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Abstract—Network intrusion detection system (NIDS) is 
becoming an important element even in embedded systems as 
well as in data centers since embedded computers have been 
increasingly exposed to the Internet. The demand for power 
budget of these embedded systems is a critical issue in addition 
to that for performance. In this paper, we propose a technique 
to minimize power consumption in the NIDS by 2-step power 
scheduling with the adaptive control interval. In addition, we 
also propose a CPU-core controlling algorithm so that our 
scheduling technique can preserve the performance for other 
applications and NIDS assuming the cases of multiplexing 
NIDS and them simultaneously on the same device such as a 
home server or a mobile platform. We implement our 2-step 
algorithm into Suricata, which is a popular NIDS, as well as a 
1-step algorithm with the adaptive interval, and a simple fixed-
interval algorithm for evaluations. Experimental results show 
that our 2-step scheduling with both the adaptive and the fixed 
30-millisecond interval achieve 75% power saving comparing 
with the Ondemand governor and 87% comparing with the 
Performance governor in Linux, respectively, without affecting 
their performance capability on four ARM Cortex-A15 cores 
at the network traffic of 1,000 packets/seconds. In contrast, 
when the network traffic reaches to 17,000 packets/seconds, 
our 2-step scheduling and the Ondemand as well as the 
Performance governor can maintain the packet processing 
capacity while the fixed 30-milliseconds interval processes only 
50% packets with two and three cores, and about 80% packets 
on four cores. 

Keywords- Network Intrusion Detection System (NIDS); 
Dynamic Voltage Frequency Scaling (DVFS); Suricata; Data 
Center 

I.  INTRODUCTION 
The number of Internet users is increasing rapidly 

because of benefits from searching and sharing information, 
social network services, open education services and other 
useful activities. There is a demand for extending data 
centers to be able to process a huge amount of information in 
responding to the requirements from Internet users. Because 
of recent sophisticated external attacks from the Internet, 

companies and organizations are always required to maintain 
their security on server systems. 

In addition, embedded devices such as wireless sensor 
nodes and smart phones have been widely used in people’s 
life. For instance, many people enjoy services in smart 
phones such as convenient communication services and a 
variety of entertainment activities via the Internet. Moreover, 
Implantable Medical Device (IMD) is a breakthrough 
technology merged into patients demanding for 24-hours 
service to keep track of health status. A caretaker can 
monitor the health status of patients, diagnose symptoms, 
and download personal health data in a hospital via wireless 
network system. 

Such smart devices may introduce several vulnerabilities. 
For instance, an unauthorized reader can exploit them to 
collect private information illegally from the hospital or 
health center. Therefore, Intrusion Detection Systems (IDSs), 
which can detect suspicious activities from outside users via 
the Internet, are becoming important even in embedded 
platforms. 

Network Intrusion Detection Systems (NIDS) have been 
widely used in servers. They keep track of traffic in real time 
and identify attacks coming from and going to network 
devices. Then, they issue alerts such as detecting viruses and 
Trojan horse to security administrators before causing 
serious damages to the system. In this paper, we utilize 
Suricata [16], which is a popular multithreaded NIDS as an 
evaluation platform. 

The performance improvement has been the first priority 
issue for NIDSs. Many previous researches have been 
carried out from the point of this view [8], [9], [10]. 
However, power consumption in NIDSs is becoming a 
critical issue especially in the embedded area along with 
increasing the number of devices connected to Internet as 
mentioned in the previous paragraphs. Thus, current NIDSs 
are required to provide sufficient performance to process as 
many packets as possible in the real-time manner while 
keeping their power consumption as low as possible. 

Dynamic voltage and frequency scaling (DVFS) has been 
widely used to control power consumption in today’s 

2016 IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip

978-1-5090-3531-1/16 $31.00 © 2016 IEEE

DOI 10.1109/MCSoC.2016.18

69



computer systems. In order to maintain the required 
performance for the system while keeping its power 
consumption as low as possible by utilizing DVFS, there are 
two issues to take into account; the one is how to decide the 
appropriate clock frequency, and the other is how to decide 
the control interval of DVFS. If the clock frequency is 
inappropriate, it causes performance violation or wastes of 
power usage of the system. Similarly, if the control interval 
is inappropriate, it introduces long control overhead or long 
delay from changes of an amount of workload. 

