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Abstract—Architecture simulators play an important role
in exploring frontiers in the early stages of the architecture
design. However, the execution time of simulators increases
with an increase the number of cores. The sampling simulation
technique that was originally proposed to simulate single-core
processors is a promising approach to reduce simulation time.
Two main hurdles for multi/many-core are preparing sampling
points and thread skewing at functional simulation time. This
paper proposes a very simple and low-error sampling-based
acceleration technique for multi/many-core simulators. For a
parallelized application, an iteration of a large loop including
a parallelizable program part, is defined as a sampling unit.
We apply X-means method to a profile result of the collection
of iterations derived from a real machine to form clusters of
those iterations. Multiple iterations are exploited as sampling
points from these clusters. We execute the simulation along the
sampling points and calculate the number of total execution
cycles. Results from a 16-core simulation show that our
proposed simulation technique gives us a maximum of 443x
speedup with a 0.52% error and 218x speedup with 1.50%
error on an average.
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I. INTRODUCTION

The interaction among compilers, operating systems, and

architectures is gaining in importance because it can fa-

cilitate power-efficient computing through a collaboration

between hardware and software. Architecture simulators

should play an important role in exploiting the new fron-

tiers of such collaborations at early stages of the system

development. However, much research has been hindered

by time-consuming architecture simulators.

A considerable amount of research has been conducted to

reduce the simulation time of architecture simulators. Some

of them have proposed extracting simulation points, which

need to be evaluated precisely. This approach combines two

simulation modes to reduce simulation time. The one is

the detail mode, which models the complete architectural

state of a computer, such as its pipeline, memory hierarchy,

interconnection network, and so on. The other is the function

mode, which operates only instruction execution. The speed

gap between the two simulation modes is more than two

orders of magnitude. By simulating a small part of the

program in the detail mode and the remainder in the fast

functional mode, we can obtain the number of total execu-

tion cycles of an application program on a target multi/many-

core processor in short simulation time.

SimPoint attempted to exploit the part of the program

to be simulated in the detail mode by detecting execution

phases in a program[1]. SMARTS framework applied a

statistical sampling technique to the target program[2]. Both

techniques are promising attempts to drastically reduce

simulation time. However, both were originally developed

to simulate a single-core architecture.

Several recent studies have tried to extend the sampling

technique proposed by SMARTS to apply multi/many-core

simulations[3], [4], [5]. One of the main challenges of this

is overcoming thread skew at the function mode.

Carlson et al. and Ardestani et al. have proposed IPC

calculation for each core in the function mode[3], [4]. On

the other hand, Bryan et al. use the intervals between barrier

synchronizations as the parallel execution unit[6]. Moreover,

Carlson et al. use the barrier interval as a sampling unit to

avoid thread skew[5]. Using barrier synchronization is a nat-

ural way to avoid thread skew for parallelized applications,

since all threads are aligned by force at barrier synchro-

nization points. This technique requires trace information to

prepare sampling points using basically the same number of

cores as the target machine for precise simulation.

In this paper, we use an iteration of a large loop, which

includes the parallelizable part of the program, as a sampling

unit. This is a coarser sampling unit than a barrier interval.

Such an iteration includes all parallel primitives, such as

thread fork and join, synchronizations, etc in addition to the

ordinary computations in a program. Of course, all threads

are aligned at the beginning of the iteration as a barrier

synchronization is processed until the end of the iteration.

Further, all important interactions among cores and shared

hardware resources within such an iteration can be more

naturally captured by the detail simulation mode.

A factor to take into account in using an iteration as a

sampling unit is the choice of iterations to be simulated

in the detail mode because large variation across iterations

is anticipated. In this paper, we assume that for a typical

parallelized application, the trend in cost transition over iter-

ations is expected to be similar among different architectures

and varying number of cores. Based on this assumption, all

iterations of a large loop in a target parallelized program are

clustered by X-means[7] by using the profile result from a

real single-core machine. The sampling points from those

clusters are then exploited. After sampling the simulation
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along the exploited sampling points, we calculate the total

number of execution cycles in a multi/many-core environ-

ment.

The main contributions of this paper are as follows:

• We propose that an iteration of a large loop in a

parallelized program be used as a sampling unit to avoid

thread skew.

