
2-Step Power Scheduling with Adaptive Control
Interval for Network Intrusion Detection Systems

on Multicores

Lau Phi Tuong
Department of Computer Science and Engineering,

Green Computing Systems Research and Development
Center,

Waseda University
Tokyo, Japan

laulpt@kasahara.cs.waseda.ac.jp

Keiji Kimura
Department of Computer Science and Engineering,

Green Computing Systems Research and Development
Center,

Waseda University
Tokyo, Japan

kimura@apal.cs.waseda.ac.jp

Abstract—Network intrusion detection system (NIDS) is
becoming an important element even in embedded systems as
well as in data centers since embedded computers have been
increasingly exposed to the Internet. The demand for power
budget of these embedded systems is a critical issue in addition
to that for performance. In this paper, we propose a technique
to minimize power consumption in the NIDS by 2-step power
scheduling with the adaptive control interval. In addition, we
also propose a CPU-core controlling algorithm so that our
scheduling technique can preserve the performance for other
applications and NIDS assuming the cases of multiplexing
NIDS and them simultaneously on the same device such as a
home server or a mobile platform. We implement our 2-step
algorithm into Suricata, which is a popular NIDS, as well as a
1-step algorithm with the adaptive interval, and a simple fixed-
interval algorithm for evaluations. Experimental results show
that our 2-step scheduling with both the adaptive and the fixed
30-millisecond interval achieve 75% power saving comparing
with the Ondemand governor and 87% comparing with the
Performance governor in Linux, respectively, without affecting
their performance capability on four ARM Cortex-A15 cores
at the network traffic of 1,000 packets/seconds. In contrast,
when the network traffic reaches to 17,000 packets/seconds,
our 2-step scheduling and the Ondemand as well as the
Performance governor can maintain the packet processing
capacity while the fixed 30-milliseconds interval processes only
50% packets with two and three cores, and about 80% packets
on four cores.

Keywords- Network Intrusion Detection System (NIDS);
Dynamic Voltage Frequency Scaling (DVFS); Suricata; Data
Center

I. INTRODUCTION
The number of Internet users is increasing rapidly

because of benefits from searching and sharing information,
social network services, open education services and other
useful activities. There is a demand for extending data
centers to be able to process a huge amount of information in
responding to the requirements from Internet users. Because
of recent sophisticated external attacks from the Internet,

companies and organizations are always required to maintain
their security on server systems.

In addition, embedded devices such as wireless sensor
nodes and smart phones have been widely used in people’s
life. For instance, many people enjoy services in smart
phones such as convenient communication services and a
variety of entertainment activities via the Internet. Moreover,
Implantable Medical Device (IMD) is a breakthrough
technology merged into patients demanding for 24-hours
service to keep track of health status. A caretaker can
monitor the health status of patients, diagnose symptoms,
and download personal health data in a hospital via wireless
network system.

Such smart devices may introduce several vulnerabilities.
For instance, an unauthorized reader can exploit them to
collect private information illegally from the hospital or
health center. Therefore, Intrusion Detection Systems (IDSs),
which can detect suspicious activities from outside users via
the Internet, are becoming important even in embedded
platforms.

Network Intrusion Detection Systems (NIDS) have been
widely used in servers. They keep track of traffic in real time
and identify attacks coming from and going to network
devices. Then, they issue alerts such as detecting viruses and
Trojan horse to security administrators before causing
serious damages to the system. In this paper, we utilize
Suricata [16], which is a popular multithreaded NIDS as an
evaluation platform.

The performance improvement has been the first priority
issue for NIDSs. Many previous researches have been
carried out from the point of this view [8], [9], [10].
However, power consumption in NIDSs is becoming a
critical issue especially in the embedded area along with
increasing the number of devices connected to Internet as
mentioned in the previous paragraphs. Thus, current NIDSs
are required to provide sufficient performance to process as
many packets as possible in the real-time manner while
keeping their power consumption as low as possible.