In this paper, we propose a 2-step power scheduling 
algorithm with the adaptive control interval to optimize 
power consumption as well as maintain the performance of 
packet processing for NIDSs. The first step is to estimate the 
total processing time of packets in the buffer at the very 
beginning of the control interval, then setting the reasonable 
control interval until the next estimation time after that 
assigning a feasible power budget according to the estimated 
control interval. The second step is to adjust the clock 
frequency at the packet detection module of Suricata 
regarding to an amount of remaining packets in the buffer 
and the current processing time within the control interval 
decided at the first step. Furthermore, we also propose a core 
controlling algorithm to switch cores in case of multiplexing 
applications and the NIDS executed on a home server or an 
embedded system to maintain the performance capability for 
them. 

In order to evaluate our techniques, we implemented our 
2-step scheduling with the adaptive control interval into 
Suricata. We also implemented other approaches such as 1-
step scheduling with the adaptive interval and 2-step with the 
fixed interval into Suricata for comparison. The performance 
capability and power consumption of the proposed 
approaches are compared with the Ondemand governor and 
the Performance governor in Linux on ODROID-XU3 board, 
which has four big ARM Cortex-A15 cores and four small 
Cortex-A7 cores, at different levels of network traffic 
congestion. We also evaluate power consumption as well as 
the packet processing capacity when an application and 
Suricata are simultaneously executed on the board. 

The rest of this paper is organized as follows. Section II 
presents related works of power optimization especially for 
network servers. Section III shows the proposed algorithms. 
Section IV reports experimental results. Finally, Section V 
summarizes this paper. 

II. RELATED WORK 
DVFS control has been a widely used technique to 

manage power consumption for computer systems. One of 
the main issues of using DVFS is how to select the 
appropriate clock frequency without forcing the major 
performance impacts on a system. There has been, of course, 
a large amount of literature dealing with DVFS for various 
applications and systems. In this section, we mainly focus on 
the previous works dealing with the network-oriented 
applications employing DVFS technique for optimizing 
energy consumption. 

There have been several approaches to control DVFS for 
network devices [2], [3]. AFCMBOT tries to adjust the clock 

frequency to reduce power consumption of network 
equipment by calculating the amount of network traffic [2]. 
A main point of this technique is introducing dual threshold 
values corresponding with the different frequency states to 
ensure the stability of clock frequency control. PBD
applied DVFS to a network controller by checking the packet 
buffer at each specific point [3]. This introduces two states 
such as low and high power mode. If the packet pool has 
more than a threshold value, then the system enables the high 
power state for computing performance, otherwise switching 
to the low power state. 

Other papers have focused mainly on power management 
techniques for server computers in data centers [4], [5], [6], 
[7], [11], [12], [13], [14]. They have tried to ensure the 
performance of systems while keeping their power 
consumption low. In [4], the authors proposed a hybrid 
resource allocation strategy for cloud computing 
environments to make balance between resource 
consumption and quality of service especially considering 
oscillatory peaks of workloads. Cheng et al. proposed a 
request batching mechanism with DVFS [5]. It employs two-
layer control systems; the one layer is for a batching control 
loop including a fuzzy model predictor and the other one is 
for a power control loop. APPLEware is an autonomic 
middleware for co-located Web applications on virtualized 
computing systems [6]. It utilizes machine learning based 
self-adaptive modeling for resource allocation. One of the 
problems targeted by APPLEware is the inter application 
performance interference. Instead of solving the global 
performance and power control problem, it decomposes a 
global problem into localized subtasks. The local distributed 
processors handle those divided subtasks. Ghandhi et.al. 
proposed a queuing theoretic model consisting of power-to-
frequency relationship, peak workloads, and others to predict 
the optimal power allocation among servers on a server farm 
so as to minimize mean response time [7]. Blink provides an 
energy abstraction on serve clusters under the assumption 
they are equipped with intermittent power supply [12]. It 
schedules power modes on computation nodes between the 
high power active state and the low power inactive state 
along with a predefined policy. PowerNap was proposed as 
an approach eliminating the idle power waste and minimize 
transition time into and out of low power nap state for server 
computers [14]. When a server exhausts all pending 
workloads, it rapidly transitions to the nap state. In the nap 
state, all components in a server such as disk, memory, and 
others are switched to the inactive mode so as to eliminate 
the waste of idle power. A network device informs the 
arrival of workloads to wake up the server from the nap state 
to the active state. 

