
Evaluation of Power Consumption at Execution
of Multiple Automatically Parallelized and
Power Controlled Media Applications on the

RP2 Low-power Multicore

Hiroki Mikami1, Shumpei Kitaki1, Masayoshi Mase1, Akihiro Hayashi1,
Mamoru Shimaoka1, Keiji Kimura1, Masato Edahiro1, and Hironori Kasahara1

Dept. of Computer Science, Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo,
169-8555, Japan

{hiroki,kitaki,mase,ahayashi,shimaoka}@kasahara.cs.waseda.ac.jp,
kimura@apal.cs.waseda.ac.jp, eda@etrl.jp,

kasahara@kasahara.cs.waseda.ac.jp

Abstract. This paper evaluates an automatic power reduction scheme
of OSCAR automatic parallelizing compiler having power reduction con-
trol capability when multiple media applications parallelized by the OS-
CAR compiler are executed simultaneously on RP2, a 8-core multicore
processor developed by Renesas Electronics, Hitachi, and Waseda Uni-
versity. OSCAR compiler enables the hierarchical multigrain parallel pro-
cessing and power reduction control using DVFS (Dynamic Voltage and
Frequency Scaling), clock gating and power gating for each processor
core using the OSCAR multi-platform API. The RP2 has eight SH4A
processor cores, each of which has power control mechanisms such as
DVFS, clock gating and power gating. First, multiple applications with
relatively light computational load are executed simultaneously on the
RP2. The average power consumption of power controlled eight AAC
encoder programs, each of which was executed on one processor, was
reduced by 47%, (to 1.01W), against one AAC encoder execution on one
processor (from 1.89W) without power control. Second, when multiple
intermediate computational load applications are executed, the power
consumptions of an AAC encoder executed on four processors with the
power reduction control was reduced by 57% (to 0.84W) against an AAC
encoder execution on one processor (from 1.95W). Power consumptions
of one MPEG2 decoder on four processors with power reduction control
was reduced by 49% (to 1.01W) against one MPEG2 decoder execu-
tion on one processor (from 1.99W). Finally, when a combination of a
high computational load application program and an intermediate com-
putational load application program are executed simultaneously, the
consumed power reduced by 21% by using twice number of cores for
each application. This paper confirmed parallel processing and power
reduction by OSCAR compiler are efficient for multiple application exe-
cutions. In execution of multiple light computational load applications,
power consumption increases only 12% for one application. Parallel pro-
cessing being applied to intermediate computational load applications,

power consumption of executing one application on one processor core
(1.49W) is almost same power consumption of two applications on eight
processor cores (1.46W).

1 Introduction

Multicore processors have been widely used in a variety of applications such
as embedded systems like mobile devices, games, Digital TV, robots and au-
tomobiles, PCs, workstations, and high-performance computers. In embedded
systems, various types of multicore processors, for example IBM Toshiba Sony
CELL/BE[1], Hitachi Renesas Waseda RP1[2], RP2[3] and RPX[4], ARM NEC
MPCore[5], Fujitsu FR1000[5], Panasonic UniPhier and so on, are used for a
wide variety of applications such as image and audio processing, and real-time
controls. In these embedded multicore platforms, the reduction of power con-
sumption is a crucial problem to extend battery life. Currently, many multi-
core supports DVFS and/or Power Gating for each processor coare controled by
OS. However, OS does not control power status inside an application program
pallalelized for multiple cores. The OSCAR compiler has realized an automatic
power control scheme using DVFS and Power Gating for each core on a multicore
with automatic parallelization of an application program under the constraints
of the minimum time execution or the satisfaction of real-time deadline, or real-
time execution. However, no paper has evaluated power consumed by multiple
application programs parallelized and power controlled by a compiler. This paper
evaluates performance and consumed power on a 8-core homegeneous multicore
RP2 integrating eight 600MHz SH4A processor cores with power control func-
tion of 100%, 50%, 25%, 0% of Frequency statuses in a one clock transition time,
1.4V, 1.2V and 1.0V three levels of voltage states and power gating for individual
cores in 5 micro seconds power shut-down and 30 micro seconds power recovery
when multiple media applications parallelized and power-controlled by OSCAR
comoiler are executed simultaneously. Also, the parallel and power controlled C
programs are generated using OSCAR multi-platform API, which are a set of
about 20 directives for C and Fortran programs using 4 directives from OpenMP,
such as Section, Flush, Critical and Thread-private and new directives for power
control, realtime management, DMA transfer, distributed shared memory man-
agement, group barrier synchronization and so on. The generated C or Fortran
parallel program using OSCAR API[6] can be compiled by ordinary OpenMP
compilers. The rest of this paper is organized as follows. Section 2 provides an
overview of the OSCAR compiler and its power reduction scheme. Section 3
describes RP2 low-power multicore and characteristic of evaluated applications.
Section 4 shows the power consumption evaluation of OSCAR compiler power
reduction scheme on RP2. Finally, Section 5 summarizes the main conclusion of
this paper.

