
Performance of OSCAR Multigrain Parallelizing
Compiler on SMP Servers

Kazuhisa Ishizaka†, Takamichi Miyamoto†, Jun Shirako†, Motoki Obata‡, Keiji
Kimura†, and Hironori Kasahara†

†Department of Computer Science,
Advanced Chip Multiprocessor Research Institute,

Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

{ishizaka,miyamoto,shirako,kimura,kasahara}@oscar.elec.waseda.ac.jp
‡System Development Laboratory, Hitachi Co.Ltd.

m-obata@sdl.hitachi.co.jp

Abstract. This paper describes performance of OSCAR multigrain par-
allelizing compiler on various SMP servers, such as IBM pSeries 690, Sun
Fire V880, Sun Ultra 80, NEC TX7/i6010 and SGI Altix 3700. The OS-
CAR compiler hierarchically exploits the coarse grain task parallelism
among loops, subroutines and basic blocks and the near fine grain paral-
lelism among statements inside a basic block in addition to the loop par-
allelism. Also, it allows us global cache optimization over different loops,
or coarse grain tasks, based on data localization technique with inter-
array padding to reduce memory access overhead. Current performance
of OSCAR compiler is evaluated on the above SMP servers. For ex-
ample, the OSCAR compiler generating OpenMP parallelized programs
from ordinary sequential Fortran programs gives us 5.7 times speedup,
in the average of seven programs, such as SPEC CFP95 tomcatv, swim,
su2cor, hydro2d, mgrid, applu and turb3d, compared with IBM XL For-
tran compiler 8.1 on IBM pSeries 690 24 processors SMP server. Also, it
gives us 2.6 times speedup compare with Intel Fortran Itanium Compiler
7.1 on SGI Altix 3700 Itanium 2 16 processors server, 1.7 times speedup
compared with NEC Fortran Itanium Compiler 3.4 on NEC TX7/i6010
Itanium 2 8 processors server, 2.5 times speedup compared with Sun
Forte 7.0 on Sun Ultra 80 UltraSPARC II 4 processors desktop worksta-
tion, and 2.1 times speedup compare with Sun Forte compiler 7.1 on Sun
Fire V880 UltraSPARC III Cu 8 processors server.

1 Introduction

Currently, multiprocessor architectures are widely used for chip multiproces-
sors to desktop workstations, mid-range servers and high-end servers. However,
the gap between peak and effective performance of a multiprocessor system is
getting larger with the increase of the number of processors. Although, effi-
cent parallel programs are important to improve effective performance, software
development on a multiprocessor requires special knowledge and experience in

parallel programming and the long duration. To improve effective performance,
cost-performance and software productivity of multiprocessor systems , strong
automatic parallelizing compilers are required.

So far, in automatic parallelizing compilers for multiprocessor systems, the
loop parallelization techniques have been used. For the loop parallelization, var-
ious data dependence analysis techniques[1–3] such as GCD, Banerjee’s inexact
and exact tests, OMEGA test[4], symbolic analysis[5] and dynamic dependence
test and program restructuring techniques have been researched and also em-
ployed in compiler products available in the market. As research compilers, Po-
laris compiler[3] exploits loop parallelism by using inline expansion of subroutine,
symbolic propagation, array privatization[6], run-time data dependence analy-
sis[7] and interprocedural access region test[8] and SUIF compiler uses strong
inter-procedure analysis[9] unimodular transformation and data locality opti-
mization[10] including affine partitioning[11]. However, by those research efforts,
the loop parallelization techniques are reaching maturity.

In light of this fact, new generation parallelization techniques like multi-
grain parallelization are needed to overcome the limitation of loop paralleliza-
tion. NANOS compiler[12] based on Parafrase2 has been trying to exploit the
multi-level parallelism including the coarse grain parallelism by using extended
OpenMP API. The OSCAR multigrain parallelizing compiler[13] exploits the
coarse grain task parallelism among loops, subroutines and basic blocks[14], and
the near fine grain parallelism among statements inside a basic block[15] in ad-
dition to the conventional loop parallelism among iterations.

The OSCAR compiler has been developed as a core module of Japanese
Millennium Project IT21 “Advanced Parallelizing Compiler project”. The ad-
vanced parallelizing compiler project is a three years project started in FY 2000
to develop an automatic parallelizing compiler to improve effective performance,
cost-performance and software productivity for shared memory multiprocessor
architectures used for chip multiprocessors to high-end servers.

