
Selective Inline Expansion
for Improvement of Multi Grain Parallelism

Jun Shirako†, Kouhei Nagasawa††, Kazuhisa Ishizaka†, Motoki Obata†††, Hironori Kasahara†

Department of Computer Science, Waseda University†

3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan†

Fujitsu Limited†† Hitachi, Ltd.†††

{shirako,nagasawa,ishizaka,obata,kasahara}@oscar.elec.waseda.ac.jp

ABSTRACT
This paper proposes a selective procedure inlining scheme
to improve a multi-grain parallelism, which hierarchically
exploits the coarse grain task parallelism among loops, sub-
routines and basic blocks and near fine grain parallelism
among statements inside a basic block in addition to the
loop parallelism. Using the proposed scheme, the par-
allelism among different layers(nested levels) can be ex-
ploited. In the evaluation using 103.su2cor, 107.mgrid
and 125.turb3d in SPEC95FP benchmarks on 16 way IBM
pSeries690 SMP server, the multi-grain parallel process-
ing with the proposed scheme gave us 3.65 to 5.34 times
speedups against IBM XL Fortran compiler and 1.03 to
1.47 times speedups against conventional multi-grain par-
allelization.

KEY WORDS
Parallel Processing, Automatic parallelizing compiler,
Multi grain parallel processing, Program restructuring

1 Introduction

In automatic parallelizing compilers for multi-processor
systems, the loop parallelization techniques have been re-
searched extensively [1]. However, the loop parallelization
techniques are almost matured and new generation paral-
lelization techniques like multi-grain parallelization are re-
quired to extract more parallelism inside a program. As the
compiler trying to exploit multiple levels of parallelism,
NANOS compiler[2] extracts the multi-level parallelism
including the coarse grain task parallelism by using ex-
tended OpenMP API. PROMIS compiler[3] hierarchically
combines Parafrase2 compiler using HTG and symbolic
analysis techniques with EVE compiler for the fine grain
parallel processing. The OSCAR multigrain parallelizing
compiler[4, 5] extracts two parallelism in addition to the
loop parallelism. One is the coarse grain task parallelism
among loops, subroutines and basic blocks. Another is
near fine grain parallelism among statements inside a ba-
sic block.

In multi-grain parallelization in OSCAR compiler, a
sequential program is decomposed into coarse grain tasks
called macro-tasks(Basic Block, Repetition Block and Sub-

routine Block). Considering data dependence and control
flow among macro-tasks, the compiler generates macro-
task graph which extracts the coarse grain task paral-
lelism. For efficient multi-grain parallelization, the com-
piler should determine how many processors are assigned
to macro-tasks and which parallelizing technique, such as
coarse grain, loop, near fine grain, is applied to each nested
program layer, according to the parallelism of each level of
macro-task graph [6, 7]. Intend to optimize task size and
parallelism considering over-head of communication and
synchronization, partitioning and scheduling schemes[8]
and the lazy task creation scheme[9] have been proposed
for SISAL language and fine grain tasks. However, for or-
dinary Fortran language and multi-grain tasks, no research
has been performed.

Also, inter-procedure analysis and inline expansion
of subroutines containing large parallelism is important to
exploit multi-grain parallelism. About the inter-procedure
analysis, a lot of schemes to parallelize loops have been re-
searched. For example, SUIF compiler[10] performs anal-
ysis in two passes(bottom-up pass and top-down pass for
the call graph), applies selective procedure cloning to avoid
the loss of analysis precision considering code size.

This paper presents a selective inline expansion
scheme to improve multi-grain parallelism and processor
assignment method to each hierarchical macro-task graph.
Also, the performance of the proposed scheme is evaluated
on IBM 16 way SMP server pSeries690.

2 Coarse grain task parallel processing

This section describes the overview of the coarse grain
task parallel processing in OSCAR multi-grain paralleliz-
ing compiler[11].