2 Multigrain Parallel Processing

The OSCAR compiler exploits multigrain parallelism, coarse grain parallelism,
loop level parallelism and near fine grain parallelism from the whole source pro-
gram. The OSCAR compiler consists of the Fortran77 and restricted C frontend,
middle path for multigrain parallelization and several backbends for different
target machines. The compiler generates coarse grain tasks called macro-tasks,
analyzes parallelism among the macro-tasks by the earliest executable condi-
tion analysis,schedules macro-tasks to threads or thread groups statically, apply
power reduction scheme, generates parallel code with OSCAR API.

2.1 Macro-Task Generation

In multigrain parallelization, a program is decomposed into three kinds of coarse
grain tasks, or macrotasks (MTs), such as a block of pseudo assignment state-
ments (BPA) like a basic block, a repetition block (RB) like a loop and a sub-
routine block (SB) like a subroutine [7–11]. Macro-tasks can be hierarchically
defined inside each sequential loop which cant be parallelized, and a subroutine
block.

2.2 Earliest Executable Condition

After generation of macro-tasks, data dependencies and control flow among
macro-tasks are analyzed in each nested layer, and hierarchical macro-flow graphs
(MFGs) as shown in Figure 1 (a) representing control flow and data dependen-
cies among macro-tasks are generated[7, 8]. Next, to extract coarse grain task
parallelism among macro-tasks, Earliest Executable Condition analysis[7, 8, 12,
13] is applied to each macro-flow graph. It analyzes control dependencies and
data dependencies among macro-tasks simultaneously and determines the condi-
tions on which macro-tasks may begin their execution earliest. By this analysis, a
macro-task graph (MTG)[7, 8, 12] as shown in Figure 1 (b) is generated for each
macro-flow graph. This graph represents coarse grain task parallelism among
macro-tasks.

2.3 Macro-task Scheduling

Static scheduling or dynamic scheduling is chosen for each macro-task graph. If a
macro-task graph has only data dependencies and is deterministic, static schedul-
ing at compilation time is selected. Generally, static scheduling is more effective
than dynamic scheduling since it can minimize data transfer and synchroniza-
tion overhead without runtime scheduling overhead. If a macro-task graph is
non-deterministic by conditional branches among coarse grain tasks, dynamic
scheduling at runtime is selected to handle the runtime uncertainties. Dynamic
scheduling routines for non-deterministic macro-task graphs are generated by
OSCAR compiler and inserted into a parallelized program code to minimize
runtime scheduling overhead.

Data Dependency

Extended Contorol Dependency

Conditional Branch

OR

AND

Original Control Flow

1

2 3

4

5

6

7

8

910 11

12

13

14

Data Dependency

Control Flow

Conditional Branch

1

2 3

4

5

6

7

8

9 10

11

12

13

14

(b) Macro Task Graph (MTG)(a) Macro Flow Graph (MFG)

Fig. 1. Earliest Executable Condition Analysis

2.4 Power reduction scheme[14]

The power reduction scheme determines suitable voltage and frequency for each
MT after Macro-task scheduling. Figure 2 (a) shows MTs 1, 2 and 5 are assigned
to PE0, MTs 3 and 6 are assigned to PE1, MTs 4, 7 and 8 are assigned to PE2.
Edges among tasks show data dependence. OSCAR compiler estimates execution
time of each MTs, then decide critical path which is longest execution time of
the MTG. Defining execution time of the target MTG, parallel processing of
the MTG after DVFS has to satisfy the given deadline. OSCAR compiler with
the power reduction scheme decides optimal frequency and voltage of each MT
to minimize the whole energy consumption. The detail of voltage and frequency
scaling algorithm is described in [14]. After determining voltage and frequency of
MTs, OSCAR compiler with the power reduction scheme tries to apply dynamic
power shutdown, clock gating or frequency scaling to reduce unnecessary energy
consumption including static power consumption by idle processors. OSCAR
compiler recalculates MTGs after DVFS like Figure 2 (b) and selects power
gating, clock gating, frequency scaling or no control for each idle part, considering
the period of idle time and its overhead.