Dynamic voltage and frequency scaling (DVFS) has been
widely used to control power consumption in today’s

2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip

978-1-5090-3531-1/16 $31.00 © 2016 IEEE

DOI 10.1109/MCSoC.2016.18

69

computer systems. In order to maintain the required
performance for the system while keeping its power
consumption as low as possible by utilizing DVFS, there are
two issues to take into account; the one is how to decide the
appropriate clock frequency, and the other is how to decide
the control interval of DVFS. If the clock frequency is
inappropriate, it causes performance violation or wastes of
power usage of the system. Similarly, if the control interval
is inappropriate, it introduces long control overhead or long
delay from changes of an amount of workload.

In this paper, we propose a 2-step power scheduling
algorithm with the adaptive control interval to optimize
power consumption as well as maintain the performance of
packet processing for NIDSs. The first step is to estimate the
total processing time of packets in the buffer at the very
beginning of the control interval, then setting the reasonable
control interval until the next estimation time after that
assigning a feasible power budget according to the estimated
control interval. The second step is to adjust the clock
frequency at the packet detection module of Suricata
regarding to an amount of remaining packets in the buffer
and the current processing time within the control interval
decided at the first step. Furthermore, we also propose a core
controlling algorithm to switch cores in case of multiplexing
applications and the NIDS executed on a home server or an
embedded system to maintain the performance capability for
them.

In order to evaluate our techniques, we implemented our
2-step scheduling with the adaptive control interval into
Suricata. We also implemented other approaches such as 1-
step scheduling with the adaptive interval and 2-step with the
fixed interval into Suricata for comparison. The performance
capability and power consumption of the proposed
approaches are compared with the Ondemand governor and
the Performance governor in Linux on ODROID-XU3 board,
which has four big ARM Cortex-A15 cores and four small
Cortex-A7 cores, at different levels of network traffic
congestion. We also evaluate power consumption as well as
the packet processing capacity when an application and
Suricata are simultaneously executed on the board.

The rest of this paper is organized as follows. Section II
presents related works of power optimization especially for
network servers. Section III shows the proposed algorithms.
Section IV reports experimental results. Finally, Section V
summarizes this paper.

II. RELATED WORK
DVFS control has been a widely used technique to

manage power consumption for computer systems. One of
the main issues of using DVFS is how to select the
appropriate clock frequency without forcing the major
performance impacts on a system. There has been, of course,
a large amount of literature dealing with DVFS for various
applications and systems. In this section, we mainly focus on
the previous works dealing with the network-oriented
applications employing DVFS technique for optimizing
energy consumption.

There have been several approaches to control DVFS for
network devices [2], [3]. AFCMBOT tries to adjust the clock

frequency to reduce power consumption of network
equipment by calculating the amount of network traffic [2].
A main point of this technique is introducing dual threshold
values corresponding with the different frequency states to
ensure the stability of clock frequency control. PBD
applied DVFS to a network controller by checking the packet
buffer at each specific point [3]. This introduces two states
such as low and high power mode. If the packet pool has
more than a threshold value, then the system enables the high
power state for computing performance, otherwise switching
to the low power state.

