getting more important to improve effective performance
of multiprocessor system.

Also, it is getting difficult to improve performance of multiprocessor system
dramatically using traditional loop parallel processing with maturity of loop
parallelization techniques. To overcome the difficulty and to get scalable per-
formance improvement, exploitation of multigrain parallelism, which hierarchi-
cally uses coarse grain parallelism among loops and subroutines, loop parallelism
among loop iterations and (near) fine grain parallelism among instructions or
statements [1-3], is needed.

As to cache optimization by compilers, there has been made various stud-
ies, such as, affine partitioning [4 6] which unifies multiple loop restructures,
a vertical execution of tasks after loop decomposition [7], a cache optimization
among coarse grain tasks for a single processor [8] and for shared memory mul-
tiprocessors with dynamic task scheduling [9].

This paper describes a static coarse grain task scheduling with cache opti-
mization [2,3,9] based on data localization method [10,11]. This scheme is im-
plemented on OSCAR multigrain parallelizing compiler [12]. OSCAR compiler
generates OpenMP Fortran whose coarse grain tasks are statically scheduled to
parallel threads with cache optimization from a sequential Fortran program.

In Section 2, coarse grain task parallel processing is described. Section 3
proposes a static coarse grain task scheduling with cache optimization using
OpenMP. Also, the effectiveness of the proposed schemes is evaluated on Sun Ul-
tra80 four-processor SMP workstation using Swim and Tomcatv from the SPEC
fp 95 benchmark suite in Section 4. Finally, concluding remarks are described in
Section 5.

2 Coarse Grain Task Parallel Processing

This section describes coarse grain task parallel processing, which is a part of
multigrain parallel processing. Coarse grain task parallel processing uses paral-
lelism among three kinds of macro-tasks, or coarse grain tasks, namely, block
of pseudo assignment statements (BPA), repetition block (RB) and subroutine
block (SB). The compiler decomposes a source program into macro-tasks. Also,
it generates macro-tasks hierarchically inside a sequential repetition block and
a subroutine block.

Coarse grain task parallelization by OSCAR compiler is performed in the
following steps.

1. Decomposition of a source program into macro-tasks.

2. Analysis of data and control flows among macro-tasks and generation of
Macro Flow Graph (MFG) representing data and control flows.

3. Analysis of Earliest Execution Condition (EEC) based on data and control
dependence analysis that represents the condition, on which macro-task may
start its execution earliest, and generation of Macro Task Graph (MTG) that
represents the EEC.

4. Scheduling macro-tasks to processors or processor groups.

When a macro-task graph has no conditional dependencies, macro-tasks are
statically scheduled to processors or processor clusters at a compiler time and
parallelized code is generated for each processor according to the schedul-
ing results. When macro-task graph contains control dependencies, compiler
generates dynamic scheduling routine to assign macro-tasks to processors or
processor clusters at a run time and embeds the dynamic scheduling routine
to the generated parallelized code with macro-task code in order to cope
with runtime uncertainties.

In the following, the details of the above steps are described

2.1 Generation of Macro-Tasks [13]

The compiler first generates macro-tasks, namely, block of pseudo assignment
statements (a basic block or a block merging several basic blocks), repetition

blocks and subroutine blocks from a source program. Furthermore, compiler hi-
erarchically decomposes the body of sequential repetition block and a subroutine
block.

If a repetition block (RB) is a parallelizable loop, it is divided into different
partial loops by loop iteration direction taking into consideration the number
of processors, cache size and so on. These partial loops are defined as different
macro-tasks to be executed in parallel.

2.2 Generation of Macro Flow Graph

After the generation of macro-tasks, the data and control flows among macro-
tasks for each layer are analyzed hierarchically, and represented by macro flow
graph (MFG) as shown in Fig.1(a).

In the Fig. 1(a), nodes represent macro-tasks, solid edges represent data
dependencies among macro-tasks and dotted edges represent control flow. A
small circle inside a node represents a conditional branch inside a macro-task.
Though arrows of edges are omitted in the macro flow graph, it is assumed that
the directions are downward.

2.3 Generation of Macro Task Graph

To extract parallelism among macro-tasks from macro flow graph, compiler anal-
yses Earliest Executable Condition of each macro-task. Earliest Executable Con-
dition represents the conditions on which macro-task may begin its execution
earliest.