• We propose using the profiling result of a real single-

core machine. This enables us to reduce the preparation

time for deciding sampling points before a multi/many-

core simulation.

• We show that the X-means method automatically de-

composes iterations into appropriate clusters to mini-

mize the number of sampling points by reducing the

variance among clusters.

• We propose a simulation flow integrated with a paral-

lelizing compiler.

The remainder of this paper is organized as follows. We

describe in Section II the basic idea of behind our use of an

iteration of large loops in a parallelized application as our

sampling unit. Section III describes the proposed simulation

framework. We present the experimental results in Section

IV.

II. MOTIVATION FOR USING A LARGE LOOP IN A

PARALLELIZED APPLICATION

In this section, we describe our motivation for using an

iteration of a large loop in a parallelized application as a

sampling unit by using an MPEG2 encoder as an example.

A. Large Loop in a Parallelized Program

Fig. 1 shows the main loop of an MPEG2 encoder

program. The function “putseq” is the most time-consuming

function. It has a loop that processes all frames in the

relevant movie file. An iteration of this loop processes

macroblocks, which are blocks of 16x16 pixels each that

forms the basic component of a frame in MPEG2. The main

loop in “putseq” can be parallelized at the macroblock level.

This main loop is called a “large loop,” and an iteration

of this large loop will be used as the sampling unit of the

simulation. All primitives for parallel processing, such as

thread fork, thread-join, barrier synchronizations, and point-

to-point synchronizations, are included in the loop body.

This means the last barrier synchronizations in an iteration

placed before the end of the iteration resolves thread skew

prior to the next iteration.

B. Similarity in Program Behavior among Different Archi-
tectures

Fig. 2 shows the transition of execution cycles of an

iteration in the large loop in an MPEG2 encoder on different

architectures. Fig. 2(a) shows the result for an Intel Xeon

Processor, Fig. 2(b) shows that for an Intel Itanium2, and

Fig. 2(c) for an IBM Power5 processor, respectively. The

putseq()
{
  // loop through all frames
  for (i=0; i<nframes; i++) {

  }
}

Parallelizable Part
(Processing Macroblocks)

Sampling
    Unit

Figure 1. The large loop of an MPEG2 encoder program. The function
“putseq” has a large loop that processes all frames. The body of this loop
can be processed in parallel at the macorblock level.

detailed specifications of these processors are presented in

Section IV. In each graph, the x- and y-axis represent the

iteration and the clock cycles for each iteration, respectively.

Each graph has three groups of plots corresponding

to operations for intra-coded (I)-pictures, predicted (P)-

pictures and bidirectional-predicted (B)-pictures, respec-

tively, as shown in Fig. 2(a). Furthermore, the graphs for

the P-pictures and the B-pictures show a large variation

due to the algorithms used in this program. The plots in

Fig. 2(a), (b), and (c), have very similar shapes while the

absolute values of the execution cycles of each are, of course,

different.

In summary, two main observations of this section are:

• Thread skew can be avoided by using an iteration of a

large loop in a parallelized program as a sampling unit.

• The trend in the transition of execution clock cy-

cles over the iterations seems to be available as an

architecture-independent parameter, since this appropri-

ately represents program behavior.

We assess the second item in Section IV-A

III. PROPOSED SIMULATION FLOW

In this section, we present our proposed simulation flow,

which consists of two phases: the profiling phase, and the

simulation phase. In the profiling phase, the number of

execution cycles is profiled for each iteration of a large

loop of the target program on a real single-core machine.

The profile result is then grouped into clusters by X-means

and the sampling points are extracted from the clusters. In

the simulation phase, the architecture simulation is executed

along the sampling points and the execution time is calcu-

lated. We also show a simulation framework integrated with

a parallelizing compiler.

A. Profiling Phase: Profiling on a Real Machine and Ex-
ploiting Sampling Points

The profiling phase decides the sample size. Calculating

sample size from the profile result on a real machine is based

on the assumption discussed in Section II-B.

The first step of the profiling phase is profiling the

iterations of target large loops on a real single-core machine.
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Figure 2. Trends in transition of execution cycles over iterations in an
MPEG2 encoder on different architectures: (a) Xeon, (b) Itanium2, and (c)
Power5. In each graph, the x-axis represents the iteration and the y-axis
shows the clock cycles for each iteration.