This paper describes the OSCAR multigrain parallelizing compiler and its
performance on off-the-shelf SMP servers, such as IBM pSeries 690 24 way
Power4 high-end SMP server and Sun Fire V880 8 UltraSPARC III Cus server,
Sun Ultra80 4 UltraSPARC IIs desktop workstation, NEC TX7/i6010 8 way
Itanium 2 server, SGI Altix 16 way Itanium 2 server using OSCAR compiler’s
OpenMP platform-free backend.

2 OSCAR Multigrain Parallelizing Compiler

The OSCAR compiler exploits multigrain parallelism, namely, coarse grain par-
allelism, loop level parallelism and near fine grain parallelism from the whole
source program. As shown in Figure 1, the OSCAR compiler consists of the For-
tran frontend, middle path for multigrain parallelization and several backends
for different target machines such as the OSCAR chip multiprocessor[16], SMP
servers supporting OpenMP and cluster systems supporting MPI. In the multi-
grain parallel processing for SMP servers treated in this paper, the compiler

generates coarse grain tasks called “macro-tasks” such as loops, subroutines
and basic blocks, analyzes parallelism among the macro-tasks by the earliest
executable condition analysis based on control and data dependence analysis,
decomposes macro-tasks and data for cache or distributed shared memory op-
timization by loop aligned decomposition, schedules macro-tasks to threads or
thread groups statically or dynamically considering data locality, generates par-
allel code with OpenMP API using “One-time single level thread generation”.

Frontend

Middle Path

Coarse Grain Parallelization

Loop Parallelization

Near Fine Grain Parallelization

Static Scheduling

Dynamic Scheduler Generation

Fortran77

Intermediate Language

OpenMP Fortran

Intermediate Language

OSCAR

Machine

Code

OSCAR

Backend

OpenMP

Fortran

OpenMP

Backend

MPI

Fortran

MPI

Backend

Fig. 1. Flow of OSCAR Multigrain Compiler

2.1 Macro-Task Generation

In the multigrain parallelization, a source program is decomposed into three
kinds of coarse grain tasks, or macro-tasks, namely block of pseudo assignment
statements(BPA) repetition block(RB), subroutine block(SB). Also, macro-tasks
are generated hierarchically inside of a sequential repetition block and a subrou-
tine block as shown in Figure 2.

2.2 Earliest Executable Condition

After the generation of macro-tasks, compiler analyzes data flow and control
flow among macro-tasks in each layer or each nested level. Next, to extract

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB
BPA
RB
SB

Program

Near fine grain parallelism

Loop level parallelism
Near fine grain parallelism of loop body
Coarse grain parallelism

Coarse grain parallelism

BPA

RB

SB

All
system 1st layer 2nd layer 3rd layer

Fig. 2. Hierarchical Macro Task Definition

parallelism among macro-tasks, the compiler analyzes Earliest Executable Con-
dition(EEC)[13] of each macro-task. EEC represents the conditions on which
macro-task may begin its execution earliest.

EEC of macro-task is represented in macro-task Graph (MTG) as shown in
Figure 3. In macro-task graph, nodes represent macro-tasks. A small circle inside
nodes represents conditional branches. Solid edges represent data dependencies.
Dotted edges represent extended control dependencies. Extended control depen-
dency means ordinary control dependency and the condition on which a data
dependent predecessor macro-task is not executed. A solid arc represents that
edges connected by the arc are in AND relationship. A dotted arc represents
that edges connected by the arc are in OR relation ship.

1

2 3

4

5

6

7

8

910 11

12

13

14

Data Dependency

Extended Control
Dependency

Conditional
Branch

AND

OR

Original
Control Flow

Fig. 3. An Example of Macro-Task Graph

2.3 Macro-Task Scheduling

In the coarse grain task parallel processing, static scheduling and dynamic schedul-
ing are used for an assignment of macro-tasks to threads.

If a macro-task graph has only data dependencies and is deterministic, static
scheduling is selected. In the static scheduling, an assignment of macro-tasks to
threads is determined at compile time by the scheduler in the compiler. Static
scheduling is useful since it allows us to minimize data transfer and synchroniza-
tion overhead without runtime scheduling overhead.