2.5 OSCAR API Code Generation[6]

The OSCAR API is designed on a subset of OpenMP for preserving portabil-
ity over a wide range of multicore architectures. An OpenMP-based design can
support both C and Fortran programs. However, in order to avoid the com-
plexity of a backend compiler and runtime routines, only three directives are

G iven D ead L ine

M T 1

M T 2

M T 5

M T 3

M T 6

M T 8

M T 7

M T 9

M arg in

tim e

(a) S ta tic schedu led M T G

M T 4

P E 0 P E 1 P E 2 P E 0 P E 1 P E 2

M T 1

M T 2

M T 5
(H a lf freq.)

id le

id le

M T 3
(H a lf freq.)

M T 6

M T 8

id le

M T 4

M T 7

M T 9

(b) R esu lt o f F /V contro l

C P U off C P U off

tim eG iven D ead L ine

M T 1

M T 2

M T 5

M T 3

M T 6

M T 8

M T 7

M T 9

M arg in

tim e

(a) S ta tic schedu led M T G

M T 4

P E 0 P E 1 P E 2 P E 0 P E 1 P E 2

M T 1

M T 2

M T 5
(H a lf freq.)

id le

id le

M T 3
(H a lf freq.)

M T 6

M T 8

id le

M T 4

M T 7

M T 9

(b) R esu lt o f F /V contro l

C P U off C P U off

G iven D ead L ine

M T 1

M T 2

M T 5

M T 3

M T 6

M T 8

M T 7

M T 9

M arg in

tim e

(a) S ta tic schedu led M T G

M T 4

P E 0 P E 1 P E 2

G iven D ead L ine

M T 1

M T 2

M T 5

M T 3

M T 6

M T 8

M T 7

M T 9

M arg in

tim e

(a) S ta tic schedu led M T G

M T 4

P E 0 P E 1 P E 2 P E 0 P E 1 P E 2

M T 1

M T 2

M T 5
(H a lf freq.)

id le

id le

M T 3
(H a lf freq.)

M T 6

M T 8

id le

M T 4

M T 7

M T 9

(b) R esu lt o f F /V contro l

C P U off C P U off

P E 0 P E 1 P E 2

M T 1

M T 2

M T 5
(H a lf freq.)

id le

id le

M T 3
(H a lf freq.)

M T 6

M T 8

id le

M T 4

M T 7

M T 9

(b) R esu lt o f F /V contro l

C P U off C P U off

tim e

Fig. 2. OSCAR compiler’s power control scheme

chosen from the OpenMP, such as parallel sections, flush, and critical, which
enable one-time single level thread creation. Note that nested parallelism is not
required for the OSCAR API. In addition to these three directives, one OpenMP
directive (threadprivate) is extended, and 12 directives are newly added to sup-
port the parallel optimizations carried out using the OSCAR compiler, whose
specifications are simple as possible.

3 RP2 Multicore and Characteristic of applications

This chapter describes RP2, 8-core multicore processor developed by Renesas
Electronics, Hitachi and Waseda University and characteristic of evaluated ap-
plications.

3.1 RP2 Multicore

RP2[3] is 8 cores multicore processor developed by Renesas Electronics / Hitachi
/ Waseda University supported by NEDO Multi core processors for realtime con-
sumer electronics project. RP2 integrate eight SH-4A cores. Figure 3 shows the
architecture of RP2. Each processor core has CPU, cache memory, local memory
(ILRAM, OLRAM), distributed shared memory (URAM), and DMAC (DTU).
RP2 guarantee hardware cache coherence by MESI protocol until 4 cores. How-
ever, software must guarantee cache coherence 5 cores and above. Frequency of
each core can be changed to 600MHz, 300MHz, 150MHz, and 75MHz indepen-
dently. In addition supply voltage of entire core can be changed to 1.40V, 1.20V,

Fig. 3. Architecture of RP2 Multicore

and 1.00V. Figure 4 shows RP2 power status. Light Sleep stop CPU clock sup-
ply. Normal Sleep stop clock supply of processor core except URAM and DMAC.
Resume Standby stop URAM clock supply and shutdown processor core except
URAM. CPU off shutdown entire core.