A user specifies the target large loops, which include the

parallelizable part of the target program.

The profiled iterations are then grouped into clusters to

reduce the sample size by reducing the variation in execu-

tion cycles within each cluster. Another important role of

clustering is specifying sampling points more appropriately

than random sampling by exploiting sampling points from

each cluster of iterations.

The sample size then is calculated from a cluster. The

sample size ni of the cluster Ci is calculated by the

following expression, as shown in the literature [2]:

ni =
(

z · Vxi

ε

)2

(1)

where z is the 100[1− (α/2)]-th percentile of the standard

normal distribution ((1−α) is the confidence level),±ε·X̄i is

the confidence interval of Ci (X̄i is the mean of Ci), and Vxi

is the coefficient of variation of Ci. Note that ni becomes

a known variable, since Vxi is calculated using the profile

result. For the proposed technique, the sample size tends to

be at most three after clustering, as detailed in Section IV-A,

and statistical theory assumes the sample size is sufficiently

large. However, such a small sample size is available as

a good metric for clustering iterations and exploiting the

sampling points in our technique. In this paper, we use ±5%
as the confidence interval and 95% as the confidence level.

We use X-means[7], which is an extension of K-means,

for clustering. X-means applies K-means (k = 2 in this

paper) recursively until a predefined condition is satisfied. In

this paper, X-means is applied based on the execution cycles

of each iteration. For each iteration of recursive clustering,

the sample size of each cluster is calculated according to

(1). The recursive calculation of X-means is completed if

the sample size does not decrease.
Finally, the sampling points are chosen from the clusters.

In this paper, the sampling points are chosen from the

beginning of the cluster.

B. Simulation Phase: Sampling-based Simulation and Cal-
culation of Total Number of Execution Cycles

In the simulation phase, the sampling simulation is pro-

cessed along the exploited sampling points. Codes for sim-

ulation mode-switching are embedded in the target paral-

lelized program.
Then, the number of total execution cycles S is calculated

by the following equation:

S =
∑

i

(
Ni

ni

∑
j

Sij) (2)

where Ni is the number of iterations in the cluster Ci,
ni is the sample size of Ci, and Sij is the number of

execution cycles of the jth sampling point in Ci. Other

performance metrics, such as the number of cache misses,

can be calculated by the same equation.

C. Simulation Framework Integrated with Parallelizing
Compiler

Our proposed simulation flow can be integrated with

parallelizing compilers, as shown in Fig. 3. In this simulation

framework, at the Path-1 corresponding to the profiling

phase, the source code of the target program is compiled and

embedded profile code by the compiler for a real machine.
At the Path-2 corresponding to the simulation phase, the

exploited sampling points are provided along with the source

program to the compiler. The compiler generates parallelized

code for the simulator.
This flow is implemented in the OSCAR parallelizing

compiler[8], [9]. Note that this integration can also be

applied to other kinds of parallelizing compilers, such as

OpenMP compilers.

IV. EXPERIMENTAL EVALUATION

We evaluate our proposed simulation technique in this

section. In order to evaluate the applicability of profiling

results for different architectures, the number of execution

cycles of single-core execution on a machine is calculated

by using the sampling points exploited from the profiling

results of other machines. The error in the number of exe-

cution cycles of the multicore simulation is then calculated,

follwoing which the speedup using our proposed technique

is shown.
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Figure 3. Simulation flow integrated with parallelizing compiler. In Path-
1, the compiler generates single-threaded code and embeds profiling code.
The profiling is carried out on a real machine. Next, in Path-2, the compiler
generates parallelized code for a simulator and embeds simulation mode-
switching code using sampling point information from Path-1.

A. Evaluated Applications

The following four applications are used in our experi-

ments. All programs can be automatically parallelized by the

OSCAR compiler. We choose these applications to confirm

the collaboration between the simulation technique and the

compiler.

183.equake (SPEC CPU 2000)

The function “smvp()” is parallelized. An iteration

of the loop, which calls smvp() inside it, is used

as a sampling unit. The number of iterations of

this loop is 3,855. The average and variance of

the execution cycles of the first 250 iterations are

larger than those of subsequent iterations.