If a macro-task graph has control dependencies, the dynamic scheduling is se-
lected to handle runtime uncertainties like conditional branches. The scheduling
routines for the dynamic scheduling are generated by the compiler and inserted
into a parallelized program with macro-task code.

2.4 Global Cache Optimization

In the coarse grain task parallel processing, macro-tasks can begin its execution
when Earliest Executable Condition is satisfied without regard for the program
order in the original source code. Therefore, the compiler decides the execution
order of macro-tasks so that macro-tasks accessing the same data can be executed
on the same processor consecutively to optimize cache usage among the tasks.

Loop Aligned Decomposition
To avoid cache misses among the macro-tasks, Loop Aligned Decomposition

(LAD) [17] is applied to the loops that access data larger than cache size. LAD
divides the loops, or macro-tasks, into partial loops with the smaller number of
iterations so that data size accessed by the divided loops is smaller than cache
size.

The partial loops are defined as coarse grain tasks and the Earliest Exe-
cutable Condition analysis is applied again. The partial loops connected by data
dependence edge on the macro task graph are grouped into “Data Localizable
Group(DLG)”. The macro-tasks inside a DLG are assigned to the same processor
as consecutively as possible statically or dynamically.

In the macro-task graph of Figure 4(a), it is assumed that macro-tasks 2,
3 and 7 are parallel loops accessing the same shared array variables exceeding
cache size. In this example, the loops are divided into four partial loops by the
LAD technique. For example, the macro-task 2 in Figure 4(a) is divided into the
macro-tasks 2 A through 2 D shown in Figure 4(b). Also, the DLGs like DLG A
composed of macro-task 2 A, 3 A, 7 A are defined.

Consecutive Execution of Data Localizable Group
In the original program, macro-tasks are executed in the increasing order of

the node number on the macro-task graph. For example, the execution order of
macro-tasks 2 A to 3 D is 2 A, 2 B, 2 C, 2 D, 3 A 3 B, 3 C, 3 D. In this order,
macro-tasks in the same DLG are not executed consecutively.

1

4 56

7

2

3

1

6 4 53_B

7_B

2_A

3_A

7_A

2_C2_D

3_C3_D

7_D7_C

(b) After Loop Aligned Decomp(a) Original

2_B

Fig. 4. Example of Loop Align Decomposition

However, the earliest executable condition shown in Figure 4(b) means that
macro-task 3 B, for example, can be executed immediately after macro-task 2 B
because macro-task 3 B depends on macro-task 2 B only.

In the proposed cache optimization scheme, the task scheduler assigns macro-
tasks inside a DLG to the same processor as consecutively as possible[18] in
addition to the “critical path” priority used by the both static and dynamic
scheduling. Figure 5 shows a schedule when the proposed cache optimization is
applied to macro-task graph in Figure 4(b) for a single processor. As shown in
Figure 5, the macro-task 2 B, 3 B, 8 B in DLG B and the macro-task 2 C, 3 C,
7 C in DLG C are executed consecutively to use the data on cache optimally.

1

time

6 4 52_A 2_B 3_B 7_B 2_C 3_C 7_C3_A 2_D 3_D 7_A 7_D

DLG_A DLG_B DLG_C DLG_D DLG_A DLG_D

Fig. 5. Consecutive Execution of Data Localizable Group

Reduction of Cache Conflict Misses
The Loop Aligned Decomposition and The Consecutive Execution of a DLG

enable the shared data to be reused before cache line replacement. However, if
the data accessed by the macro-tasks in a DLG share the same cache line on a
cache as shown in Figure 6(a), the data may be removed from the cache before
reuse because of line conflict misses even though the amount of data accessed
in a DLG is smaller than the cache size. To reduce conflict misses, the OSCAR
compiler analyzes data layout on the cache and applies inter-array padding to
remove line conflicts among data in a DLG on the cache as shown in Figure
6(b)[19].