Status Clock Gating Power Shutdown Power Consumption [W]

FULL (600MHz,1.40V) - - 5.99

MID (300MHz, 1.20V) - - 2.61

LOW (150MHz,1.00V) - - 1.27

VERYLOW (75MHz, 1.00V) - - 1.00

Normal Sleep CPU, cache, ILRAM, OLRAM - 0.725

Resume Standby URAM CPU, cache, ILRAM, OLRAM, DTU 0.563

CPU off - CPU, cache, ILRAM, OLRAM, DTU, URAM 0.554

Fig. 4. Power Status of RP2 Multicore

3.2 Evaluated Applications

This section describes specifications of evaluated applications.

AAC Encoder This program read audio data and process Filter bank, MS
stereo, Quantization, and Haffman coding for each frame. Each frame can be
processed parallel. Encoding process are unrolled by number of processor. Dead-
line of power control is 23ms per one frame. This AAC encoder is implemented

by Parallelizable C, which is referred to AAC-LC encoding program of Renesas
Electronics and Hitachi.

MPEG2 Decoder MPEG2 decoder stages are Variable Length Decoding (VLD),
Motion Compensation, Inverse Quantization and Inverse DCT. MPEG2 decoder
has slice parallelism and macroblock parallelism. Each parallelism has sequential
execution on VLD. In this paper, the code of MPEG2 decoder is implemented
with reference of MediaBench[15] with the description explained in Section5.1.
Furthermore, VLD for a slice is divided into searching a slice header, called Pres-
canning[16], and decoding a slice. Decoding slices is executed in parallel, so that
parallel execution part is increased. The OSCAR compiler extracts slice level
parallelism. Deadline of power control is 33ms per one frame.

Characteristics of Application Figure 5 shows characteristics of each ap-
plication. As a light computational load application, AAC encoder is selected.
AAC encoder can fulfill deadline by VERYLOW (75MHz) power status. 19 sec-
onds audio data is inputted. AAC encoder process 19 seconds audio data by
2.7 seconds. AAC encoder has enough waiting time for deadline. As a middle
computational load application, AAC encoder (deadline 3 seconds) and MPEG2
decoder (resolution 352x128) is selected. AAC encoder need 2.7 seconds by one
core, so this AAC encoder must run at FULL power status when using only one
core. MPEG2 decoder process 352 pixel x 128 pixel video by 8.3 seconds by using
one core. In addition continuous I/O has been issued by bit processing of Pres-
canning. As a high computational load application, MPEG2 decoder (resolution
352x240) is selected. MPEG2 decoder process 352 pixel x 240 pixel video by 17.6
seconds by using one core and 11.1 seconds by using two cores. MPEG2 decoder
must use two cores or above to fulfill deadline (15 seconds). This paper execute
these applications multiple and mesure power consumption of entire chip.

4 Performance of simultaneous execution of multiple
application programs parallelized and power-controlled
by OSCAR compielr

This section evaluates execution performance and consumed power on the RP2
eight core homogeneous multicore with DVFS and power gating capabilities
when multiple media application programs, which are automatically parallelized
and power-controlled by OSCAR compiler, are executed simultaneously sharing
eight cores.

4.1 Performance of simultaneous execution of multiple
low-processing-load applications

This sub-section describes consumed power on RP2 when low-processing-load
applications shown in Figure 5 namely each application program is a real-time

Load Application Characteristic

Low AAC encoder

deadline 19 seconds

enough waiting time to deadline

computational load is relatively light

Intermediate AAC encoder

deadline 3 seconds

no waiting time to deadline

computational load is relatively light

Intermediate MPEG2 decoder

resolution 352x128

no waiting time to deadline

computational load is relatively high

frequent I/O access

High MPEG2 decoder

(resolution 352x240)