There are several frequency switching algorithms 
targeting to task processing for CPUs have been also 
proposed [1], [15]. Time reservation DVI (TRD) was 
proposed to reduce heat dissipation of CPU [1]. It estimates 
an expected clock frequency based on the available time in 
that task when a new task arrives. Then, it adjusts the 
frequency of the task by comparing the now status of the 
current task and the task timeouts. Mizotani et al. proposed 
the integration of a computational model and RT-VFS to 
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assign the optimal power budget to each part of the task and 
simultaneously improve computation quality within a real-
time constraint [15]. They employed Mandatory-First with 
Earliest Deadline (MFED) as an imprecise computational 
model to schedule tasks to processors and used RT-SVFS as 
well as Cycle-Conserving RT-DVFS for controlling 
processors frequency. 

III. POWER SCHEDULING TECHNIQUE 
The proposed power scheduling technique consists of 

two steps. At the first step, the average number of processing 
cycles of each packet is estimated to assign a reasonable 
frequency to meet an adaptive control interval. The adaptive 
control interval is determined based on statistics of historical 
traffic workloads. At the second step, the clock frequency is 
adjusted to keep the performance capability during the 
control interval decided at the first step and achieve more 
optimal power consumption. This step is done by checking 
the correlation between the current amount of processed 
packets and the current processing time. The adaptive control 
interval is also defined as a deadline constraint in this paper. 
In addition, when both Suricata and other programs are 
simultaneously executed on the same machine, the CPU-core 
controlling algorithm is used to switch cores in order to 
maintain the performance for all applications as well as 
power optimization for the NIDS on multicores. 2-step 
power scheduling technique is implemented in Suricata as 
shown in Fig. 1. Suricata consists of four modules such as 
the stream phase, the decode phase, the detection phase, and 
the output packet phase. The first step is implemented at the 
packet receiver in front of the stream phase, and the second 
step is implemented in the detection phase. 

A. Scheduling the feasible frequency to meet the adaptive 
control interval 
Giving x is the number of received packets available in 

the pool and iT  is the processing time of its own packet. The 
processing time of all ones can be described as the 
expression (1). 
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From expression (1), it can be seen that adjusting the 
clock frequency depends on each packet processing cost and 
the quantity of captured packets from the network. In 
practice, we can estimate the average processing time of each 
packet, meanT by profiling technique. Additionally, x can be 
determined from the packet statistic of the NIDS after each 
schedule interval update. 

We define the frequency control interval as a deadline 
constraint that the algorithm must ensure to maintain the 
performance of the system. To meet the deadline constraint 
denoted by deadlineT , the processing time of x received packets 
must be finished as soon as the deadline constraints arriving. 
The feasible frequency, maxmin fff feasible ≤≤ , is selected in 
responding with the given deadline control interval, 5us 

≤≤ deadlineT 30ms. The value 5us is originally taken from 

Suricata while 30ms can be estimated depending on the 
hardware processing capacity. We can derive the expression 
(2) below from the expression (1). 
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In many real-time systems like an MPEG movie player, 
there is an explicitly specified deadline interval to process 
each workload, and if this deadline requirement is not 
fulfilled, then it can violate the desired execution time. For 
network tracking applications, network workloads change 
unpredictably from low to big traffic and there often have 
unstable and stable points. According to the expression (2), if 
we choose too small values for the fixed interval, then the 
system cannot minimize power consumption. For the fixed 
large interval, there may exist in major degradation in the 
performance capability in the context of very heavy network 
congestion level. Therefore, the control interval should be 
variable according to network traffic status. 