Other papers have focused mainly on power management
techniques for server computers in data centers [4], [5], [6],
[7], [11], [12], [13], [14]. They have tried to ensure the
performance of systems while keeping their power
consumption low. In [4], the authors proposed a hybrid
resource allocation strategy for cloud computing
environments to make balance between resource
consumption and quality of service especially considering
oscillatory peaks of workloads. Cheng et al. proposed a
request batching mechanism with DVFS [5]. It employs two-
layer control systems; the one layer is for a batching control
loop including a fuzzy model predictor and the other one is
for a power control loop. APPLEware is an autonomic
middleware for co-located Web applications on virtualized
computing systems [6]. It utilizes machine learning based
self-adaptive modeling for resource allocation. One of the
problems targeted by APPLEware is the inter application
performance interference. Instead of solving the global
performance and power control problem, it decomposes a
global problem into localized subtasks. The local distributed
processors handle those divided subtasks. Ghandhi et.al.
proposed a queuing theoretic model consisting of power-to-
frequency relationship, peak workloads, and others to predict
the optimal power allocation among servers on a server farm
so as to minimize mean response time [7]. Blink provides an
energy abstraction on serve clusters under the assumption
they are equipped with intermittent power supply [12]. It
schedules power modes on computation nodes between the
high power active state and the low power inactive state
along with a predefined policy. PowerNap was proposed as
an approach eliminating the idle power waste and minimize
transition time into and out of low power nap state for server
computers [14]. When a server exhausts all pending
workloads, it rapidly transitions to the nap state. In the nap
state, all components in a server such as disk, memory, and
others are switched to the inactive mode so as to eliminate
the waste of idle power. A network device informs the
arrival of workloads to wake up the server from the nap state
to the active state.

There are several frequency switching algorithms
targeting to task processing for CPUs have been also
proposed [1], [15]. Time reservation DVI (TRD) was
proposed to reduce heat dissipation of CPU [1]. It estimates
an expected clock frequency based on the available time in
that task when a new task arrives. Then, it adjusts the
frequency of the task by comparing the now status of the
current task and the task timeouts. Mizotani et al. proposed
the integration of a computational model and RT-VFS to

70

assign the optimal power budget to each part of the task and
simultaneously improve computation quality within a real-
time constraint [15]. They employed Mandatory-First with
Earliest Deadline (MFED) as an imprecise computational
model to schedule tasks to processors and used RT-SVFS as
well as Cycle-Conserving RT-DVFS for controlling
processors frequency.

III. POWER SCHEDULING TECHNIQUE
The proposed power scheduling technique consists of

two steps. At the first step, the average number of processing
cycles of each packet is estimated to assign a reasonable
frequency to meet an adaptive control interval. The adaptive
control interval is determined based on statistics of historical
traffic workloads. At the second step, the clock frequency is
adjusted to keep the performance capability during the
control interval decided at the first step and achieve more
optimal power consumption. This step is done by checking
the correlation between the current amount of processed
packets and the current processing time. The adaptive control
interval is also defined as a deadline constraint in this paper.
In addition, when both Suricata and other programs are
simultaneously executed on the same machine, the CPU-core
controlling algorithm is used to switch cores in order to
maintain the performance for all applications as well as
power optimization for the NIDS on multicores. 2-step
power scheduling technique is implemented in Suricata as
shown in Fig. 1. Suricata consists of four modules such as
the stream phase, the decode phase, the detection phase, and
the output packet phase. The first step is implemented at the
packet receiver in front of the stream phase, and the second
step is implemented in the detection phase.

A. Scheduling the feasible frequency to meet the adaptive
control interval
Giving x is the number of received packets available in

the pool and iT is the processing time of its own packet. The
processing time of all ones can be described as the
expression (1).

 i

xi

i
i TTTT +++=�

=

=

...21
1

 (1)

From expression (1), it can be seen that adjusting the
clock frequency depends on each packet processing cost and
the quantity of captured packets from the network. In
practice, we can estimate the average processing time of each
packet, meanT by profiling technique. Additionally, x can be
determined from the packet statistic of the NIDS after each
schedule interval update.

We define the frequency control interval as a deadline
constraint that the algorithm must ensure to maintain the
performance of the system. To meet the deadline constraint
denoted by deadlineT , the processing time of x received packets
must be finished as soon as the deadline constraints arriving.
The feasible frequency, maxmin fff feasible ≤≤ , is selected in
responding with the given deadline control interval, 5us

≤≤ deadlineT 30ms. The value 5us is originally taken from

Suricata while 30ms can be estimated depending on the
hardware processing capacity. We can derive the expression
(2) below from the expression (1).