parallel processing is need to meat deadline

computational load is relatively light

frequent I/O access

Fig. 5. Characteristic of Application

AAC encoder to encode a 16 seconds music file in 16 seconds, are executed
in parallel. Figure 6 shows consumed power when one to eight light-load AAC
encoders are executed in parallel using different numbers of processor cores on the
RP2. The vertical axis shows the consumed power and the horizontal axis shows
number of processor cores, or PEs, to execute the two AAC encoders. In each
number of PEs, AAC encoder programs less than number of PEs are executed.
For example, on one PE, just one AAC encoder is executed sequentially with a
non power controlled mode shown in left bar and a power controlled mode shown
in right bar. Also, on eight PEs, the left bar shows consumed power when one
AAC encoder is executed in parallel, each of which uses one PE, with non power
controlled mode. The second left bar shows the consumed power when one AAC
encoder is executed on 8 PEs in parallel with the power control. The third left bar
shows the consumed power when two AAC encoders are executed in parallel each
of which uses 4 PEs respectively. The forth bar shows the power when 4 AAC
encoders are executed in parallel, each of which uses 2 PEs respectively. The fifth
left bar shows the power when 8 AAC encoders are executed in parallel, each of
which uses 1 PE. In other words, if ”N” application programs are executed on
”M” PEs, ”M/N” PEs are assigned to each application programs in each number
of PEs. In this light-load AAC encoder, a PE can easily execute the AAC encoder
keeping real-time deadline. On the1 PE, though one AAC encoder without power
control, or an ordinary single core execution with 100% frequency (600 MHz)
and the highest voltage (1.4V), consumes 1.89 W, the power controlled AAC
encoder just requires 0.59 W since OSCAR compiler chose 1/8 frequency (75
MHz) and the lowest voltage (1.0V) for waiting the dead line. Namely, OSCAR
compiler gives us 69% of power reduction when one AAC encoder is executed
on one PE. On 2 PEs, one AAC encoder parallelized on 2 PEs without power
control consumes 2.19 W. One AAC encoder parallelized to 2 PEs with power
control consumes 0.59 W that is the same as on the 1 PE since OSCAR compiler

applies appropriate DVFS control in nano-second order during execution and
power gating to the second PE and lowest frequency and voltage power states to
the first PE during waiting for the deadline. Also, two AAC encoders on 2 PEs, in
which each AAC encoder is executed on 1 PE with power control, consumed just
0.66 W. In the two AAC encoder real-time execution, OSCAR compiler reduces
power by 70% from 2.19W to 0.66W. On 4 PEs, one AAC encoder parallelized for
4 PEs without power control consumes 2.75 W. One AAC encoder parallelized
to 4 PEs with power control consumes 0.59 W, or the same as on 1 PE. The
two AAC encoders on 4 PEs, in which each AAC encoder is executed on 2 PEs
with power control, consumed just 0.68 W. Also, four AAC encoders on 4 PEs,
in which each AAC encoder is executed on 1 PE with power control, consumed
just 0.78 W. In other words, OSCAR compiler reduces the power by 72% from
2.19W to 0.66W when four AAC encoders are executed on 4PEs. On 8 PEs, one
AAC encoder parallelized for 8 PEs without power control consumes 3.47 W.
One AAC encoder parallelized to 8 PEs with power control consumes 0.60 W,
or the almost same as on 1 PE. The two AAC encoders on 8 PEs, in which each
AAC encoder is executed on 4 PEs with power control, consumed just 0.69 W
that is similar to 0.66 W on 2PEs and 0.68 W on 4 PEs. The four AAC encoders
on 8 PEs, in which each AAC encoder is executed on 2 PEs with power control,
consumed 0.82 W that is just 0.04 W larger than on 4 PEs. Also, eight AAC
encoders on 8 PEs, in which each AAC encoder is executed on 1 PE with power
control, consumed just 1.01 W. In other words, OSCAR compiler reduces the
power by 71% from 3.47 W to 0.66 W when eight AAC encoders are executed
on 8 PEs. Here, we should pay attentions that the eight AAC encoder execution
on 8 PEs just requires the just 0.13 W for one AAC encoder though the one
AAC execution on 1 PE without power control consumes 1.89 W, namely the
eight core execution gives us 93% power reduction, and the one AAC execution
on 1 PE with power control consumes 0.59 W, namely the eight core execution
gives us 78% power reduction. These results show the simultaneous execution of
multiple low-load application programs with OSCAR compiler’s power control
gives us huge reduction in a single application average power consumption.

4.2 Performance of simultaneous execution of multiple Intermediate
processing-load applications (AAC encoder)

This sub-section describes consumed power on RP2 when intermediate- processing-
load applications shown in Figure 5, namely each application program is a super-
real-time AAC encoder to encode a 16.0 seconds music file in 3.0 seconds, are
executed in parallel. In this application, a single PE needs 2.7 seconds to pro-
cess and manages to satisfy the real-time deadline with the almost highest clock
frequency. Figure 7 shows consumed power when one to four intermediate-load
AAC encoders are executed in parallel using different numbers of processor cores
on the RP2. Here, the case of eight AAC encoders is not shown because eight
AAC encoders on 8 PEs exceeds RP2’s memory capacity. The vertical axis shows
the consumed power and the horizontal axis shows number of PEs as Figure 7.
On the1 PE, one AAC encoder without power control consumes 1.95 W and