2.1 Generation of macro-tasks

OSCAR compiler first generates the macro-tasks(MTs),
namely, block of pseudo assignment statements
“BPA”(similar to basic blocks), repetition blocks “RBs”(or
loops) and subroutine blocks(caller of subroutine) “SBs”
from a source program. Furthermore, compiler hierarchi-
cally decomposes the body of a sequential repetition block



and a subroutine block.

2.2 Extraction of coarse grain task paral-
lelism

After generating macro-tasks, the data dependency and
the control flow among macro-tasks for each nested layer
are analyzed hierarchically and represented by the macro
flow graph(MFG)[4, 12, 11]. Then, to extract coarse grain
parallelism among macro-tasks, Earliest Executable Con-
dition analysisis applied to Macro flow graphs. Earliest
Executable Condition represents the conditions on which
macro-task may begin its execution earliest. By this analy-
sis, macro-task graph(MTG)[4, 12, 11]. is generated from
macro flow graph. Macro-task graph represents coarse
grain parallelism among macro-tasks.

2.3 Macro-task scheduling to processor
groups and processor elements

To execute each nested macro-task graph efficiently, the
compiler has to group processors hierarchically. OSCAR
compiler groups processor elements(PEs) into Processor
Groups(PGs) virtually, then a macro-task is assigned to the
PG. If a hierarchical macro-task graph can be generated in-
side a macro-task, processor elements in a processor group
can be also grouped into multiple processor groups to exe-
cute hierarchical macro-tasks.

3 Automatic determination of parallel pro-
cessing layer

The compiler must decide the number of PGs and PEs ap-
propriately considering each parallelism of MTG. This sec-
tion presents the solution of this problem.

3.1 Calculation of parallelism of each MTG

First, the proposed determination scheme estimates paral-
lelism of macro-task graph(MTG) from sequential execu-
tion cost and critical path length, or CP length which is
the longest path length from entry node to exit node, of
MTG. MTG’s sequential execution cost means the sum of
all MT’s execution time in the MTG, as to control flow and
control branch probability. The way to calculate execu-
tion cost of macro-tasks is as follows. An execution cost
of block of pseudo assignment statements(BPA) is the to-
tal cost of all instructions inside BPA. A processing cost
of repetition block “RBs” is the cost of loop body(MTG)
multiplied by the number of the loop iterations. An exe-
cution cost of subroutine block(SB) is the execution cost
of a called subroutine. By using these sequential execu-
tion cost, the parallelism is defined as follows. MTGi’s
sequential execution cost is Seqi, the coarse grain task par-
allelism Parai is defined as

MT3
SB
10000

MT4
DOALL
10000

MT1
LOOP
10000

MT2
SB
10000

MT3−1
DOALL
10000

MT2−1
BPA
10

MT2−2
LOOP
9990

MT2−3
LOOP
9990

MTG0 MTG2

MTG3

1st layer 2nd layer

Figure 1. Hierarchical MTG for assignment of processors

Parai = Seqi / CPi

where, critical path length is CPi. dParaie shows min-
imum number of PGs to execute MTGi in CPi.

Second, Para ALD(Para After Loop Division)
is defined as total parallelism of coarse grain task and
loop iteration level parallelism. In the proposed proces-
sor groups determination scheme, Tmin represents a min-
imum task cost for loop parallelization considering over-
heads of synchronization and task scheduling on each tar-
get multiprocessor system. To convert loop parallelism to
coarse grain task parallelism, a parallelizable RB is divided
into sub RBs having larger cost than Tmin. However, in
this phase the compiler doesn’t actually divide RBs. It di-
vides only for the calculation of Para ALD. This coarse
grain parallelism among divided sub RBs is named con-
verted loop parallelism. CP ALDi is defined as criti-
cal path length of MTGi, assuming the RBs are divided.
Para ALDi is represented by

Para ALDi = Seqi / CP ALDi

Para and Para ALD represent the parallelism of
MTG. On the other hand, as the enough number of proces-
sors to use all parallelism of a MT and the MTGs included
in it,

Hierarchical Para maxi = dParaie ×
Converted Loop Parai ×
maxj(Hierarchical Para maxi j)

is defined. Here, Converted Loop Parai is MTi’s
converted loop parallelism. maxj(Hierarchical Para
maxi j) is the maximum Hierarchical Para max in
macro-tasks of MTGi.