0 1 2 3 4 MB
cache size

U V

CU

P

Z

CV

H

VNEW PNEW UOLD VOLD

POLD

UNEW

: padding

(b) padding by changing array size

U V

CU

P

ZCV

H

PNEW UOLD VOLD

UNEW

VNEW

POLD

0 1 2 3 4 MB
cache size

: accessed by dlg0

(a) data layout for swim

Fig. 6. Padding to Reduce Conflict Messes

2.5 OpenMP Code Generation

The OSCAR compiler generates a parallelized Fortran program with OpenMP
directives. A generated code image for eight threads is shown in Figure 7 for
the macro-task graph in 8. In this figure, eight threads are generated only once
by the OpenMP PARALLEL SECTIONS directives and the generated threads
join at the end of program by using the “One-time single level thread generation
scheme”[13]. In this example, the static scheduling is applied to the 1st layer of
MTG in Figure 8. In this case, the eight threads are grouped into two thread
groups each of which has four threads as shown in Figure 7 to process MTG1
having parallelism of “2” estimated by the compiler in Figure 7. MT1 1 and
MT1 3 are assigned to thread group0 composed of four threads and MT1 2 is
assigned to thread group1. When static scheduling is applied like this program
layer, the compiler generates different program codes for each OpenMP SEC-
TION according to the static schedule as shown in Figure 8. The macro-tasks
assigned to each thread groups are processed in parallel by threads inside each
thread group by using static scheduling or dynamic scheduling hierarchically.
In this example, MT1 2 in Figure 7 assigned to thread-group1 in Figure 8 is
processed by four threads in parallel using the centralized dynamic scheduling
scheme. In Figure 8, threads 5, 6 and 7 execute some of sub macro-tasks like
MT1 2 1, MT1 2 2 and so on, which are generated inside MT1 2 in Figure 7,
assigned by thread 4 working as the centralized dynamic scheduler. Also, MT1 3
in Figure 7 shows a code image for distributed dynamic scheduling in which
scheduling codes are inserted before and after task codes. In this case, MT1 3
is decomposed into sub macro-tasks 1 3 1 through 1 3 4 as shown in Figure 7
and assigned to thread group0 0 and 0 1 defined inside thread group0. In this
example, the thread group0 0 and 0 1 consists of two threads respectively.

3 Performance of OSCAR Compiler

This section describes the performance evaluation of the OSCAR multigrain
parallelizing compiler on different multiprocessor servers available on the market
using popular benchmark programs such as, tomcatv, swim, su2cor hydro2d,
mgrid, applu, turb3d from SPEC CFP95 Benchmarks.

MT1−1
DOALL

MT1−2

SB

MT1−3
RB

1_3_4

1_3_1

1_3_31_3_2

2nd Layer

1_2_41_2_3

1_2_1

1_2_2

1_2_61_2_5

2nd Layer

1st Layer

MTG1

MTG1_2MTG1_3

Fig. 7. Sample Macro Task Graph having 3 Layers

3.1 Performance on IBM pSeries 690 24 way SMP Server

Figure 9 shows the performance of OSCAR compiler on the IBM pSeries 690
high-end UNIX server with 24 processors, or 12 Power4 chips. Left bars show
speedups by automatic parallelization of the IBM XL Fortran compiler version
8.1 against sequential executions of the XLF compiler. Right bars show speedups
by OSCAR compiler against the same sequential executions of the XLF compiler.
The speedup by OSCAR compiler was mesured using the OpenMP backend
of the OSCAR compiler. The generated OpenMP parallelized programs from
sequential programs were compiled by the XL Fortran compiler and executed
on pSeries 690 server. The numbers above bars show parallel execution times
and the numbers below the benchmark program names are sequential execution
times by the XLF compiler.

For tomcatv, the sequential execution time was 23 seconds and the fastest
parallel execution time up to 24 processors by XLF compiler was 19 seconds
and OSCAR compiler was 2.9 seconds. In other words, OSCAR compiler gave
us 7.9 times speedup against sequential execution, 6.6 times speedup compared
with the XLF compiler. Also, OSCAR gave us 17.8 times speedup compared
with sequential execution (7.2 times compared with XLF compiler automatic
parallelization) for swim, 3.0 times (3.0 times) for su2cor, 9.2 times (6.4 times)
for hydro2d, 8.3 times (3.9 times) for mgrid, 2.0 times (1.7 times) for applu, 12.2
times (11.5 times) for turb3d.

In the average of the above 7 programs, the XLF compiler gave us 1.5 times
speedup against sequential execution and OSCAR gave us 8.6 times speedup
against sequential execution, namely 5.7 times compared with the parallel exe-
cution of the XLF.

3.2 Performance on SGI Altix 3700 16 Itanium 2 SMP Server

This section shows the performance of OSCAR compiler on SGI Altix 3700 server
with 16 Itanium 2 processors. Figure 10 shows the performance of Intel Fortran
Itanium compiler revision 7.1 and OSCAR compiler using up to 16 processors.