In the algorithm 1, the packet counter is used to record 
how many received packets processed and it is reset to be 
zero after each control interval update. The number of 
received packets of previous updates is denoted by y. If there 
are some existing packets at the line 2 which have not been 
yet inspected previously, it is counted at the line 3 otherwise 
just considering the current number of received packets at 
the line 5. At the line 7 of the algorithm 1, when received 
packets x is more than or equal to a dominant value LB so 
called the limited buffer, then deadlineT should be assigned to 
5us coming originally from Suricata source code as the 
default value at the line 8. LB is picked up depending on the 
hardware’s processing ability by the profiling technique. For 
the else cases, deadlineT should be determined based on some 
past buffers collected to ensure the performance capability. 

Giving an available amount of cores for the NIDS is 
denoted by No. cores and a set of the amount of collected 
packets into the buffer at historical update times denoted 
by },,{ 21 historyihistoryhistoryhistory xxxx = then taking the average 

value )1/()...( 21 ++++= ixxxx historyihistoryhistoryaverage . 
The number of elements in the set should be limited by 

10 to ensure the calculation of control interval correctly. If 
this value is set to a very small value like 3 elements, then 
the estimation of the control interval can get incorrect. This 

Packet n

Packet 2

Packet 1

Stream Decode Detection

Detection

Detection

Output 

Step 2 

 
Step 1 

 
Fig. 1. 2-step scheduling with the adaptive control interval 

implemented into Suricata. 
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is due to, for instance, 2 elements of 3 may indicate unstable 
points and they may introduce an incorrect deadline. This 
value, of course, is much better with using the bigger value. 
However, it becomes convergent at a point like 10 elements 
and if we set to more than 10, the probability of correctness 
is the same with 10. In practice, if we take only the current 
number of received packets x for calculating the deadline 
constraint, that is, averagex = x, then the estimation of the 
deadline interval may get incorrect. This is due to the 
collected workload x sometimes become unstable causing by 
network bottleneck. For example, the stable network traffic 
is about 500 packets/seconds, but this rate can increase to 
1,000 or 10,000 packets/seconds at unstable points. 

Network bottleneck situations happening during the 
control intervals can affect the overall performance 
capability when the estimated deadline interval is very long. 

 
Algorithm 1: Select the feasible clock frequency 

1: while (true) { 
2:  if (packet counter < y) { 
3: x = x + (y – packet counter)} 
4:  else { 
5: x = x} 
6: packet counter = 0 
7: if (x � LB) { 
8:   deadlineT = 5us} 
9:  else { 
10:  if (all elements in historyx � LB) { 

11: deadlineT = 5us +
coresNo

averagexLB
meanT

.

)(
*

−
} 

12:  else if (at most 1/5 elements in historyx � LB) { 

13:  deadlineT = 5us +
coresNo

averagexLB

meanT
.

)
5

4
(

*
−

} 

14: else if (at least 2/5 elements in historyx > LB) { 

15:  deadlineT = 5us} 
16: else { 
17:  deadlineT = 15ms} 
18: } 
19:  if ( deadlineT � 30ms) { 
20:  deadlineT = 30ms} 
21: scheduling the frequency from the calculated 

deadlineT  according to equation (2) 
22:  sleep( deadlineT )} 
 
We collect some historical buffers, then giving several 

possible cases to estimate the control interval. As the first 
situation, if all past results in historyx are under LB value, then 
the prediction for the next future workload is possible to less 
than LB, so we can extend the frequency control interval by 

adding )./()(* coresNoLB averagemean xT − with 5us as shown 
at the line 11  The second case of congestion is that at most 
1/5 elements in historyx is more than LB value as written at the 

line 13. For instance, historyx includes 10 past buffers and at 
most 10*1/5= 2 historical buffers or 2 unstable points in out 
of 10 are over LB, so it should be considered at least 8 
remained buffers which are less than LB to estimate the 
interval. In the scenario that at least 2/5 elements in 

historyx over LB or if at least 4 previous receive buffers in out 
of 10 collected past buffers are greater than LB, it should be 
used 5us in order to ensure the performance capability at the 
line 15 since the next network status is possible to become 
very big traffic. In case of historical received workloads 
unpredicted, the deadline update should be assigned to be 
less than 15ms or an arbitrary interval at line 17. The fraction 
of historical buffers such 2/5 and 1/5 can be changed 
according to the traffic characteristic of target network. After 
the estimation of the deadline interval is done, the feasible 
frequency is determined according to the formula (2) at the 
line 21. 