1.89	

2.19	

2.75	

3.47	

0.59	
 0.59	
 0.59	
 0.60	
 0.66	
 0.68	
 0.69	
 0.78	
 0.82	

1.01	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

1PE	
 2PEs	
 4PEs	
 8PEs	

P
o
w
e
r
C
o
n
su
m
pt
io
n
	
 [W

]	

Number of Processors	

1AAC	
 Without	
 Power	
 Control	

1AAC	

2AAC	

4AAC	

8AAC	

Fig. 6. Power Consumption of Low processing-load applications (AAC encoder)

the power controlled AAC encoder requires 1.78W, namely 9% power reduc-
tion, since in the intermediate-load there is only a 0.3 s to wait for dead line
in which OSCAR compiler can choose 1/8 frequency (75 MHz) and the low-
est voltage (1.0V). On 2 PEs, one AAC encoder parallelized for 2 PEs without
power control consumes 2.27 W. One AAC encoder parallelized to 2 PEs with
power control consumes 1.18 W that is 40% power reduction from 1.95 W on
1 PE without power control and 34% power reduction from 1.78 W on 1PE
with power control since OSCAR compiler applies appropriate DVFS and power
gating automatically. Also, two AAC encoders on 2 PEs, in which each AAC
encoder is executed on 1 PE with power control, consumed 2.20 W. In the two
AAC encoder real-time execution, OSCAR compiler reduces power by 3% from
2.27W to 2.20W. On 4 PEs, one AAC encoder parallelized for 4 PEs without
power control consumes 2.85 W. One AAC encoder parallelized to 4 PEs with
power control consumes 0.84 W, namely 57% power reduction from 1.95 W of
one AAC on 1 PE without power control and 53% power reduction from 2.78W
of one AAC on 1 PE with power control. On 8 PEs, one AAC encoders without
power control consumes 3.59 W. One AAC encoder parallelized to 8 PEs with
power control consumes 0.87 W that is the same as one AAC on 4 PEs. The two
AAC encoders on 8 PEs, in which each AAC encoder is executed on 4 PEs with
power control, consumed just 1.13 W that is 78% reduction from 2.20 W of two
AACs on 2 PEs which is the minimum number of PEs to satisfy the deadline
and 26% reduction from 1.53 W of two AACs on 4PEs. The four AAC encoders
on 8 PEs, in which each AAC encoder is executed on 2 PEs with power control,
consumed 2.21 W that is the same as 2.20W of two AACs on 2PEs. These re-

1.95	

2.27	

2.85	

3.59	

1.78	

1.18	

0.84	
 0.87	

2.20	

1.53	

1.13	

3.03	

2.21	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

4.00	

1PE	
 2PEs	
 4PEs	
 8PEs	

P
o
w
e
r
C
o
n
su
m
pt
io
n
	
 [W

]	

Number of Processors	

1AAC	
 Without	
 Power	
 Control	

1AAC	

2AAC	

4AAC	

Fig. 7. Power Consumption of Intermediate processing-load applications (AAC en-
coder)

sults show the simultaneous execution of multiple intermediate-load application
programs with OSCAR compiler’s power control gives us large reduction by par-
allel execution of each application since the parallel processing make chances of
DVFS and power gating during execution.

4.3 Performance of simultaneous execution of multiple
Intermediate-processing-load applications (MPEG2 decoder)

Figure 8 shows power consumption of MPEG2 decoder multiple executions. Hor-
izontal axis indicates sum of processor PEs used by all applications. Vertical
axis indicates power consumption of entire chip. Each bar indicates number of
MPEG2 decoders executed multiple. 1MPEG2 means power consumption of one
MPEG2 decoder execution. 2MPEG2 means power consumption of two MPEG2
decoders, which is using half number of PEs indicated by X-axis. Power con-
sumption reduce from 1.99W (one PE) to 1.0W (four PEs) by applying parallel
processing. Power consumption of 2 MPEG2 decoders (four PEs for each) is
1.46W. This is almost same power consumption of 1 MPEG2 decoder (one PE,
1.49W). Middle computational load applications can be reduce power consump-
tion by applying parallel processing and executing multiple applications. Power
consumption of each MPEG2 decoder is 0.73W, which reduce power consump-
tion at 51% against 1 MPEG2 decoder (one PE). MPEG2 decoder has high bus

1.99	

2.29	

2.84	

3.61	

1.49	

1.31	

1.01	

1.11	

2.42	

1.60	

1.46	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

4.00	

1PE	
 2PEs	
 4PEs	
 8PEs	

P
o
w
e
r
C
o
n
su
m
pt
io
n
	
 [W

]	

Number of Processors	

1MPEG2dec	
 Without	
 Power	
 Control	

1MPEG2dec	

2MPEG2dec	

Fig. 8. Power Consumption of Intermediate processing-load applications (MPEG2 de-
coder)

pressure by Prescanning. MPEG2 decoder should be executed to shift I/O tim-
ing. This is because power consumption reduction ratio of MPEG2 decoder is
relatively low against AAC encoder. Processors voltage control domain should
be divided to control power effectively when middle computational load appli-
cations are executed.