OSCAR compiler gave us 5.7 times speedup against sequetial execution (5.7
times speedup against Intel compiler automatic parallelization) for tomc atv, 8.0

(partial loop)

DO DO

END DO

group0_1group0_0

2nd layer
thread groups

Thread 3Thread 0 Thread 1 Thread 2

group1group0

(partial loop) (partial loop) (partial loop)

Dynamic Scheduler

Dynamic Scheduler

Dynamic Scheduler

EndMT

Dynamic Scheduler

Dynamic Scheduler

Dynamic Scheduler

EndMT

END DO

1st layer
thread group

C
enralized S

cheduler

Thread 4 Thread 5 Thread 6 Thread 7

MT1_1 (parallelizable loop)

MT1_1_1(RB) MT1_1_2(RB) MT1_1_3(RB) MT1_1_4(RB)

MT1_3(RB)

MT1_2(SB)

MT1_3_1

MT1_3_2

MT1_3_1
(MT1_3_1a) (MT1_3_1b)

(MT1_3_2a) (MT1_3_2b) (MT1_3_2a) (MT1_3_2b)

(MT1_3_1a) (MT1_3_1b)

EndMT EndMT EndMT

MT1_2_1

MT1_2_2

MT1_2_3

MT1_2_4

MT1_2_1

MT1_2_2

MT1_2_3

MT1_2_4

MT1_2_1

MT1_2_2

MT1_2_3

MT1_2_4

MT1_3_2

1st layer: MT1_1, MT1_2, MT1_3: static scheduling
2nd layer1: MT1_2_1, MT1_2_2,....: centralized dynamic schuling
2nd layer2: MT1_3_1, MT1_3_2,....: distributed dynamic scheduling
3rd layer1: MT1_3_1a, MT1_3_1b
3rd layer2: MT1_3_2a, MT1_3_2b
3rd layer....

!$omp section !$omp section !$omp section !$omp section !$omp section !$omp section !$omp section !$omp section

Fig. 8. Generated Code Image using OpenMP (8 threads)

times (2.1 times) for swim, 1.4 times (1.4 times) for su2cor, 3.2 times (3.2 times)
for hydro2d, 2.6 times (1.7 times) for mgrid, 1.2 times (1.1 times) for applu,
5.5 times (5.4 times) for turb3d and 3.9 times (2.6 times) in the average for the
above 7 programs.

3.3 Performance on NEC TX7/i6010 8 Itanium 2 SMP Server

This section shows the performance of OSCAR compiler on NEC TX7/i6010
server with 8 Itanium 2 processors. Figure 11 shows the performance of NEC
Fortran Itanium Compiler revision 3.4 and OSCAR compiler.

OSCAR compiler gave us 4.4 times speedup against sequetial execution (3.3
times speedup against NEC Compiler automatic parallelization) for tomcat v,
7.6 times (1.1 times) for swim, 1.1 times (1.1 times) for su2cor, 3.9 times (2.5
times) for hydro2d, 2.9 times (0.9 times) for mgrid, 1.4 times (1.2 times) for
applu, 5.8 times (5.8 times) for turb3d and 3.9 times (1.7 times) in the average
for the above 7 programs.

s
p

e

e

d

u

p

a

g

a

i
n

s

t

1

p

e

0.0

4.0

8.0

12.0

16.0

20.0

swim
 turb3d
tomcatv
 su2cor
 mgrid
 applu
hydro2d

23s

22s

30s
 35s
 28s
 39s

19s

9.2s

22s

21s
 16s

23s

10s

2.9s

1.3s

39s

4.6s
 3.1s

14s

3.2s

23s

XL Fortran 8.1

oscar

Fig. 9. Performance on IBM pSeries 690 24 Processors Server

0.0

2.0

4.0

6.0

8.0

10.0

s
p

e

e

d

u

p

a

g

a

i
n

s

t

1

p

e

swim
 turb3d
tomcatv
 su2cor
 mgrid
 applu
hydro2d

Intel Fortran 7.1

oscar

Fig. 10. Performance on Altix 3700 16 Processors Server

3.4 Performance on Sun Ultra 80 4 UltraSPARC II SMP
Workstation

This section shows the performance of OSCAR compiler on Sun Ultra 80 desktop
workstation with 4 UltraSPARC II. Figure 12 shows the performance of Sun
Forte 7.1 compiler and OSCAR compiler on Ultra 80.