Finally, the calculated deadline by the algorithm 1 is 
taken as the control interval for the frequency scheduling. 

B. Adjusting the clock frequency within the  packet 
detection phase 
Because of the more sophistication of the attacks from 

the Internet, the known signatures are often being extended 
to detect new attacks. From this extension of the rule set, the 
cost of malicious messages can become much more 
expensive than that of benign packets as a result of 
consuming more the inspection time for suspicious ones. In a 
real system, if the collected packets are benign packets, then 
the actual processing cost is much less than the average 
estimated value. As a result, there exists in a long interval of 
the idle time because the selected clock frequency from the 
first step regarding to the average estimated cost is too fast. 
On the other hand, when the buffer receives the majority of 
malicious packets, the actual processing cost consumes much 
more than the estimated cost. Since the selected clock 
frequency from the first step is too slow, so the system is 
unable to keep the data processing capability well. Therefore, 
there is a need for increasing or decreasing frequency so as 
to achieve minimal power consumption and avoid violating 
the performance capability. 

The algorithm 2 of the second step is used to avoid 
degradation in the performance capacity as well as eliminate 
the idle time after selecting the reasonable clock frequency at 
the first step. We compare the current processing time and 
the calculated control interval based on the packet counter 
variable. The packet counter should be checked at 
appropriate points such as at 50% the amount of processed 
packets, or at 75% to respond the estimated real-time interval 
at the first step. During the estimated control interval, when 
the packet counter reaches to 50% the number of processed 
packets at the line 2, if the current processing time of 
collected packets is shorter than 50% of the estimated control 
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interval as shown in Fig. 2 (a), then there is nothing to do. 
Otherwise, it should be adjusted to the higher frequency as 
shown in Fig. 2 (b) to meet the estimated control interval 
constraint at the first step. Similar to the case of 75%  

processed packets or we can take more points to ensure the 
performance capability. 

When the packet counter reaches to the last processed 
packet at the line 8 before the calculated deadline arrives by 
an acceptable interval, the clock frequency should be 
switched to the lowest frequency or be off as shown in Fig. 2 
(c). 

C. Multiplexing  NIDS and other programs  executed 
concurrently 
The algorithm 3 controls the number of cores assigned to 

NIDS depending on the case of with or without other 
program executed on the same machine. At the very 
beginning, Suricata is run on all cores in the system. All 
thread IDs are recorded at the line 2. The system explores 
whether the multiplexed programs are posed. Then, the 
required number of cores used for NIDS are switched so 
that the NIDS and other programs can be run on different 
cores or group of cores at the line 4 and 5. In case of only 
the NIDS used, all NIDS threads should be scheduled to all 
cores on the device. A program is implemented from the 
algorithm 3 run concurrently to schedule the number of 
cores for multiple programs. 

 
. Algorithm 3: Controlling the number cores for NIDS 

1: run NIDS on all cores of machine 
2: get all thread IDs created by NIDS 
3: while (true) { 
4: if (other program requested) { 
5: switch all threads of NIDS and other  
 program to different cores} 
6:  else if (only NIDS run) { 
7:  switch all thread IDs of NIDS to all cores}  
8: sleep()} 

IV. EXPERIMENTAL RESULT 
We implement proposed algorithms into Suricata version 

2.0.8 [16], then measure and compare power consumption 
as well as the performance capability of Suricata among 
CPU frequency scaling governors of Linux and various 
optimization methods by using network traffic traces on 
ODROID-XU3 (2.0 GHz 4 big ARM Cortex-A15, 1.4 GHz 
4 small ARM Cortex-A7, 2 GB RAM) with Ubuntu 15.04 
mate ODROID-XU3 operating system [17]. 