Earliest Executable Condition of macro-task is represented in macro task
graph (MTG) as shown in Fig. 1(b).

In the MTQG, nodes represent macro-tasks. A small circle inside nodes rep-
resents conditional branches. Solid edges represent data dependencies. Dotted
edges represent extended control dependencies. Extended control dependency
means ordinary normal control dependency and the condition on which a data
dependence predecessor macro-task is not executed. Solid and dotted arcs con-
necting solid and dotted edges have two different meanings. A solid arc represents
that edges connected by the arc are in AND relationship. A dotted arc represents
that edges connected by the arc are in OR relationship. In macro task graph,
though arrows of edges are omitted assuming downward, an edge having arrow
represents original control flow edges, or branch direction in macro flow graph.

2.4 Macro-Task Scheduling

In the coarse grain task parallel processing, static scheduling and dynamic schedul-
ing are used for assignment of macro-tasks to processors or processor clusters
which are defined by compiler. A suitable scheduling scheme is selected consid-
ering the shape of macro task graph and target machine parameters such as the
synchronization overhead, data transfer overhead and so on.

— Data Dependency
-------- Extended Contorol Dependency

O Conditional Branch

—— Data Dependency

----------- Control Flow 7\ AND
iy g A OR
O Conditional Branch > Original Control Flow

(a) Macro Flow Graph (MFG) (b) Macro Task Graph (MTG)

Fig. 1. Macro Flow Graph and Macro Task Graph

If a macro task graph has only data dependencies and is deterministic, static
scheduling is selected. In the static scheduling, assignment of macro-tasks to
processors or processor clusters is determined by a scheduler at compile time.
Static scheduling is useful since it allows us to minimize data transfer and syn-
chronization overhead without run-time scheduling overhead.

If a macro task graph has control dependencies, dynamic scheduling is se-
lected to cope with runtime uncertainties like conditional branches. Scheduling
routine for dynamic scheduling are generated and embedded into a parallelized
program with macro-task code by the compiler to eliminate the overhead for
runtime thread scheduling by OS.

3 Static Coarse Grain Task Scheduling with Cache
Optimization

In this section, the static scheduling algorithm considering cache optimization
for coarse grain task parallel processing is described. In this paper, macro-tasks

are assigned to processors, or threads, because the SMP machine used for this
performance evaluation has only four processors.

The overview of the proposed algorithm is shown below. When a macro-task
MT; is executed on a processor, the data defined or referred in MT; is likely to
be on cache of the processor when the macro-task finishes. If a succeeding macro-
task MT; that shares a lot of data with MT; is assigned to the same processor
immediately after MT;, a large portion of the shared data can be transferred
from MT; to MT); through a cache.

3.1 Macro-Task Decomposition

In the case where the amount of data defined or referred in a macro-task MT;
is much larger than cache size, even if a macro-task MT; which shares a large
amount of data with MT; is assigned immediately after MT;, a large part of
shared data would be already replaced, and couldn’t be transferred through a
cache to M1T};. Therefore, in this case macro-tasks and data should be decom-
posed into smaller macro-tasks with data fitting to cache.

To reduce data transfer overhead among macro-tasks assigned to different
processors and to transfer the shared data through a cache between macro-tasks
assigned to the same processor, a loop aligned decomposition [10,11] considering
both amount of shared data and parallelism among macro-tasks is useful.

The loop aligned decomposition can be applied to arbitrary macro-task graph,
in which RBs like doall loops and reduction loops are connected by data depen-
dence edges.

3.2 Static Scheduling Algorithm DT-Gain/CP/MISF_DLG

This section proposes DT-gain/CP/MISF_DLG algorithm (Data Transfer Gain/Critical
Path/Most Tmmediate Successors First considering Data Localization Group).
This algorithm schedules macro-tasks to processors so that tasks inside a Data
Localization Group (DLG), which is a group of tasks generated by Loop Aligned
Decomposition sharing the large data, are assigned to the same processor and
a task outside DLG or an entrance task of a DLG are assigned to a processor
having the largest Data Gain, or the most shared data to be accessed by the
task. If there are multiple combinations of a ready task and a processor having
the same Data Gain, a combination with a task having the largest path length to
the exit node on the MTG (Macro Task Graph) is chosen. Furthermore, if there
are multiple such combinations, a combination with a task having the largest
number of immediate successors is chosen.
The details of the algorithm are follows.