179.art (SPEC CPU 2000)

The function “match()” is parallelized. An iteration

of the loop, which calls match() inside it, is used

as a sampling unit. This iteration has convergence

loops whose execution cycles affect the total ex-

ecution cycles of the iteration. The number of

iterations of the large loop is 500.

MPEG2 encoder (mediabench[10])

We use 450 frames of a SIF size (352x240) movie

as input data. An iteration of the loop in putseq()

function is used as a sampling unit. These iterations

have large variation as shown in Fig. 2.

470.lbm (SPEC CPU 2006)

An iteration of the main loop in the “main()”

function is used as a sampling unit. The number

of iterations of this loop is 3,000. These iterations

have small variability. However, every 64th iter-

ation has more clock cycles than others. These

iterations must be sampled to calculate the precise

number of execution cycles.

Table I
PROCESSORS FOR APPLICABILITY OF PROFILE RESULTS IN DIFFERENT

ARCHITECTURES

Processor Intel Xeon Intel Itanium2 IBM Power5
X5670 (2.93GHz) 9150M (1.6GHz) (1.5GHz)

L1 I-Cache 32KB, 4way 16KB, 4way 32KB, 4way
L1 D-Cache 32KB, 8way 16KB, 4way 64KB, 2way

L2 Cache 256KB, 8way 256KB, 8way 1.9MB, 10way
L3 Cache 12MB, 16way 24MB, 12way 36MB, 12way

OS Linux 3.2.0 Linux2.6.16 Linux 2.6.9
Compiler gcc 4.3.3 gcc 4.1.0 gcc 3.4.6

B. Applicability of Sampling Points in Real Machines

We evaluate here the clustering results and the sampling

points derived from the profiling result on real machines. For

profiling, Intel Xeon, Intel Itanium2, and IBM Power5 are

used as shown in Table I. The instruction set architectures

and micro-architectures of these processors are completely

different. For example, Intel Itanium2 is EPIC, a kind of

VLIW, architecture, whereas Intel Xeon and IBM Power5

are speculative out-of-order processors.

Tables II–V show the clustering results for 183.equake,

179.art, the MPEG2 encoder, and 470.lbm exploited from

the profile results on the three architectures, respectively.

For example, Table II shows that there are four clusters, C1

to C4, for 183.equake following clustering from the profile

result of Intel Xeon. The total number of iterations of C1 is

78 and its sample size is 1, whereas the sample size is 4 for

3,855 iterations without clustering by X-means.

In Table II, there are four clusters each for Intel Xeon

and Intel Itanium2, and seven clusters for IBM Power5. C1

and C2 correspond to the first 250 iterations, and C3 and C4

correspond to subsequent iterations for Intel Xeon and Intel

Itanium2. Similarly, C1 to C5 of IBM Power5 correspond

to the first 250 iterations. For all architectures, the first 250

iterations and subsequent iterations are clearly separated into

different clusters by X-means.

In Tables IV–V, all cases have almost the same number

of clusters among the three architectures. In particular, for

179.art shown in Table III, there are four clusters for each

of the three architectures. The number of iterations for each

cluster shows that all iterations are clustered in the same

way for the different three architectures.

For 470.lbm, shown in Table V, all iterations with longer

clock cycles than other iterations are captured by C3 and C4

(46 iterations in total) for all architectures.

Regarding the sample size, X-means reduces the sample

size for 179.art and the MPEG2 encoder. For example, in

case of Intel Xeon, 179.art has a sample size of 4 with

X-means and 22 without it, and the MPEG2 encoder has

a sample size of 13 with X-means clusering and that of

188 without it. This shows that X-means successfully forms

clusters with a smaller variance than that of all iterations

taken together.