There are totally 6 different scheduling methods 
integrated into Suricata for experimental evaluations 
including the Performance and the Ondemand governor in 
Linux kernel, 2-step scheduling with the fixed 15 and 30 
milliseconds control interval, 1-step scheduling with the 
adaptive control interval using only the algorithm 1, and 2-
step scheduling with the adaptive interval. We use tcpreplay 
tool [18] as a packet generator to cause the different level of 
network traffic congestion at the router and run Suricata on 
ODROID-XU3 to detect packets at the router for 
measurement. 

Algorithm 2: Adjusting the frequency during the packet 
detection phase 

1: packet counter++ 
2: if (packet counter = 50% of x) { 
3: if (current processing time > 50% deadlineT ) { 
4:  switch to the higher frequency}} 
5: else if (packet counter = 75% of x) { 
6: if (current processing time > 75% deadlineT ) { 
7: switch to the higher frequency}} 
8: else if (packet counter = 100% of x) { 
9:  if (current processing time < deadlineT ) { 
10: switch to the lowest frequency}} 

50% processed packets 
50% control interval

Control interval 

Current processing time 

Clock frequency 

 
 
(a) 

 

50% processed packets 
50% control interval

Control interval 

Current processing time 

Clock frequency 

 
 
(b) 

50% control interval

 

100% processed packets 

Control interval 

Current processing time 

Clock frequency Acceptable interval 

 
  
 (c) 

 
Fig. 2. At (a) 50% packets processed, do nothing if the current 

processing time is less than 50% control interval (b) 50% packets 
processed, increasing the clock frequency if that is over 50% control 
interval (c) 100% packets processed, if that is shorter than the control 

interval by an acceptable interval, then minimizing the clock frequency 
or switching to be off.  
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At 1,000 packets/seconds as shown in Fig. 4 (a), the 
frequency scheduling algorithm with the fixed interval as 
well as with the adaptive interval gives the best power 
optimization compared with Linux scaling governors. When 
the network traffic is increased to 10,000 packets/seconds as 
shown in Fig. 4 (b), the power dissipation becomes 
significant by using the Performance and the Ondemand 
scaling governor in Linux kernel. Typically, when four 
cores are used, the Performance and Ondemand scaling 
governor account for considerable power consumption, 
about 3.8 and 3.2 watts, respectively. In contrast, applying 
2-step scheduling with both the adaptive and the fixed 30ms 
interval, the power consumption in Suricata is reduced to 

1.5 watts and 1.2 watts in respect with on 3 and 4 cores. Fig. 
4 (c) illustrates the power usage of Suricata at the big 
network traffic, 17,000 packets/seconds. Clearly, 2-step 
scheduling with the adaptive control interval can provide 
about 10% lower power consumption than the Ondemand 
governor on 4 cores. In addition, it still maintains the data 
processing capacity very well at 2,100, 7,515, 11,290, and 
15,445 packets/seconds on 1, 2, 3 and 4 cores respectively 
compared with other techniques as illustrated in Fig. 3 (c). 
For 2-step with the fixed 30ms interval, it attains much 
lower power consumption at the network traffic rate of 
17,000 packets/seconds as Fig. 4 (c) shown, but this method 
causes the performance violation considerably compared 
with the adaptive mechanisms. For instance, it just 
processes 525, 4,335, 8,902, and 12,822 packets/seconds on 
1, 2, 3 and 4 cores. 

 
(a) 

 
(b) 

 
 (c) 
 

Fig. 4. The average power consumption of Suricata among 
power scheduling approaches over various big ARM Cortex-

A15 at traffic (a) 1,000 (b) 10,000 (c) 17,000 packets/seconds. 