4.4 Performance of simultaneous execution of multiple
High-processing-load applications (MPEG2 decoder)

Figure 9 shows power consumption of MPEG2 decoder multiple executions. hor-
izontal axis indicates sum of processor PEs used by 352x128 resolution MPEG2
decoder and 352x240 resolution MPEG2 decoder. Vertical axis indicates power
consumption of entire chip. When different resolution MPEG2 decoders are ex-
ecuted multiple, timing of FV control are differ. This is because execution time
of each decode stage are different. Thus, supply voltage (controlled by entire
chip) is hard to down. In addition, power status of each application is different.
For example, power status is FULL+MID by 2PE+2PE execution. At this time
supply voltage is 1.40V (FULL), so power consumption is 2.28W. This reduces
only 3% against 2PE+1PE execution. However, power status is MID+LOW by

2.35	

2.28	

1.85	

1.93	

0	

0.5	

1	

1.5	

2	

2.5	

2PE+1PE	
 2PE+2PE	
 4PE+2PE	
 4PE+4PE	

P
o
w
e
r
C
o
n
su
m
pt
io
n
 [W

]	

Number of Processors	

（High）	
 +	
 (Intermediate）	

Fig. 9. Power Consumption of High processing-load application and Intermediate
processing-load application

4PE+2PE execution. At this time supply voltage is 1.20V and power consump-
tion is 1.85W. This reduces 21% against 2PE+1PE execution (2.35W). When
middle computational load application and high computational load application
are executed multiple, hardware co-operation to divide supply voltage domain
is effective to reduce power consumption.

5 Conclusions

This paper has evaluated the power reduction scheme of OSCAR automatic par-
allelizing compiler when multiple media application programs parallelized and
po-wer-controlled by OSCAR compiler are executed simultaneously on the Re-
nesas / Hitachi / Waseda RP2 eight core homogeneous multicore processor. Ex-
ecution performances are almost no differences from a single program execution
when multiple parallelized programs are executed simultaneously since OSCAR
compiler’s cache memory optimization function minimizes main memory, or off-
chip shared memory, accesses and prevents main memory contentions. Power
consumption of multiple applications with relatively light computational load
was reduces by 68% against non-power controlled applications. When multiple
applications are executed simultaneously, total power consumption was 1.01W
with 8 AAC encoders, each of which was executed on one core. At this time,
an average power consumption of each AAC encoder was 0.13W and this value

was 22% of power compared with one application executed on 8 cores. This
result shows that when we execute 8 AAC encoder (1 core for each), power
consumption reduce at 78% against 1 AAC encoder (8 cores). Light computa-
tional load applications should be executed as much as possible to reduce power
consumption of one application. Average power consumption of multiple appli-
cations with middle computational load reduces at 30% by parallel executions.
In addition, when 4 AAC encoders (2 cores for each) are executed, power con-
sumption is 0.55W by 1 AAC encoder. This power consumption reduces at 37%
against 1 AAC encoder (8 cores), and reduces at 69% against 1 AAC encoder
(1 cores). When multiple meddle computational load applications are executed,
parallel processing can reduce power consumption. Average power consumption
of 2 MPEG2 decoders (4 cores for each) is lower than average power consump-
tion of 1 MPEG2 decoder (1 core). At this time, power consumption of each
MPEG2 decoder (0.73W) reduces at 51% against 1 MPEG2 decoder (1.49W).
However, if voltage control domain is divided by hardware, there is more room
to reduce power consumption. This tendency is more notable at executing both
high computational load application and middle computational load application
multiple. This paper confirmed automatic parallelization and automatic power
control scheme of OSCAR compiler is effective to reduce power consumption of
multiple applications.

Acknowledgements

I would like to thank Junji Sakai (NEC Corporation) whose comments and
suggestions were of inestimable value for our study. I am also indebt to Kazuhisa
Ishizaka (NEC Corporation) whose comments made enormous contribution to
our work.