The clustering results are then applied to the profiling
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Table II
CLUSTERING RESULT OF 183.EQUAKE

Processor Cluster # of Iterations Sample Size
w/o X-means 3,855 4

C1 78 1
Intel Xeon C2 172 1

C3 2,401 1
C4 1,204 1

w/o X-means 3,855 4
C1 162 1

Intel Itanium2 C2 88 1
C3 2,483 1
C4 1,122 1

w/o X-means 3,855 280
C1 9 1
C2 33 1
C3 77 2

IBM Power5 C4 129 3
C5 2 1
C6 2,422 1
C7 1,183 1

Table III
CLUSTERING RESULT OF 179.ART

Processor Cluster # of Iterations Sample Size
w/o X-means 500 22

C1 183 1
Intel Xeon C2 114 1

C3 89 1
C4 114 1

w/o X-means 500 23
C1 183 1

Intel Itanium2 C2 114 1
C3 89 1
C4 114 1

w/o X-means 500 19
C1 183 1

IBM Power5 C2 114 1
C3 90 1
C4 113 1

results to assess the applicability of the sampling points. To

calculate the number of execution cycles, sample iterations

are picked from the profiling result of the target architecture,

but the samples are selected along sampling points exploited

from another architecture.

Fig. 4 shows the errors in the number of execution cycles

calculated using sampling points derived from different

architectures. In this graph, for example, the three left-most

bars show the error in calculation of the execution cycles of

183.eqauke on Intel Xeon, Intel Itanium2, and IBM Power5,

the sampling points for which are exploited from the profile

result of Intel Xeon.

For 183.equake, 179.art and the MPEG2 encoder, all

calculation results show only a small error. For 183.equake

in particular, the error is close to 0% except for cases

involving IBM Power5 with sampling points from Intel

Xeon and Itanium2. However, even for these cases, the error

is only 2.72% and 3.50%, respectively. The highest error

among these three applications is only 3.62% for the MPEG2

encoder on Intel Xeon with the sampling points from IBM

Table IV
CLUSTERING RESULT OF MPEG2 ENCODER

Processor Cluster # of Iterations Sample Size
w/o X-means 450 188

C1 38 2
Intel Xeon C2 49 2

C3 146 2
C4 25 2
C5 31 2
C6 82 1
C7 79 2

w/o X-means 450 55
C1 1 1

Intel Itanium2 C2 31 1
C3 136 1
C4 112 2
C5 133 1
C6 37 1

w/o X-means 450 86
C1 22 1
C2 29 1
C3 109 1

IBM Power5 C4 59 2
C5 132 1
C6 16 1
C7 83 1

Table V
CLUSTERING RESULT OF 470.LBM

Processor Cluster # of Iterations Sample Size
w/o X-means 3,000 3

C1 2,925 1
Intel Xeon C2 29 1

C3 24 1
C4 22 1

w/o X-means 3,000 5
C1 1,455 1

Intel Itanium2 C2 1,499 1
C3 2 1
C4 44 1

w/o X-means 3,000 6
C1 50 1

IBM Power5 C2 2,904 1
C3 41 1
C4 5 1

Power5. These results show that sampling points can be

effectively applied to different architectures.

For 470.lbm, errors using Intel Xeon are sufficiently low,

such as 2.05% using its own sampling points, 1.06% using

Itanium2 and 0.57% in IBM Power5. However, errors with

Intel Itanium2 and IBM Power5 with sampling points from

Intel Xeon are higher than 5.00%, (6.57% and 5.62%,

respectively). Similarly, the error with IBM Power5 is 6.68%

when sampling points from Intel Itanium2 are used. These

relatively high errors are due to insufficient sampling points

for Itanium2 and Power5. For these architectures, the first

iteration of the loop is selected as the sampling point in the

cluster C1 for Intel Xeon and Intel Itanium2 as shown in

Table V. This iteration has a smaller number of execution

cycles than other iterations involved in the same cluster. This

can be avoided by changing the parameters z and ε in (1),

181



Table VI
TARGET ARCHITECTURE FOR SIMULATION

Instruction Set SPARC V9
Pipeline In-order, single-issue, 8-stage pipeline

# of Cores 1, 4, 8, 16
L1 I-Cache 32KB, 2way
L1 D-Cache 32KB, 2way

L2 Cache 512KB/core, 2way
Latency L1: 1 clock cycle, L2: 5 clock cycle,

Main Memory: 68 clock cycle
Cache Coherence Protocol MOESI

or by selecting sampling points other than from the first

iteration of the cluster.

C. Error of Calculation

We assess here the error in the multicore simulation.