3.2 Determination scheme of the number of
PGs and PEs

Using Para, Para ALD, and Hierarchical Para
max, the proposed scheme determines the combination of
the number of processor groups and processor elements for
each macro-task graph. This section describes the process
of this determination.

step.1
Let’s assume the number of processors available for

MTGi is NAvail PEi. The numbers of PGs and PEs of



Table 1. Parallelism of each layer in fig.1

Seq.cost[u.t] CP [u.t.] CP ALD[u.t.] Para Para ALD H Para max (PG, PE)
MTG0 40000 30000 21000 1.33 1.90 20 (2PG, 2PE)
MTG2 10000 10000 10000 1.00 1.00 1 (1PG, 1PE)
MTG3 10000 10000 1000 1.00 10.00 10 (2PG, 1PE)

MTGi are denoted as NPGi and NPEi. In this scheme,
NPGi and NPEi should meet next conditions.

Parai ≤ NPGi ≤ Para ALDi

and
NPGi × NPEi = NAvail PEi

Here, the combination of (NPGi, NPEi) which maxi-
mumizes NPGi is selected. Because MTGs in upper level
naturally have larger execution costs than lower level of
MTGs. It means the overheads of task scheduling and syn-
chronization can be kept relatively small in upper level of
MTGs.

step.2
Here, NPEi is the number of processors as-

signed to MTi j , or the jth macro-task of MTGi.
Hierarchical Para maxi j shows the enough number
of processors to execute MTi j efficiently. Therefore,
maxj(Hierarchical Para maxi j) represents the upper
limit of NPEi. If NPEi is

NPEi > maxj(Hierarchical Para maxi j),
the possibility of overheads of unnecessary synchro-

nization and task scheduling is high, because of too
many processors. To avoid such case, NPEi is changed
to maxj(Hierarchical Para maxi j) and NPGi is ad-
justed to Hierarchical Para maxi.

By applying step.1 and step.2 to each macro-task
graph from upper to lower, all combinations of (NPGi

�

NPEi) are determined.

3.3 An example of assignment of processors

Next, this section explains the determination scheme of
the number of PGs and PEs using Figure 1. This fig-
ure consists of hierarchical macro-task graphs, namely the
first level of MTG0 and the second level of MTG2 and
MTG3. A node represents a macro-task, a solid edge rep-
resents data dependency and a dashed edge represents con-
trol dependency. DOALL is a parallelizable RB, LOOP is
a sequential RB which can’t be parallelized. Let’s assume
Tmin = 1000[u.t.](u.t. : unit time), the inner MTGs of
MT1, MT4, MT2 2, MT2 3 and MT3 1 have no paral-
lelism. The number of available processors is supposed as
4 in MTG0. The parallelisms of these MTGs are shown in
Table 1.

In MTG0, the number of available processors is 4,
namely NAvail PE0 = 4. Since Para0 = 1 ≤ NPG0 ≤
Para ALD0 = 2 and NPG0 × NPE0 = 4, (NPG0,
NPE0) = (2PG, 2PE) is chosen by step.1 of subsection

3.2. Hierarchical Para max3 = 10 > 2, MT3 needs
2 processors. Then, step.2 determines MTG0 is executed
by(2PG, 2PE).

Next let’s see MTG2. Since NAvail PE2 = 2 and
Para ALD2 is 1, (NPG2, NPE2) = (1PG, 2PE) is chosen
by step.1. However, because Hierarchical Para max is
1, NPE0 is changed to 1 by step.2. Therefore, (1PG, 1PE)
is defined as the combination of PG � PE of MTG2. Also,
MTG1 included in MT1 is determined as (1PG, 1PE). For
MTG2, NAvail PE2 = 2 and Para3 = 1 < NPG3 <
Para ALD3 = 10, so (2PG, 1PE) is selected. The results
of these determinations of (NPG, NPE) are shown in table
1.