deadlinemean
feasible

xi

i
i

feasible

TT
f

xT
f

≤=�
=

=

*1**1
1

 (2)

In many real-time systems like an MPEG movie player,
there is an explicitly specified deadline interval to process
each workload, and if this deadline requirement is not
fulfilled, then it can violate the desired execution time. For
network tracking applications, network workloads change
unpredictably from low to big traffic and there often have
unstable and stable points. According to the expression (2), if
we choose too small values for the fixed interval, then the
system cannot minimize power consumption. For the fixed
large interval, there may exist in major degradation in the
performance capability in the context of very heavy network
congestion level. Therefore, the control interval should be
variable according to network traffic status.

In the algorithm 1, the packet counter is used to record
how many received packets processed and it is reset to be
zero after each control interval update. The number of
received packets of previous updates is denoted by y. If there
are some existing packets at the line 2 which have not been
yet inspected previously, it is counted at the line 3 otherwise
just considering the current number of received packets at
the line 5. At the line 7 of the algorithm 1, when received
packets x is more than or equal to a dominant value LB so
called the limited buffer, then deadlineT should be assigned to
5us coming originally from Suricata source code as the
default value at the line 8. LB is picked up depending on the
hardware’s processing ability by the profiling technique. For
the else cases, deadlineT should be determined based on some
past buffers collected to ensure the performance capability.

Giving an available amount of cores for the NIDS is
denoted by No. cores and a set of the amount of collected
packets into the buffer at historical update times denoted
by },,{ 21 historyihistoryhistoryhistory xxxx = then taking the average

value)1/()...(21 ++++= ixxxx historyihistoryhistoryaverage .
The number of elements in the set should be limited by

10 to ensure the calculation of control interval correctly. If
this value is set to a very small value like 3 elements, then
the estimation of the control interval can get incorrect. This

Packet n

Packet 2

Packet 1

Stream Decode Detection

Detection

Detection

Output

Step 2

Step 1

Fig. 1. 2-step scheduling with the adaptive control interval

implemented into Suricata.

71

is due to, for instance, 2 elements of 3 may indicate unstable
points and they may introduce an incorrect deadline. This
value, of course, is much better with using the bigger value.
However, it becomes convergent at a point like 10 elements
and if we set to more than 10, the probability of correctness
is the same with 10. In practice, if we take only the current
number of received packets x for calculating the deadline
constraint, that is, averagex = x, then the estimation of the
deadline interval may get incorrect. This is due to the
collected workload x sometimes become unstable causing by
network bottleneck. For example, the stable network traffic
is about 500 packets/seconds, but this rate can increase to
1,000 or 10,000 packets/seconds at unstable points.

Network bottleneck situations happening during the
control intervals can affect the overall performance
capability when the estimated deadline interval is very long.

Algorithm 1: Select the feasible clock frequency

1: while (true) {
2: if (packet counter < y) {
3: x = x + (y – packet counter)}
4: else {
5: x = x}
6: packet counter = 0
7: if (x � LB) {
8: deadlineT = 5us}
9: else {
10: if (all elements in historyx � LB) {

11: deadlineT = 5us +
coresNo

averagexLB
meanT

.

)(
*

−
}

12: else if (at most 1/5 elements in historyx � LB) {

13: deadlineT = 5us +
coresNo

averagexLB

meanT
.

)
5

4
(

*
−

}

14: else if (at least 2/5 elements in historyx > LB) {

15: deadlineT = 5us}
16: else {
17: deadlineT = 15ms}
18: }
19: if (deadlineT � 30ms) {
20: deadlineT = 30ms}
21: scheduling the frequency from the calculated

deadlineT according to equation (2)
22: sleep(deadlineT)}

We collect some historical buffers, then giving several

possible cases to estimate the control interval. As the first
situation, if all past results in historyx are under LB value, then
the prediction for the next future workload is possible to less
than LB, so we can extend the frequency control interval by