The specification of the simulated multicore architecture is

shown in Table VI. The processors used here had 1, 4, 8 and

16 cores. The specification of the architecture is assumed to

be used in embedded areas like mobile devices. We develop

a cycle-accurate architecture simulator. A user program on

this simulator can change the two simulation modes, the

detail mode and the function mode, through a system call.

The sampling points used in this evaluation are exploited

from the profiling results on Intel Xeon. In order to attain

the number of total execution cycles in detail mode within

a feasible simulation time, the target loops in each program

are decomposed into multiple chunks, each of which consists

of 5–50 iterations depending on the simulation time. One

iteration is added to each chunk as a warm-up iteration. The

chunks are then simulated in parallel, as in the literature[6].

In order to show the robustness of the proposed technique,

the first 270 iterations were simulated for 183.equake, since

the variation in iterations is very small after the 250th

iteration, while the number of those iterations is very large

(such as 3,605). The error in 183.equake largely depends on

these 3,605 stable iterations, if all iterations are simulated.

Fig.5–8 show the errors in the calculated number of

execution cycles, L1 cache misses and L2 cache misses

for 183.equake, 179.art, the MPEG2 encoder and 470.lbm,

respectively. The effect of warm-up is also evaluated. In

these figures, 0-warmup, 1-warmup and 2-warmup stand

for no-warm-up, one warm-up iteration and two warm-up

iterations added prior to a sample iteration. The simulation

model of the warm-up mode is the same as that of the detail

mode in this paper.

The graphs show that the errors in the calculation of

execution cycles for all programs are under 5.00% even

without warm-up iterations, for all number of cores used.

Regarding cache misses, when at least one warm-up iteration

is added, the errors for almost all programs are also under

5.00% (The cases of programs exceeding 5.00% will be

discussed later). The detailed discussion of each program

is as follows.
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Figure 5. Error in Calculated Execution Cycles and Cache Misses of
183.equake.

Fig. 5 and Fig. 6 show that the proposed technique

achieves very low error for 183.equake and 179.art, even

without warm-up. For the case of 183.equake where 16 cores

are used without warm-up, the error in the calculation of the

number of total execution cycles, L1 cache misses and L2

cache misses are 0.67%, 0.31% and 0.41%, respectively. The

four sampling points result in a sufficiently low error for this

case. Similarly, for 179.art where 16 cores are used without

warm-up, the number of total execution cycles is 0.002%

with also only four sampling points.

Fig. 7 shows that the proposed technique leads to a

sufficient low error in the calculation of the number of

execution cycles for the MPEG2 encoder. The highest error

is 2.83% for eight cores with 2-warmup, and only 0.59% in

the case of 16 cores with 1-warmup. However, regarding the

number of L2 cache misses, 0-warmup yields high errors,

such as 53.39% for eight cores and 64.12% for 16 cores.

The main reason for these high errors is the relatively small

number of L2 cache misses. For 16 cores, the number of L2

cache misses per iteration is 17.3 × 103 while the number

of execution cycles is 95.7 × 106. By adding a warm-up

iteration, the errors can be reduced to 1.38% for eight cores

and 6.87% for 16 cores.

Fig. 8 shows that error in calculation of execution cycles

for 470.lbm increases along with the increasing number

of cores, while error in the calculation of the number of

cache misses remains low. For example, for the case with

no warm-up iteration, the error was 2.75% for eight cores

and 4.94% for 16 cores. This is due to the differences in

the execution cycles between the first iteration and other

iterations, as described in Section IV-B. The clustering result

of Intel Xeon, shown in Table V, shows that the cluster C1

garners 97.5% of all iterations (2,925 of 3,000 iterations).

The first iteration is selected as the sampling point of C1

in this evaluation. However, the number of execution cycles

of C1 decreases with an increasing number of cores. This

causes the increased error in the calculation of execution

cycles in the case of eight cores and 16 cores.
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Figure 6. Error in Calculated Execution Cycles and Cache Misses of
179.art.
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Figure 7. Error in Calculated Execution Cycles and Cache Misses of
MPEG2 encoder.
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Figure 8. Error in Calculated Execution Cycles and Cache Misses of
470.lbm.