OSCAR compiler gave us 6.3 times speedup against sequetial execution (5.2
times speedup against Forte compiler automatic parallelization) for tomcatv, 9.2
times (5.5 times) for swim, 2.5 times (1.6 times) for su2cor, 4.3 times (2.6 times)
for hydro2d, 4.7 times (1.0 times) for mgrid, 1.2 times (0.9 times) for applu,
4.1 times (3.8 times) for turb3d and 4.6 times (2.5 times) in the average for the
above 7 programs.

swim
 turb3d
tomcatv
 su2cor
 mgrid
 applu
hydro2d

0.0

2.0

4.0

6.0

8.0

10.0

s
p

e

e

d

u

p

a

g

a

i
n

s

t

1

p

e

13s
 11s
 11s
 19s
 15s
 25s
 34s

10s

1.5s

11s

12s

4.7s

21s
 34s

2.9s

1.4s

9.6s

4.8s

5.4s

18s

5.9s

NEC Fortran 3.4

oscar

Fig. 11. Performance on NEC TX7/i6010 8 Processors Server

0.0

2.0

4.0

6.0

8.0

10.0

s
p

e

e

d

u

p

a

g

a

i
n

s

t

1

p

e

swim
 turb3d
tomcatv
 su2cor
 mgrid
 applu
hydro2d

119s
 102s
 74s
 136s
 97s
 175s
 218s

99s

61s
 47s
 82s

21s

133s

204s

19s

11s

30s

32s

21s

140s

53s

Sun Forte 7.0

oscar

Fig. 12. Performance on Sun Ultra 80 4 Processors Workstation

3.5 Performance on Sun Fire V880 8 UltraSPARC III Cu SMP
Server

This section shows the performance of OSCAR compiler on Sun Fire V880 server
with 8 UltraSPARC III Cu processors. Figure 13 shows speedups and execution
times of benchmark programs compiled by Sun Forte 7.1 compiler and OSCAR
compiler on the V880.

OSCAR compiler gave us 4.9 times speedup against sequetial execution (2.1
times speedup against Forte compiler automatic parallelization) for tomcatv,
18.6 times (2.5 times) for swim, 3.6 times (1.3 times) for su2cor, 4.7 times (1.6
times) for hydro2d, 4.1 times (1.1 times) for mgrid, 1.2 times (1.0 times) for
applu, 7.1 times (7.1 times) for turb3d and 6.3 times (2.1 times) in the average
for the above 7 programs.

s
p

e

e

d

u

p

a

g

a

i
n

s

t

1

p

e

0.0

4.0

8.0

12.0

16.0

20.0

swim
 turb3d
tomcatv
 su2cor
 mgrid
 applu
hydro2d

33s
 47s
 33s
 44s
 33s
 66s

82s
14s

6.5s

12s
 15s
 9.0s

57s

82s

6.8s

2.5s

9.2s

9.3s

8.0s

55s

11.6s

Sun Forte 7.1

oscar

Fig. 13. Performance on Sun Fire V880 8 Processors Server

4 Conclusions

This paper has described the current performance of OSCAR multigrain paral-
lelizing compiler that has been developed as a Japanese Government Millennium
Project IT21 Advanced Parallelizing Compiler (APC). The OSCAR compiler ex-
ploits the coarse grain task parallelism, the loop parallelism and the near fine
grain parallelism hierarchically with “one-time single level thread generation
technique” and global cache optimization with padding data layout transfor-
mation for various SMP servers such as IBM pSeries 690 24 way Power4 SMP
server, Sun Fire V880 8 UltraSPARC III server, Sun Ultra 80 4 UltraSPARC
II desktop workstation, NEC TX7/i6010 8 Itanium 2 server, SGI Altix 3700 16
Itanium 2 server.

It currently gives us 5.7 times speedup compared with IBM XL Fortran
compiler 8.1 on the IBM pSeries 690 in the average of 7 programs, such as
SPEC CFP95 tomcatv, swim, su2cor, hydro2d, mgrid, applu and turb3d. Also
it gives us 2.6 times speedup compared with Intel Fortran Itanium Compiler
7.1 on SGI Altix 3700, 1.7 times speedup compared with NEC Fortran Itanium
Compiler 3.4 on NEC TX7/i6010, 2.5 times compared with Sun Forte 7.0 on
Sun Ultra 80, and 2.1 times speedup compare with Sun Forte compiler 7.1 on
Sun Fire V880.