adding)./()(* coresNoLB averagemean xT − with 5us as shown
at the line 11 The second case of congestion is that at most
1/5 elements in historyx is more than LB value as written at the

line 13. For instance, historyx includes 10 past buffers and at
most 10*1/5= 2 historical buffers or 2 unstable points in out
of 10 are over LB, so it should be considered at least 8
remained buffers which are less than LB to estimate the
interval. In the scenario that at least 2/5 elements in

historyx over LB or if at least 4 previous receive buffers in out
of 10 collected past buffers are greater than LB, it should be
used 5us in order to ensure the performance capability at the
line 15 since the next network status is possible to become
very big traffic. In case of historical received workloads
unpredicted, the deadline update should be assigned to be
less than 15ms or an arbitrary interval at line 17. The fraction
of historical buffers such 2/5 and 1/5 can be changed
according to the traffic characteristic of target network. After
the estimation of the deadline interval is done, the feasible
frequency is determined according to the formula (2) at the
line 21.

Finally, the calculated deadline by the algorithm 1 is
taken as the control interval for the frequency scheduling.

B. Adjusting the clock frequency within the packet
detection phase
Because of the more sophistication of the attacks from

the Internet, the known signatures are often being extended
to detect new attacks. From this extension of the rule set, the
cost of malicious messages can become much more
expensive than that of benign packets as a result of
consuming more the inspection time for suspicious ones. In a
real system, if the collected packets are benign packets, then
the actual processing cost is much less than the average
estimated value. As a result, there exists in a long interval of
the idle time because the selected clock frequency from the
first step regarding to the average estimated cost is too fast.
On the other hand, when the buffer receives the majority of
malicious packets, the actual processing cost consumes much
more than the estimated cost. Since the selected clock
frequency from the first step is too slow, so the system is
unable to keep the data processing capability well. Therefore,
there is a need for increasing or decreasing frequency so as
to achieve minimal power consumption and avoid violating
the performance capability.

The algorithm 2 of the second step is used to avoid
degradation in the performance capacity as well as eliminate
the idle time after selecting the reasonable clock frequency at
the first step. We compare the current processing time and
the calculated control interval based on the packet counter
variable. The packet counter should be checked at
appropriate points such as at 50% the amount of processed
packets, or at 75% to respond the estimated real-time interval
at the first step. During the estimated control interval, when
the packet counter reaches to 50% the number of processed
packets at the line 2, if the current processing time of
collected packets is shorter than 50% of the estimated control

72

interval as shown in Fig. 2 (a), then there is nothing to do.
Otherwise, it should be adjusted to the higher frequency as
shown in Fig. 2 (b) to meet the estimated control interval
constraint at the first step. Similar to the case of 75%

processed packets or we can take more points to ensure the
performance capability.

When the packet counter reaches to the last processed
packet at the line 8 before the calculated deadline arrives by
an acceptable interval, the clock frequency should be
switched to the lowest frequency or be off as shown in Fig. 2
(c).

C. Multiplexing NIDS and other programs executed
concurrently
The algorithm 3 controls the number of cores assigned to

NIDS depending on the case of with or without other
program executed on the same machine. At the very
beginning, Suricata is run on all cores in the system. All
thread IDs are recorded at the line 2. The system explores
whether the multiplexed programs are posed. Then, the
required number of cores used for NIDS are switched so
that the NIDS and other programs can be run on different
cores or group of cores at the line 4 and 5. In case of only
the NIDS used, all NIDS threads should be scheduled to all
cores on the device. A program is implemented from the
algorithm 3 run concurrently to schedule the number of
cores for multiple programs.