D. Speedup Using The Proposed Technique
The speedup using the proposed technique is assessed

under the assumption that all iterations are sequentially

simulated in the detail mode. In order to calculate the

speedup, we first calculate the speed ratio of the function

simulation mode to the detail simulation mode by measuring

the simulation time of two iterations in the target program

on Intel Xeon 5650 (2.67GHz). Speedup is then calculated

by using the speed ratio and the sample size of the program.

When warm-up iterations are required, they are included in

the detail mode.

Table VII–X show the speedup of each program. In these

tables, “F / D” stands for the speed ratio of the function

mode against that of the detail mode. “Speedup (0W),”

“Speedup (1W)” and “Speedup(2W)” represent the speedup

in case of no warm-up iterations, one warm-up iteration, and

two warm-up iterations, respectively. The speed ratio tends

to depend on the L1 miss rate and the L2 miss rate, as well

as the number of cores, since these values affect IPC, which

is not modeled in the function mode.

The tables show that the proposed technique provides a

speedup of two or three orders of magnitude. In this section,

taking into account the errors in the number of cache misses,

as discussed in Section IV-C, we focus on the speedup in

the case of 16 cores with one warm-up iteration.

Table VII and X show significant speedups, such as 443x

speedup for 183.equake and 327x speedup for 470.lbm.

These high values are obtained because the relevant pro-

grams have a large number of iterations with a small sample

size (only four for both cases).

Table VIII shows, for 179.art, 81x speedup, which is

lower than for 183.equake and 470.lbm. This is because the

number of iterations of the target large loop is 500 and the

sample size is four. Similarly, Table IX shows 19x speedup

for the MPEG2 encoder. The reason of this low speedup is

due to low speed ratio caused by a low cache miss rate,

such as 1.14% for L1 and 10.16% for L2, respectively, in

addition to a sample size of 13 for 450 iterations.

In summary, 218x speedup is achieved on an average

using our proposed method (57x speedup on a harmonic
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Table VII
SPEEDUP OF 183.EQUAKE.

# of L1 miss L2 miss F / Speedup Speedup Speedup
cores (%) (%) D (0W) (1W) (2W)

1 17.26 17.98 941 476 382 319
4 16.17 17.84 666 394 327 280
8 15.33 17.66 818 443 360 303
16 13.73 17.52 1428 576 443 360

Table VIII
SPEEDUP OF 179.ART

# of L1 miss L2 miss F / Speedup Speedup Speedup
cores (%) (%) D (0W) (1W) (2W)

1 57.58 59.14 743 107 75 58
4 13.20 50.81 979 111 77 59
8 5.83 54.41 1587 116 79 60
16 1.87 64.69 2844 120 81 61

Table IX
SPEEDUP OF MPEG2 ENCODER

# of L1 miss L2 miss F / Speedup Speedup Speedup
cores (%) (%) D (0W) (1W) (2W)

1 2.58 5.02 106 26 19 15
4 1.91 9.58 95 26 18 14
8 1.60 10.70 104 26 19 14
16 1.14 10.16 129 27 19 15

Table X
SPEEDUP OF 470.LBM

# of L1 miss L2 miss F / Speedup Speedup Speedup
cores (%) (%) D (0W) (1W) (2W)

1 19.32 20.41 282 205 170 146
4 15.64 20.41 338 233 189 159
8 15.16 20.42 617 339 253 202
16 14.04 20.43 1385 487 327 327

mean).

V. CONCLUSION

We proposed a sampling-based technique using profiling

data on a real machine for architecture simulators targeting

parallelized applications to reduce the simulation time.

The proposed technique consists of two phases: the pro-

filing phase and the simulation phase. In the profiling phase,

large loops that contains a parallelizing part are specified in

the target program. The execution cycles for each iteration in

these large loops are then profiled on a single-core machine.

The profile results are decomposed into multiple clusters and

sampling points are exploited from each cluster by X-means.

Following this, the simulation phase is carried out by using

the exploited sampling points.

Experiments showed that one architecture can exploit

sampling points from other architectures. The results showed

that the number of execution cycles can be calculated within

a 5% error for almost all cases by using sampling points

from the other architectures. The speedup and error in the

architecture simulation were then evaluated. The evaluation

results showed that the proposed technique provides a maxi-

mum of 443x speedup with a 0.52% error, and 218x speedup

with a 1.50% error on an average.
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