After these determination, the macro-tasks like
DOALLs are divided by NPG of MTG including them.
Then, MT4 is divided by NPG0 = 2, becomes MT4a and
MT4b. Also, MT3 1 is divided by 2, becomes MT3 1a and
MT3 1b.

Here, let’s compare loop parallelization and multi-
grain(coarse grain and loop) parallelization using an ex-
ample, executing the program of figure 1 on 4 proces-
sors machine. In the ordinary loop parallelization, MT1

and MT2 are executed by single processor. MT3−1 in
MTG3 and MT4 are DOALL, and are executed by 4 pro-
cessors in parallel. Therefore, the total execution time is
10000 + 10000 + 10000/4 + 10000/4 = 25000[u.t.]. On
the contrary when multi-grain parallelization is used, a pro-
cessor group(which is named PG0) processes MT2

� MT3
�

MT4a and another processor group(which is named PG1)
processes MT1, MT4b. The total execution time is the pro-
cessing time of PG1’s processing time, 10000+10000/2+
5000/2 = 17500[u.t.]. Then multi-grain parallel process-
ing can shorten execution time by 7500[u.t.], compared
with the loop parallelization.

4 Inline expansion scheme to increase paral-
lelism

Multi-grain parallel processing can use loop parallelism
and coarse grain task parallelism hierarchically. However,
the scheme mentioned above gives priority to upper MTG,
may not assign enough processors to execute the MTG in
lower nested level. When the subroutine blocks(SBs) in
lower nest level have large parallelism, processors can ex-
ecute much more efficiently by inlining these SBs and in-
creasing the parallelism of upper MTGs. This section de-
scribes the selective inlining scheme to improve multi-grain



parallelism.

4.1 Parallelism included by MT

Section 3 defined Hierarchical Para max as the upper
limit of the number of the processors for using the all par-
allelism of a macro-task efficiently. Also, in order to rep-
resent the necessary number of processors to use all par-
allelism among a macro-task, Hierarchical Para is de-
fined as follows. First, it’s assumed all parallelizable RBs
in MTi is divided so that a divided portion is larger than
Tmin. Hierarchical CPi is defined as the total sum of
critical path from lower level to MTi’s level. In other
words, when Hierarchical CPi j is considered as the
minimum execution cost of MTi j(which is inner macro-
task of MTGi), Hierarchical CPi is the longest path
length of these minimum execution cost. If MTi is un-
parallelizable RB, Hierarchical CPi is multiplied by the
number of iterations. Hierarchical Parai is defined as

Hierarchical Parai = SeqMTi
/

Hierarchical CPi

where SeqMTi
is MTi’s sequential execution cost. In

the following discussion, dHierarchical Paraie is con-
sidered as the lower limit of the number of processors to
execute MTi in Hierarchical CPi.

Para inl ALDi is defined as the parallelism of
MTGi after all subroutine blocks(SBs) are inline ex-
panded. All SBs are inlined, and each parallelizable
RB in MTGi is converted to sub RBs, then the critical
path length of This MTGi is defined as CP inl ALDi.
Para inl ALDi is represent by

Para inl ALDi = Seqi / CP inl ALDi

If MTi is subroutine block(SB), Para inl ALDi

stands for the total parallelism of coarse grain task and loop
which is available in upper level of MTG by inlining.