Step 1 : Calculate the largest path length, or CP, from each task node to the
exit node on a target Macro Task Graph (MTG).

Step 2 : Find ready tasks of which the all preceding tasks finish their execution
or preceding task does not exist.

Step 3 :If thereis a ready task belonging to a Data Localization Group of which
one or more preceding tasks inside the same DLG are already assigned to
a processor, assign the ready task to the same processor as the preceding
tasks.
Repeat Step 3 until such ready tasks does not exist

Step 4 : Calculate Data Gain for every combination of ready tasks out side
DLG or a ready task that is an entrance node of a DLG and idle processors.
Here, Data Gain is an amount of shared data existing on each processor to
be accessed by the ready task and means the data transfer amount to be
reduced if the ready task is assigned to the processor.
Assign a ready task to a processor in the combination with the largest Data
Gain. If there are combinations with the same largest data gain, choose
a combination including a ready task having the largest CP as the above
combination. Furthermore, if there are combinations having the largest CP,
choose a combination including a ready task having the most immediate
succeeding tasks.
If there exist tasks that have not been assigned, go to Step 2. Otherwise
finish scheduling.

4 Performance Evaluation

This section describes performance evaluation. Performance is evaluated on Sun
Ultra80 four-processor SMP workstation using Swim and Tomcatv from the
SPEC fp 95.

4.1 OSCAR Fortran Multigrain Parallelizing Compiler

OSCAR Fortran multigrain parallelizing compiler, on which the proposed schedul-
ing scheme, consists of a front end, a middle path and multiple back ends is as
shown in Fig. 2.

A front end reads in Fortran77 and OpenMP and generates intermediate
language.

A middle path analyses control flow and data dependence, restructures pro-
gram, generates macro-tasks and exploits parallelism. It statically schedules
coarse grain tasks considering cache optimization and generates parallelized in-
termediate code.

In OSCAR Fortran compiler, variety of back ends as shown in Fig. 2 are
provided for different target machines like OSCAR multiprocessor system [13],
UltraSparc processors, Fujitsu VPP vector supercomputers, heterogeneous clus-
ter computing system with STAMPI and SMP machines with OpenMP. They
generate assembly codes or parallelized Fortran codes with library calls or direc-
tives for each target machines.

The proposed static scheduling scheme for coarse grain tasks considering
cache optimization is implemented on the middle path. Our coarse grain task

parallel processing using OpenMP [3, 9] uses “one time single level thread gener-
ation method” which forks and joins threads only once at the beginning and the
end of execution respectively to reduce thread generation overhead. However, this
method realizes hierarchical coarse grain task parallel processing using OpenMP,
regardless single level thread generation, by generating different codes for each
thread [9]. The generated OpenMP Fortran is compiled by a native compiler
for target machine and executed. In other words, OSCAR Fortran multigrain
parallelizing compiler is used as a preprocessor that translates Fortran77 into
parallelized OpenMP Fortran.

-
Front End
Tntermediate Language’

Middle Path
Multi Grain Parallelization
-Coarse Grain Parallelization
-Loop Paralldlization
ear Fine Parallelization

Dynamic Scheduler Generation
Static Scheduling

A// / \ \““‘A;“;““A

[OSCAR] [VPP] [OpenMP] [SI’AMPI] (Ultra Sparc) 1"Power PC 1

Back End Back End Back End Back EndJ) 'Back End _, 1Back End !
i i
v v v + v v
ative VPP OpenMP Fortran ,“Native ">, ,“Native >,
Machine Fortran Fortran +STAMPI) (Machine ; 1 Machine |
Code (MPI2) ~Code _+ ~Code -
for OSCAB 2% S

Fig. 2. A Composition of OSCAR Fortran Multigrain Parallelizing Compiler

4.2 Evaluation Environment

This subsection describes multiprocessor workstation Sun Ultra80, its compiler
and benchmark programs used for the evaluation.