A part of this research has been supported by NEDO ”Advanced Hetero-
geneous Multiprocessor”, NEDO ”Multi core processors for realtime consumer
electronics” and STARC ”Automatic Parallelizing Compiler Cooperative Single
Chip Multiprocessor”.

References

1. Dac Pham et al. The design and implementation of a first-generation cell processor.
In In Proceeding of the IEEE International Solid-State Circuits Conference, 2005.

2. K. Hayase S. Shibahara O. Nishii T. Hattori A. Hasegawa M. Takada N. Irie K.
Uchiyama T. Odaka K. Takada K. Kimura H. Kasahara Y. Yoshida, T. Kamei. A
4320mips four-processor core smp/amp with individually managed clock frequency
for low power consumption. In 2007 IEEE International Solid-State Circuits Con-
ference(ISSCC2007), Feb. 2007.

3. Yutaka Yoshida Kiyoshi Hayase Tomoichi Hayashi Osamu Nishii Yoshihiko Yasu
Atsushi Hasegawa Masashi Takada Masaki Ito Hiroyuki Mizuno Kunio Uchiyama
Toshihiko Odaka Jun Shirako Masayoshi Mase Keiji Kimura Hironori Kasahara
Masayuki Ito, Toshihiro Hattori. An 8640 mips soc with independent power-off

control of 8 cpu and 8 rams by an automatic parallelizing compiler. In Proc. of
IEEE International Solid State Circuits Conference (ISSCC2008), Feb. 2008.

4. Y. Kiyoshige Y. Nitta S. Matsui O. Nishii A.Hasegawa M. Ishikawa T. Yamada
J. Miyakoshi K. Terada T. Nojiri M. Satoh H. Mizuno K. Uchiyama Y. Wada K.
Kimura H. Kasahara H.Maejima Y. Yuyama, M. Ito. A 45nm 37.3gops/w hetero-
geneous multi-core soc. In IEEE INTERNATIONAL SOLID-STATE CIRCUITS
CONFERENCE (ISSCC 2010), Feb. 2010.

5. J Cornish. Balanced energy optimization. In International Symposium on Low
Power Electronics and Design, 2004.

6. Hiroki Mikami Takamichi Miyamoto Jun Shirako Keiji Kimura, Masayoshi Mase
and Hironori Kasahara. Oscar api for real-time low-power multicores and its perfor-
mance on multicores and smp servers. In Proc. of The 22nd International Workshop
on Languages and Compilers for Parallel Computing (LCPC2009), Oct. 2009.

7. H. Honda, M. Iwata, and H. Kasahara. Coarse grain parallelism detection scheme
of a fortran program. Trans. of IEICE, J73-D-1(12):951–960, Dec. 1990.

8. H.Kasahara and et al. A multi-grain parallelizing compilation scheme on oscar.
Proc. 4th Workshop on Language and Compilers for Parallel Computing, 1991.

9. Hironori Kasahara. Advanced automatic parallelizing compiler technology. IPSJ
MAGANIE, Apr 2003.

10. K. Ishizaka, T. Miyamoto, M. obata J. Shirako, K. kimura, and H. Kasahara.
Performance of oscar multigrain parallelizing compiler on smp servers. In Proc. of
17th International Workshop on Languages and Compilers for Parallel Computing,
Sep. 2004.

11. M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and H. Kasahara. Hierarchical
parallelism control for multigrain parallel processing. In Proc. of 15th International
Workshop on Languages and Compilers for Parallel Computing, Aug. 2002.

12. H. Kasahara, H. Honda, M. Iwata, and M. Hirota. A compilation scheme for macro-
dataflow computation on hierarchical multiprocessor system. Proc. Int Conf. on
Parallel Processing, 1990.

13. H. Kasahara, H. Honda, and S. Narita. Parallel processing of near fine grain tasks
using static scheduling on oscar. Proceedings of Supercomputing ’90, Nov. 1990.

14. J. Shirako, N. Oshiyama, Y. Wada, H. Shikano, K. Kimura, and H. Kasahara.
Compiler control power saving scheme for multi core processors. In Proc. of
18th International Workshop on Languages and Compilers for Parallel Comput-
ing(LCPC2005), Oct. 2005.

15. C. Lee et al. Mediabench: A tool for evaluating and synthesizing multimedia and
communications systems. In In 30th International Symposium on Microarchitecture
(MICRO30), Nov. 1997.

16. E. Iwata et al. Exploiting coarse-grain parallelism in the mpeg-2 algorithm. In
Technical Report CSL-TR-98-771, Sep. 1998.