4.2 Selective inlining considering parallelism

The proposed scheme applies inline expansion only to
SBs which requires more processors than assigned by
the determination scheme presented in section 3, using
Hierarchical Para and Para inl ALD. Therefore, this
selective inlining scheme can avoid the overheads of task
scheduling and load imbalance of MTs aggravation. The
selective inline expansion method is described as follows.

step.1
Parallel processing layer determination scheme de-

scribed in section 3 is applied to a target program, until
the MTGi whose NPGi is greater than 2 is found. Let’s
assume SBi j is the MTi j composed of subroutine. If
there is any SBi j which need more processors than NPEi

in MTGi, namely
Hierarchical Parai j > NPEi

the proposed inlining scheme think that inline expan-
sion is effective for SBi j , and this MTGi is a candidate
for inlining.

step.2
If SBi j is inlined, the parallelism of MTGi is

changed. Therefore, the compiler must determine the ap-
propriate number of PGs and PEs again. Let’s introduce
NPG

′
i as the predicted value of the number of PGs and

NPE
′
i as the predicted value of the number of PEs after

inline expansion. These parameters are determined as fol-
lows.

Parai ≤ NPG
′
i ≤ Para inl ALDi

and
NPG

′
i × NPE

′
i = NAvail PEi

The combination of (NPG
′
i, NPE

′
i) which has the maxi-

mum NPGi is selected. NPG
′
i and NPE

′
i are only predicted

value. The definite number of PGs and PEs are calculated
again after actual inline expansion.

step.3
The SBs which satisfies the next 2 condition in

MTGi is selected for inline expansion.
Hierarchical Parai j > NPE

′
i (1)

and
Para inl ALDi j ≥ 2 (2)

The condition (1) represents the total parallelism of
MTi j is greater than the assigned processors. The condi-
tion (2) shows the parallelism can be increased by inlining
MTi j .

Step.1 and step.3 in the proposed scheme are applied
to each macro-task graph from upper to lower, and is able
to select all subroutine blocks which need inline expansion.
After selecting subroutines, the determination scheme of
PGs and PEs defines the actual number of PGs and PEs for
each layer.

For example, if this scheme is applied to the macro-
task graphs in subsection 3.3, only MT3 is inlined. Be-
cause MT3 is assigned to 2 processors by the determination
scheme of PGs and PEs,

MT3’s Hierarchical Para3 = 10 > 2
and

MT3’s Para inl ALD3 = 10 > 2
Therefore, the number of processors to execute MT3

is increase from 2 to 4, the parallelism of MT3 becomes
more available.

5 Performance evaluation

This section describes the performance of the proposed se-
lective inline expansion scheme implemented in OSCAR
multi-grain parallelizing compiler, on IBM high-end SMP
server pSeries690.

5.1 Evaluation environment

In this evaluation, OSCAR compiler with the proposed
scheme is used as a parallelizing pre-processor and gen-
erates a parallelized program using OpenMP API. The
OpenMP program uses the “one time single level thread
generation” scheme which allows us to minimize thread



0

2

4

6

8

10

12

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
su2cor mgrid turb3d

benchmark

S
pe

ed
u

p
 r

at
io



xlf auto
oscar

oscar+inl

22
.2

8 24
.9

4
12

.8
2

12
.7

5

49
.9

3
9.

30


9.
88



10
5

.7
1

7.
26


7.

06


21
2

.4
7

6.
17


6.

00


20
.8

1
19

.2
6

18
.2

0

26
.2

8
5.

24


9.
22

 44
.8

9
22

.2
8

4.
92

 79
.3

3
4.

63


3.
13



35
.0

2

40
.0

2 37
.2

6
32

.0
4

27
.6

9

38
.6

4
24

.9
8

19
.0

9

37
.6

5
16

.0
5

11
.6

5

41
.2

6
12

.8
4

10
.2

2

Num of processors

Figure 2. Speedup ratio of SPEC95 benchmarks up to 16PE on regattaH

generation overhead by forking and joining parallel threads
at the beginning and the end of the program only
once and realize hierarchical coarse grain task parallel
processing[13, 14].