The specification of Sun Ultra80 four-processor SMP workstation and Forte
loop automatic parallelizing compiler are shown in Table 1. Also, the used com-
pile option for Forte compiler is shown in Table 2. In Table 2, Forte means
compile options used in Forte compiler for a single processor and for automatic
parallelization. Also OSCAR means compile options when OpenMP codes gen-
erated by OSCAR compiler are compiled by Forte compiler.

As application programs for the evaluation, Swim and Tomcatv from the
SPEC fp 95 benchmark suite are used. Ref data set is used as input data.

In this evaluation, some parts of program sources are restructured by hand
because the current version of OSCAR compiler has concentrated on developing
original schemes and has not implemented some traditional program restructur-
ing techniques. For example, in Swim, three subroutines, CALC1, CALC2 and
CALCS3, consume large execution time. These subroutines share a large amount

Table 1. The Specification of Sun Ultra80

Vender Sun Microsystems

CPU 450MHz UltraSPARC-IT
4 processors SMP

L1 Instruction|16Kbyte

Cache Pseudo 2-Way Set Associative
Line size: 32byte

L1 Data 16Kbyte, Direct-Map

Cache Line size: 32byte

(Two 16byte sub-blocks)
Write-through
Non-allocating

L2 4Mbyte, Direct-Map
Unified Line size: 64byte
Cache Write-back, Allocating
Main Memory |1024Mbyte

(ON Solaris8

Compiler Forte[tm)]

HPC 6 update 1

Table 2. Compile Option

Single processor|Multiprocessor
Forte -fast -parallel
-reduction
-stackvar

-fast

OSCAR -fast
-explicitpar

-mp=openmp

of data. For these three subroutines, inline expansion and flexible cloning [14]
are manually applied. Also, in Tomcatv, an array size is input from an input file
at runtime. However, in this paper, array size of ref data set is described as a
parameter to use static scheduling. Also, loop interchange and array subscript
exchange are manually applied for Tomcatv.

Performance evaluation results for the restructured Swim and Tomcatv are
shown in Fig. 3, 4, respectively. These figures show speedup against sequential
execution time by Forte compiler for a single processor. Also, each execution
time was measured five times and the fastest time was as the plotted result.

In Fig. 3, the sequential execution time of Swim compiled by Forte was 99.7
seconds. The speedups (execution times) of automatic loop parallelization by
Forte compiler were 1.51 times (66.1 seconds) for 2PEs, 1.60 times (62.5 seconds)
for 3PEs and 1.66 time (60.2 seconds) for 4PEs. When OSCAR compiler was
used as a preprocessor of Forte compiler, the speedups (execution times) were

1.23 times (81.3 seconds) for 1PE, 2.08 times (47.9 seconds) for 2PEs, 3.59 times
(27.8 seconds) for 3PEs and 7.55 times (13.2 seconds) for 4PEs. The speedup by
the proposed scheme was super linear by successful cache optimization.

In Fig. 4, the sequential execution time of Tomcatv compiled by Forte was
107.8 seconds. The speedups (execution times) of automatic loop parallelization
by Forte compiler were 1.28 times (84.3 seconds) for 2PEs, 1.36 times (79.3
seconds) for 3PEs and 1.37 time (78.6 seconds) for 4PEs. When OSCAR compiler
was used as a preprocessor of Forte compiler, the speedups (execution times)
were 1.07 times (101.1 seconds) for 1PE, 1.68 times (64.0 seconds) for 2PEs,
2.12 times (50.9 seconds) for 3PEs and 3.26 times (33.1 seconds) for 4PEs.

At these evaluations, L2 cache misses in Swim compiled by Forte compiler
were about 3.4 x 108 for 1PE, 3.2 x 108 for 2PEs, 3.1 x 10% for 3PEs and 3.0 x 103
for 4PEs. On the contrary, L2 cache misses of OSCAR compiler were about
2.0 x 108 for 1PE, 1.8 x 10® for 2PEs, 9.3 x 107 for 3PEs and 4.5 x 107 for 4PEs.
Also, though L2 cache misses in Tomcatv compiled by Forte compiler were about
2.7 x 10® for 1PE, 3.8 x 10® for 2PEs, 3.9 x 103 for 3PEs and 4.0 x 10® for 4PEs,
L2 cache misses of OSCAR compiler were about 2.0 x 10® for 1PE, 2.4 x 108 for
2PEs, 1.3 x 10® for 3PEs and 9.3 x 107 for 4PES.