. Algorithm 3: Controlling the number cores for NIDS

1: run NIDS on all cores of machine
2: get all thread IDs created by NIDS
3: while (true) {
4: if (other program requested) {
5: switch all threads of NIDS and other
 program to different cores}
6: else if (only NIDS run) {
7: switch all thread IDs of NIDS to all cores}
8: sleep()}

IV. EXPERIMENTAL RESULT
We implement proposed algorithms into Suricata version

2.0.8 [16], then measure and compare power consumption
as well as the performance capability of Suricata among
CPU frequency scaling governors of Linux and various
optimization methods by using network traffic traces on
ODROID-XU3 (2.0 GHz 4 big ARM Cortex-A15, 1.4 GHz
4 small ARM Cortex-A7, 2 GB RAM) with Ubuntu 15.04
mate ODROID-XU3 operating system [17].

There are totally 6 different scheduling methods
integrated into Suricata for experimental evaluations
including the Performance and the Ondemand governor in
Linux kernel, 2-step scheduling with the fixed 15 and 30
milliseconds control interval, 1-step scheduling with the
adaptive control interval using only the algorithm 1, and 2-
step scheduling with the adaptive interval. We use tcpreplay
tool [18] as a packet generator to cause the different level of
network traffic congestion at the router and run Suricata on
ODROID-XU3 to detect packets at the router for
measurement.

Algorithm 2: Adjusting the frequency during the packet
detection phase

1: packet counter++
2: if (packet counter = 50% of x) {
3: if (current processing time > 50% deadlineT) {
4: switch to the higher frequency}}
5: else if (packet counter = 75% of x) {
6: if (current processing time > 75% deadlineT) {
7: switch to the higher frequency}}
8: else if (packet counter = 100% of x) {
9: if (current processing time < deadlineT) {
10: switch to the lowest frequency}}

50% processed packets
50% control interval

Control interval

Current processing time

Clock frequency

(a)

50% processed packets
50% control interval

Control interval

Current processing time

Clock frequency

(b)

50% control interval

100% processed packets

Control interval

Current processing time

Clock frequency Acceptable interval

 (c)

Fig. 2. At (a) 50% packets processed, do nothing if the current

processing time is less than 50% control interval (b) 50% packets
processed, increasing the clock frequency if that is over 50% control
interval (c) 100% packets processed, if that is shorter than the control

interval by an acceptable interval, then minimizing the clock frequency
or switching to be off.

73

At 1,000 packets/seconds as shown in Fig. 4 (a), the
frequency scheduling algorithm with the fixed interval as
well as with the adaptive interval gives the best power
optimization compared with Linux scaling governors. When
the network traffic is increased to 10,000 packets/seconds as
shown in Fig. 4 (b), the power dissipation becomes
significant by using the Performance and the Ondemand
scaling governor in Linux kernel. Typically, when four
cores are used, the Performance and Ondemand scaling
governor account for considerable power consumption,
about 3.8 and 3.2 watts, respectively. In contrast, applying
2-step scheduling with both the adaptive and the fixed 30ms
interval, the power consumption in Suricata is reduced to

1.5 watts and 1.2 watts in respect with on 3 and 4 cores. Fig.
4 (c) illustrates the power usage of Suricata at the big
network traffic, 17,000 packets/seconds. Clearly, 2-step
scheduling with the adaptive control interval can provide
about 10% lower power consumption than the Ondemand
governor on 4 cores. In addition, it still maintains the data
processing capacity very well at 2,100, 7,515, 11,290, and
15,445 packets/seconds on 1, 2, 3 and 4 cores respectively
compared with other techniques as illustrated in Fig. 3 (c).
For 2-step with the fixed 30ms interval, it attains much
lower power consumption at the network traffic rate of
17,000 packets/seconds as Fig. 4 (c) shown, but this method
causes the performance violation considerably compared
with the adaptive mechanisms. For instance, it just
processes 525, 4,335, 8,902, and 12,822 packets/seconds on
1, 2, 3 and 4 cores.

(a)

(b)

 (c)

Fig. 4. The average power consumption of Suricata among
power scheduling approaches over various big ARM Cortex-

A15 at traffic (a) 1,000 (b) 10,000 (c) 17,000 packets/seconds.