The generated OpenMP program is compiled by
IBM XL Fortran version 8.1 latest automatic paralleliz-
ing compiler, and executed on IBM high-end SMP server
pSeries690 with 16 processors, or 8 Power4 chips.

As the target programs of this evaluation, 103.su2cor,
107.mgrid, and 125.turb3d from SPEC95FP benchmarks
are used, which have coarse grain parallelism over dif-
ferent nest levels. The compile-options for sequential
execution by the XL compiler is “-O5 -qarch=pwr4”,
when 107.mgrid and 125.turb3d is compiled. 103.su2cor
which can’t be compiled by “-O5” is compiled using “-
O4 -qarch=pwr4”. Also, the compiler options of “-O5
-qsmp=auto -qarch=pwr4”is used for mgrid and turb3d,
and “-O5 -qsmp=auto -qarch=pwr4”is used for su2cor, for
automatic loop parallelization by the XL compiler. On
the other hand, for compilation of the OpenMP codes
generated by OSCAR compiler, “-O3 -qsmp=noauto -
qarch=pwr4” is used for the 3 programs. In this evaluation,
array renaming is applied for su2cor program, and loop dis-
tribution for turb3d. These restructured source codes are
used for both OSCAR compiler and the XL compiler.

5.2 Performance

Figure 2 shows the speedup ratio against sequential exe-
cution of su2cor, mgrid and turb3d for 1, 2, 4, 8 and 16
processors. In this graph, the left bars show the perfor-
mance of the XL compiler’s automatic loop parallelization,
the middle bars show the performance of OSCAR compiler
with the determination scheme of the number of PGs and
PEs, the right bars are the performance of OSCAR com-
piler using both the determination scheme with the selec-
tive inlining scheme. The figures over each bars represent

the execution time[s].

Tables 2, 3 and 4 show the parallelism and the de-
termined combination of PGs and PEs for 16 processors.
The leftmost column represents the name of subroutine or
loop, (PGs, PEs) shows the combination of the number of
processor groups and processor elements. H Para means
Hierarchical Para.

In the figure 2, the minimum execution time for mgrid
by the XL compiler up to 16 processors was 16.72[s] by
using 3 processors. The minimum processing time by OS-
CAR compiler without the proposed scheme was 4.63[s]
by 16 processors. Also, the proposed inline expansion re-
duced the minimum execution time by OSCAR compiler
into 3.13[s]. This is 5.34 times speedup compared with the
XL compiler, 1.47 times speedup compared with OSCAR
compiler without inlining.

Table 3 shows the first layer of subroutines RESID,
RPRJ3, PSINV and INTERP have large parallelism, so
they were processed by combination of (16PG, 1PE) by
OSCAR compiler. However, there are statements call-
ing COMM3 whose Hierarchical Para is 44.56 in these
subroutines, COMM3 was assigned to the only 1 processor.
Because of it, increment of speedup ratio was not enough.
On the other hand, multi-grain parallelization using pro-
posed scheme inlined COMM3, so that COMM3 can be ex-
ecuted by 16 processor. Therefore, OSCAR compiler with
the selective inline expansion got sufficient performance up
to 16 processors.

For su2cor, the minimum execution time was
6.17[s](3.67 times speedup against sequential execution)
by using 16 processors, when OSCAR compiler paral-
lelized without the proposed inlining scheme. In OSCAR
compiler with the proposed scheme, the fastest execution
time was 6.00[s](3.71 times speedup against sequential ex-
ecution) by using 16 processors. On the other hand, the
XL compiler shows the performance degradation by loop
parallelization. The reason is the overheads to control and