Acknowledgments

A part of this research was supported by METI/NEDO millennium project IT21
“advanced Parallelizing Compiler”, NEDO Advanced Heterogeneous Multipro-
cessor Project and STARC (Semiconductor Technology Academic Research Cen-
ter). Also, the auhours thank to NEC soft, Ltd. and SGI Japan, Ltd. for the kind
offer of the use of the NEC TX7/i6010 and SGI Altix 3700 System for this re-
search.

References

1. Randy Allen and Ken Kennedy. Optimizaing Compilers for Modern Architectures.
Morgan Kaufmann Publishers, 2001.

2. Michel Wolfe. High performance compilers for parallel computing. Addison-Wesley,
1996.

3. R. Eigenmann, J. Hoeflinger, and D. Padua. On the automatic parallelization of
the perfect benchmarks. IEEE Trans. on parallel and distributed systems, 9(1),
Jan. 1998.

4. W. Pugh. The omega test: A fast and practical integer programming algorithm
for dependence analysis. In Proc. of Super Computing ’91, 1991.

5. M. R. Haghighat and C. D. Polychronopoulos. Symbolic analysis for parallelizing
compilers. Kluwer Academic Publishers, 1995.

6. P. Tu and D. Padua. Automatic array privatization. Proc. 6th Annual Workshop
on Languages and Compilers for Parallel Computing, 1993.

7. L. Rauchwerger, N. M. Amato, and D. A. Padua. Run-time methods for paralleliz-
ing partially parallel loops. Proceedings of the 9th ACM International Conference
on Supercomputing, Barcelona, Spain, pages 137–146, Jul. 1995.

8. Jay Hoeflinger and Yunheung Paek. Unified interprocedural parallelism detection.
International Journal of Parallel Processing, 2000.

9. M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S. Liao, , and M. S. Lam. Interpro-
cedural parallelization analysis: A case study. Proceedings of the 8th International
Workshop on Languages and Compilers for Parallel Computing, Aug. 1995.

10. J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and computation trans-
formations for multiprocessors. Proc. of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Processing, Jul. 1995.

11. A. W. Lim, G. I. Cheong, and M. S. Lam. An affine partitoning algorithm to max-
imize parallelism and minimize communication. Proc. of the 13th ACM SIGARCH
International Conference on Supercomputing, Jun. 1999.

12. X. Martorell, E. Ayguade, N. Navarro, J. Corbalan, M. Gonzalez, and J. Labarta.
Thread fork/join techniques for multi-level parallelism exploitatio in numa multi-
processors. Proc. of the 1999 International Conference on Supercomputing, June
1999.

13. H. Kasahara, M. Obata, and K. Ishizaka. Automatic coarse grain task parallel pro-
cessing on smp using openmp. Proc. of 13 th International Workshop on Languages
and Compilers for Parallel Computing 2000, Aug. 2000.

14. H. Kasahara, H. Honda, M. Iwata, and M. Hirota. A macro-dataflow compilation
scheme for hierarchical multiprocessor systems. In Proc. Int’l. Conf. on Parallel
Processing, Aug. 1990.

15. H. Kasahara, H. Honda, and S. Narita. Parallel processing of near fine grain tasks
using static scheduling on oscar.

16. K. Kimura and H. Kasahara. Near fine grain parallel processing using static
scheduling on single chip multiprocessors. Proc. of International Workshop on
Innovative Architecture for Future Generation High-Performance Processors and
Systems, Nov. 1999.

17. H. Kasahara A. Yhoshida, K. Koshizuka. Data-localization using loop aligned
decomposition for macro-dataflow processing. Proc. of 9th Workshop on Languages
and Compilers for Parallel Computing, Aug. 1996.

18. K. Ishizaka, M. Obata, and H. Kasahara. Coarse grain task parallel processing
with cache optimization on shared memory multiprocessor. In Proc. of 14th In-
ternational Workshop on Languages and Compilers for Parallel Computing, Aug.
2001.

19. K. Ishizaka, M. Obata, and H. Kasahara. Cache optimization for coarse grain
task parallel processing using inter-array padding. In Proc. of 16th International
Workshop on Languages and Compilers for Parallel Computing, Oct. 2003.