These results show the proposed static coarse grain task scheduling scheme
realizes 4.56 times and 2.37 times speedup against Forte compiler for Swim and
Tomcatv by the improvement of L2 cache hit.

5 Conclusions

This paper has proposed a static coarse grain task scheduling with cache opti-
mization using OpenMP. The proposed scheme is implemented on OSCAR For-
tran multigrain parallelizing compiler, sequential Fortran is input and OpenMP
Fortran whose coarse grain tasks are statically scheduled with cache optimization
is output.

Its performance is evaluated on Sun Ultra80 four-processor SMP workstation,
using Swim and Tomcatv from the SPEC fp 95. The results of evaluation show
us that speedups of Swim and Tomcatv for 4 processors were 7.55 times and 3.26
times respectively against sequential execution time of them compiled by Forte.

A part of this research has been supported by METI/NEDO Millennium
Project IT21 “Advanced Parallelizing Compiler” and STARC “Compiler coop-
erative single chip multiprocessor” project.

References

1. APC. http://www.apc.waseda.ac.jp/.

2. M. Okamoto, K. Aida, M. Miyazawa, H. Honda, and H. Kasahara. A hierarchical
macro-dataflow computation scheme for oscar multi-grain compiler. Trans. IPSJ,
35(4):513-521, 1994.

3. H. Kasahara, M. Obata, and K. Ishizaka. Automatic coarse grain task parallel
processing on smp using openmp. In Proc. 12th Workshop on Languages and
Compilers for Parallel Computing, Aug 2000.

speedup %

speedup %

800

700

600

500

400

300

200

100 }

350

300

250

200

150

100

50

13.2][s]

Our scheme —+——
n Forte ---x---

number of processors

Fig. 3. Speedup of Swim

Our scheme —+—— 33.1[s]
Forte --—-x---

number of processors

Fig. 4. Speedup of Tomcatv

10.

11.

12.

13.

14.

A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitioning algorithm to
maximize parallelism and minimize communication. In Proc. 13th ACM SIGARCH
International Conference on Supercomputing, Jun 1999.

A.W. Lim, S. Liao, and M. S. Lam. Blocking and array contraction across arbitrar-
ily nested loops using affine partitioning. In Proc. of the Eighth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Jun 2001.

A. W. Lim and M. S. Lam. Cache optimizations with affine partitioning. In Proc.
of the Tenth SIAM Conference on Parallel Processing for Scientific Computing,
Mar 2001.

S. Vajracharya, S. Karmesin, P. Beckman, J. Crotinger, A. Malony, S. Shende,
R. Oldehoeft, and S. Smith. Smarts: exploiting temporal locality and parallelism
through vertical execution. In Proc. of the 1999 international conference on Su-
percomputing, Jun 1999.

D. Inaishi, K. Kimura, K. Fujimoto, W. Ogata, M. Okamoto, and H. Kasahara. A
cache optimization with earliest executable condition analysis. In Technical report
of IPSJ, Aug 1998.

K. Ishizaka, M. Obata, and H. Kasahara. Coarse grain task parallel processing with
cache optimization on shared memory multiprocessor. In Proc. 14th Workshop on
Languages and Compilers for Parallel Computing, Aug 2001.

A. Yoshida, K. Koshizuka, M. Okamoto, and H. Kasahara. A data-localization
scheme among loops for each layer in hierarchical coarse grain parallel processing.
Trans. IPSJ, 40(5):2054-2063, 1999.

A. Yoshida, S. Yagi, and H. Kasahara. A data-localization scheme for macrotask-
graph with data dependencies on smp. In Technical report of IPSJ, 2001-ARC-141,
Jan 2001.

H. Kasahara. Parallel Processing Technology. CORONA PUBLISHING CO., LTD.,
1991.

H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara, and S. Narita. A multi-
grain parallelizing compilation scheme for oscar. Proc. 4th Workshop on Languages
and Compilers for Parallel Computing, Aug 1991.

K. Yoshii, G. Matsui, M. Obata, S. Kumazawa, and H. Kasahara. An analysis-time
procedure inlining scheme for multi-grain automatic parallelizing compilation. In
Technical report of IPSJ, ARC/HPC, Mar 2000.