Table 2. Combination of(PGs, PEs) and Parallelisms of
su2cor

(PGs, PEs) H Para Para inl ALD

LOOPS (1, 16) 125.23 1.00
DO 400 (2, 8) 192.29 3.07
PERM *** 77.42 77.00
MATMAT *** 78.90 78.00
MATADJ *** 82.06 82.00
ADJMAT *** 78.90 78.00
INT2V (1, 8) 104.54 1.16
INT4V (1, 8) 161.35 1.16

DO 100 (1, 8) 168.49 167.15
BESPOL *** 70.74 70.00

synchronize each thread in the XL compiler are larger than
OSCAR compiler[7]. Multi-grain parallelization, for ex-
ample, can execute DO 400 using 2PG by coarse grain par-
allel processing, and use the parallelism in lower level by
8PE. On the other hand, since the XL compiler execute
only parallelizable loop which is in lower nested level by
16 processors, suffers large overhead.

Table 2 shows that DO 400 in subroutine LOOPS
which consumes about 31% of total execution time has
Para = 2.47 and Para inl ALD = 2.47 , so the OS-
CAR compiler applied coarse grain task parallelization to
DO 400 by combination of (2PG, 8PE). There are subrou-
tines PERM, MATMAT, MATADJ, ADJMAT, INT2V and
INT4V which have high Hierarchical Para in this loop,
and PERM, MATMAT, MATADJ and ADJMAT whose
Para inl ALD are larger than 2 were inlined by proposed
scheme. Then the processors processing these subroutines
were increased from 8 to 16, the parallelism could be ex-
ploited more efficiently. Though INT2V and INT4V call
BESPOL having high parallelism, BESPOL is included in
loop DO 100, the parallelism of BESPOL isn’t available in
DO 400. Therefore, Para inl ALD of both INT2V and
INT4V is less than 1.2, these subroutine was not selected
for inlining.

For turb3d, the minimum processing time of the XL
compiler was 37.40[s] by 3 processors. In OSCAR com-
piler, the fastest execution time without the inlining was
12.84[s], the minimum execution time with the inlining
was 10.22[s] up to 16 processors. The proposed scheme
gave 3.65 times speedup against the XL compiler, 1.26
times speedup against OSCAR compiler without the selec-
tive inlining.

In turb3d, a Repetition block(RB) in subroutine
TURB3D almost occupies the total execution time. Coarse
grain task parallelism Para in this RB is 6; it was exe-
cuted by (8PG, 2PE). However, subroutines ENR, UXW,
LINAVG, MIXAVG and LIN having large Para inl ALD
and Hierarchical Para are included in this RB, then
these SBs were assigned to 2 processors in multi-grain par-

Table 3. Combination of (PGs, PEs) and Parallelisms of
mgrid

(PGs, PEs) H Para Para inl ALD

RESID (16, 1) 11289.83 99.62
RPRJ3 (16, 1) 10836.49 99.60
PSINV (16, 1) 11045.54 99.61
INTERP (16, 1) 7784.91 99.78
COMM3 *** 44.71 44.56

Table 4. Combination of (PGs, PEs) and Parallelism of
turb3d

(PGs, PEs) H Para Para inl ALD

GOTO 1001 (8, 2) 1.19 6.00
ENR *** 99.88 2.00
UXW *** 2048.03 64.00
LINAVG *** 4091.22 64.00
MIXAVG *** 2046.59 64.00
LIN *** 4091.22 64.00

allelization without inlining.

6 Conclusions

This paper has proposed the selective inline expansion
scheme for hierarchical multi-grain parallel processing. In
performance evaluation using 3 programs from SPEC95FP
benchmarks on IBM high-end SMP server pSeries690, the
proposed scheme gave us 3.81 times speedup for su2cor,
5.34 times speedup for mgrid and 3.65 times speedup for
turb3d against IBM XL Fortran compiler ver.8.1 and 1.03
times speedup for su2cor, 1.47 times speedup for mgrid
and 1.26 times speedup for turb3d compared with OSCAR
compiler without the inlining. From these results, it was
confirmed the proposed scheme could realize more effec-
tive multi-grain parallel processing. The proposed inlining
scheme and determination scheme of PGs and PEs do not
consider data localization, or the cache optimization. The
total multi-grain parallelization with the data locality op-
timization is important, to improve performance of multi-
grain parallelization further.