(a)

(b)

 (c)

Fig. 3. Suricata performance among scheduling approaches over
various big ARM Cortex-A15 at traffic (a) 1,000 (b) 10,000 (c)

17,000 packets/seconds.

74

Fig. 6 (a) shows that power consumption can be reduced
about 65% on four cores by using both 2-step adaptive and
fixed 30 milliseconds control interval in comparison with
the Ondemand governor at the network traffic 1,000
packets/seconds. Regarding to the performance capability,
at the network traffic 5,000 packets per seconds, 2-step
controlling with both the fixed 15 and 30 milliseconds
interval causes a major degradation of performance on 1, 2,
and 3 cores as shown in Fig. 5 (b). In contrast, the adaptive
control interval can maintain the performance capability
over the different number of cores comparable with the
Performance and Ondemand governor. Typically, the
Ondemand governor scaling and 2-step scheduling
algorithm with the adaptive interval process 1,155 and 1,012
packets/seconds respectively while the fixed 15ms and 30ms
just process only 300 and 125 packets/seconds on one core.

We combine 2-step scheduling with the adaptive control
interval with the algorithm 3 presented in Section III to
measure power consumption as well as performance in the
case of Suricata and another program executed at the
network traffic 10,000 packets/seconds on ODROID-XU3
board. Combining the core controlling algorithm and 2-step
power scheduling achieves lower power consumption than
the Ondemand governor as in Fig. 8. It attains an average of
1.25 watts on big cores and an average of 0.362 watts on
small cores as shown in Fig. 7. In contrast, the usage of the
Ondemand governor consumes an average of 3.42 watts on

big ARM Cortex-A15 cores and an average of 0.251 watts
on small cores. It is clear that the data processing capacity of
two these approaches are almost the same as in TABLE I.

TABLE I. PERFORMANCE WHEN SURICATA AND ANOTHER
PROGRAM EXECUTED ON ODROID-XU3 AT NETWORK TRAFFIC 10,000

PACKETS/SECONDS.

Governor scaling Performance (packets/seconds)
Ondemand 10,122

2-step adaptive 10,067

(a)

(b)

Fig. 6. The average power consumption of Suricata among
power scheduling approaches over various small ARM Cortex-

A7 at traffic (a) 1,000 (b) 5,000 packets/seconds.

(a)

(b)

Fig. 5. Suricata performance among scheduling approaches over
various small ARM Cortex-A7 at traffic (a) 1,000 (b) 5,000

packets/seconds.

Fig. 7. The average power consumption between Ondemand
and 2-step scheduling with adaptive interval combining with

core controlling algorithm when Suricata and another program
executed on big ARM Cortex-A15 and small ARM Cortex-A7

at traffic 10,000 packets/seconds.

75

V. CONCLUSION
In this paper, we proposed the 2-step power scheduling

algorithm with the adaptive control interval to reduce the
power consumption in Suricata. Additionally, we also
presented an algorithm to adjust the number of cores in
order to maintain power optimization and the performance
capacity in case of Suricata and another program executed
on the same multicore system as in a home server, or a
mobile device. The evaluations show that the 2-step power
scheduling with the adaptive control interval achieves the
best power saving while maintains the data processing
capability for both low and big network traffic on ODROID-
XU3 board. Typically, the 2-step scheduling with the
adaptive control interval and the fixed 30-millisecond
interval can save an average of 87% power usage without
affecting their performance considerably compared with the
Performance governor in Linux over various big cores at
traffic 1,000 packets/seconds. Furthermore, at 17,000
packets/seconds, the 2-step power scheduling with the
adaptive interval can ensure the performance very well,
while the fixed 30-milliseconds interval violates the
performance over various cores.

REFERNCES
[1] J. Xiao, C. Xu, and L. Zeng, “A Time Reservation Dynamic

Algorithm based on the Variable Frequency Interval DVFS
Technology” International Conference on Computer Science and
Service System (CSSS 2014).