 
(a) 

 
(b) 

 
 (c) 
 

Fig. 3. Suricata performance among scheduling approaches over 
various big ARM Cortex-A15 at traffic (a) 1,000 (b) 10,000 (c) 

17,000 packets/seconds. 
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Fig. 6 (a) shows that power consumption can be reduced 
about 65% on four cores by using both 2-step adaptive and 
fixed 30 milliseconds control interval in comparison with 
the Ondemand governor at the network traffic 1,000 
packets/seconds. Regarding to the performance capability, 
at the network traffic 5,000 packets per seconds, 2-step 
controlling with both the fixed 15 and 30 milliseconds 
interval causes a major degradation of performance on 1, 2, 
and 3 cores as shown in Fig. 5 (b). In contrast, the adaptive 
control interval can maintain the performance capability 
over the different number of cores comparable with the 
Performance and Ondemand governor. Typically, the 
Ondemand governor scaling and 2-step scheduling 
algorithm with the adaptive interval process 1,155 and 1,012 
packets/seconds respectively while the fixed 15ms and 30ms 
just process only 300 and 125 packets/seconds on one core. 

We combine 2-step scheduling with the adaptive control 
interval with the algorithm 3 presented in Section III to 
measure power consumption as well as performance in the 
case of Suricata and another program executed at the 
network traffic 10,000 packets/seconds on ODROID-XU3 
board. Combining the core controlling algorithm and 2-step 
power scheduling achieves lower power consumption than 
the Ondemand governor as in Fig. 8. It attains an average of 
1.25 watts on big cores and an average of 0.362 watts on 
small cores as shown in Fig. 7. In contrast, the usage of the 
Ondemand governor consumes an average of 3.42 watts on 

big ARM Cortex-A15 cores and an average of 0.251 watts 
on small cores. It is clear that the data processing capacity of 
two these approaches are almost the same as in TABLE I. 

TABLE I.  PERFORMANCE WHEN SURICATA AND ANOTHER 
PROGRAM EXECUTED ON ODROID-XU3 AT NETWORK TRAFFIC 10,000 

PACKETS/SECONDS. 

Governor scaling Performance (packets/seconds) 
Ondemand 10,122 

2-step adaptive 10,067 

 
(a) 

 
(b) 
 

Fig. 6. The average power consumption of Suricata among 
power scheduling approaches over various small ARM Cortex-

A7 at traffic (a) 1,000 (b) 5,000 packets/seconds. 

 
(a) 

 
(b) 
 

Fig. 5. Suricata performance among scheduling approaches over 
various small ARM Cortex-A7 at traffic (a) 1,000 (b) 5,000 

packets/seconds. 

 
Fig. 7. The average power consumption between Ondemand 
and 2-step scheduling with adaptive interval combining with 

core controlling algorithm when Suricata and another program 
executed on big ARM Cortex-A15 and small ARM Cortex-A7 

at traffic 10,000 packets/seconds. 
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V. CONCLUSION 
In this paper, we proposed the 2-step power scheduling 

algorithm with the adaptive control interval to reduce the 
power consumption in Suricata. Additionally, we also 
presented an algorithm to adjust the number of cores in 
order to maintain power optimization and the performance 
capacity in case of Suricata and another program executed 
on the same multicore system as in a home server, or a 
mobile device. The evaluations show that the 2-step power 
scheduling with the adaptive control interval achieves the 
best power saving while maintains the data processing 
capability for both low and big network traffic on ODROID-
XU3 board. Typically, the 2-step scheduling with the 
adaptive control interval and the fixed 30-millisecond 
interval can save an average of 87% power usage without 
affecting their performance considerably compared with the 
Performance governor in Linux over various big cores at 
traffic 1,000 packets/seconds. Furthermore, at 17,000 
packets/seconds, the 2-step power scheduling with the 
adaptive interval can ensure the performance very well, 
while the fixed 30-milliseconds interval violates the 
performance over various cores. 
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Fig. 8. Changes in the power supply between (a) 2-step 
scheduling with the adaptive interval combining with the core 

controlling algorithm (b) Ondemand when Suricata and another 
program executed on big ARM Cortex-A15 and small ARM 

Cortex-A7 at traffic 10,000 packets/seconds. 
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