Acknowledgment
A part of this research has been supported by Japan
Government Millennium Project IT21 METI/NEDO
Advanced Parallelizing Compiler Project (http:
//www.apc.waseda.ac.jp) and STARC “compiler co-
operative single chip multiprocessor”.



References

[1] M.Wolfe. High Performance Compilers for Parallel Com-
puting. Addison-Wesley Publishing Company, 1996.

[2] E.Ayguade, X.Martorell, J.Labarta, M.Gonzalez, and
N.Navarro. Exploiting multiple levels of parallelism in
openmp:A case study. ICPP’99, Sep. 1999.

[3] C.J.Brownhill, A.Nicolau, S.Novack, and
C.D.Polychronopoulos. Achieving multi-level paral-
lelization. Proc. of ISHPC’97, Nov. 1997.

[4] M. Okamoto, K. Aida, M. Miyazawa, H. Honda, and
H. Kasahara. A Hierarchical Macro-dataflow Computation
Scheme of OSCAR Multi-grain Compiler. Trans. of IPSJ
(japanese), 35(4):513–521, Apr. 1994.

[5] K.Kimura and H.kasahara. Near fine grain parallel process-
ing using static scheduling on single chip multiprocessors.
Proc.IWIA’99, Nov. 1999.

[6] J. shirako, H. Kaminaga, N. Kondo, K. Ishizaka, M. Obata,
and H. Kasahara. Coarse Grain Task Parallel Processing
with Automatic Determination Scheme of Parallel Process-
ing Layer. Technical Report of IPSJ, ARC2002-148-4(in
Japanese), May 2002.

[7] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and
H. Kasahara. Hierarchical Parallelism Control Scheme for
Multigrain Parallelization. Trans. of IPSJ (in Japanese),
44(4):1044–1055, Apr 2003.

[8] V. Sarkar. artitioning and Scheduling Parallel Programs for
Multiprocessors. MIT Press Cambridge, 1989.

[9] E. M. D. Kranz and R. H. Jr. Lazy Task Creation: A
Technique for Increasing the Granularity of Parallel Pro-
grams. IEEE Transactions on Parallel and Distributed Sys-
tems 2(3):264-280, July 1991.

[10] M.W.Hall and et al. Maximizing Multiprocessor Perfor-
mance with the SUIF Compiler. IEEE Computer,, Dec
1996.

[11] H. Kasahara, M. Obata, K. Ishizaka, K. Kimura, H. Kam-
inaga, H. Nakano, K. Nagasawa, A. Murai, H. Itagaki,
and J. Shirako. Multigrain Automatic Parallelization in
Japanese Millenium Project IT21 Advanced Parallelizing
Compiler. Proc. of IEEE PARELEC (IEEE International
Conference on Parallel Computing in Electrical Engineer-
ing), Sep. 2002.

[12] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and
H. Kasahara. Hierarchical Parallelism Control for Multi-
grain Parallel Processing. Proc. of 15th International Work-
shop on Languages and Compilers for Parallel Computing
(LCPC2002), Aug. 2002.

[13] H. Kasahara, M. Obata, and K. Ishizaka. Coarse Grain
Task Parallel Processing on a Shared Memory Multiproces-
sor System. Trans. of IPSJ (japanese), 42(4), Apr. 2001.

[14] M. Obata, K. Ishizaka, and H. Kasahara. Automatic Coarse
Grain Task Parallel Processing Using OSCAR Multigrain
Parallelizing Compiler. Ninth International Workshop on
Compilers for Parallel Computers(CPC 2001), Jun. 2001.