[2] L. Zhou, L. Li, X. Li, “A Low Power Consumption Frequency
Adaptation Mechanism based on the Traffic and Implementation on
NetFPGA”, International Journal of Future Generation
Conmmunication and Networking Vol. 7, No. 6, 2014, pp-141-154.

[3] E. Nave, R. Ginosar, “PBD: Packet Buffer DVFS”, Proc. of the 23rd
AMC International Conference on Great Lakes Symposium on VLSI
(GLSVLS’13), pp.319-320, 2013.

[4] G. A. Geronimo, J. Werner, R. Weingartner, C. B. Westphall, C. M.
Westphall, “Provisioning, Resource Allocation, and DVFS in Green
Clouds” International Journal on Advances in Networks and Services,
Vol. 7, No 1 & 2, 2014.

[5] D. Cheng, Y. Guo, X. Zhou, “Self-tuning Batching with DVFS for
Improving Performance and Energy Efficiency in Servers”, Modeling,
Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2013 IEEE 21st International Symposium, August
2013, pp 40-49.

[6] P. Lama, Y. Guo, C. Jiang, X. Zhou, “Autonomic Peformance and
Power Control for Co-located Web Applications on Virtualized
Servers Quality of Service (IWQoS)”, 2013 IEEE/ACM 21st
International Symposium, June 2013, pp 1-10.

[7] A. Gandhi, M. Harchol-Balter, R. Das, C. Lefurgy “Optimal Power
Allocation in Server Farms”, Proceedings of 11 International Joint
Conference on Measurement and Modeling of Computer Systems,
June 2009.

[8] H. Jiang, G. Xie, K. Salamatian, “Load Balancing by Ruleset
Partition for Parallel NIDS on Multi-Core Processors”, IEEE
International Conference on Computer Communications and
Networks, ICCCN, 2013.

[9] D. J. Day, B. M. Burns, “A Performance Analysis of Snort and
Suricata Network Intrusion Detection and Prevention Engines”, ICDS
2011: The Fifth International Conference on Digital Society.

[10] E. Albin, “A Comparative analysis of the Snort and Suricata
Instrution Detection System”, (Doctoral dissertation, Monterey,
California. Naval Postgraduate School), 2011.

[11] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. Culler, R. Katz,
“NapSAC: Design and Implementation of a Power-Propotional Web
Cluster”, ACM SIGCOMM computer communication review 41.1
(2011): 102-108.

[12] N. Sharma, S. Barker, D. Irwin, P. Shenoy, “Blink: Managing Server
Clusters on Intermittent Power”, ACM SIGPLAN Notices. Vol. 46.
No. 3. ACM, 2011.

[13] D. Meisner, C. M. Sadler, L. A. Barroso, W. Weber, T. F. Wenisch,
“Power Management of Online Data-Intensive Services”, Computer
Architecture (ISCA), 2011 38th Annual International Symposium on
IEEE, 2011.

[14] D. Meisner, B. T. Gold, T. F. Wenisch. “PowerNap: eliminating
server idle power” ACM Sigplan Notices. Vol. 44. No. 3. ACM,
2009.

[15] K. Mizotani, Y. Hatori, Y. Kumura, M. Takasu, H. Chishiro, N.
Yamasaki, “An integration of imprecise computation model and real-
time voltage and frequency scaling”, In Proceedings of the 30th
International Conference on Computers and Their Applications,
CATA 2015. (pp. 63-70). The International Society for Computers
and Their Applications (ISCA).

[16] http://suricata-ids.org/download/
[17] http://www.hardkernel.com/main/products/prdt_info.php?g_code=G1

40448267127
[18] http://tcpreplay.synfin.net/

(a)

(b)

Fig. 8. Changes in the power supply between (a) 2-step
scheduling with the adaptive interval combining with the core

controlling algorithm (b) Ondemand when Suricata and another
program executed on big ARM Cortex-A15 and small ARM

Cortex-A7 at traffic 10,000 packets/seconds.

76

