
Cache Optimization for Coarse Grain Task

Parallel Processing Using Inter-Array Padding

Kazuhisa Ishizaka, Motoki Obata, and Hironori Kasahara

Department of Computer Science, Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

{ishizaka,obata,kasahara}@oscar.elec.waseda.ac.jp

Abstract. The wide use of multiprocessor system has been making au-
tomatic parallelizing compilers more important. To improve the per-
formance of multiprocessor system more by compiler, multigrain par-
allelization is important. In multigrain parallelization, coarse grain task
parallelism among loops and subroutines and near fine grain parallelism
among statements are used in addition to the traditional loop parallelism.
In addition, locality optimization to use cache effectively is also impor-
tant for the performance improvement. This paper describes inter-array
padding to minimize cache conflict misses among macro-tasks with data
localization scheme which decomposes loops sharing the same arrays to
fit cache size and executes the decomposed loops consecutively on the
same processor. In the performance evaluation on Sun Ultra 80(4pe),
OSCAR compiler on which the proposed scheme is implemented gave
us 2.5 times speedup against the maximum performance of Sun Forte
compiler automatic loop parallelization at the average of SPEC CFP95
tomcatv, swim hydro2d and turb3d programs. Also, OSCAR compiler
showed 2.1 times speedup on IBM RS/6000 44p-270(4pe) against XLF
compiler.

1 Introduction

Multiprocessor architectures are currently used in wide range of computers in-
cluding high performance computers, entry level servers and games embedding
chip multiprocessors. To improve usability and effective performance of multi-
processor systems, automatic parallelizing compilers are required. To this end,
automatic parallelizing compilers have been researched. For example, Polaris[1]
compiler exploits loop level parallelism by using symbolic analysis, runtime data
dependence analysis, range test and so on. Loop parallelization considering the
data locality optimization using unimodular transformation, affine partitioning
and so on has been researched in SUIF compiler [2].
Since various kinds of loops can be parallelized by those advanced compilers,

to further improve the effective performance of multiprocessor systems, the use
of different grains of parallelism such as the use of coarse grain task parallelism
among loops and subroutines and fine grain parallelism among statements and
instructions in addition to loop level parallelism should be considered. NANOS



compiler[3] uses multi level parallelism by using the extended OpenMP API.
PROMIS compiler[4] integrates loop level parallelism and instruction level par-
allelism using a common intermediate language. Multigrain parallel processing
which has been realized in OSCAR compiler [5], APC compiler(Advance Paral-
lelizing Compiler developed by Japanese millennium project IT21)[6] uses coarse
grain task parallelism among loops and subroutines and near fine grain paral-
lelism among statements.

Also, optimization for memory hierarchy to minimize the memory access
overhead that is getting larger with the speedup of a processor is important to
improve the performance. Loop restructurings such as loop permutation, loop
fusion and tiling to change data access pattern in a loop are researched as the
cache optimization by the compiler. Data layout transformations including strip
mining and array permutation to make data access pattern contiguous are also
researched. Intra-array padding and inter-array padding to reduce conflict misses
in a single loop or a fused loop are proposed[7]. Also, the loop fusion scheme
using peeling and shifting of loop iteration to allow fusion and maintain loop
parallelism has been used to enhance data locality[8]. Furthermore, after loop
fusion, conflict misses can be reduced by cache partitioning[9].

The performance of physically-indexed cache depends on the page placement
policy of operating system such as page coloring and bin hopping[10]. Runtime
recoloring scheme using the extended hardware such as Cache Miss Lookaside
buffer to traces cache conflict misses has been proposed [11]. Low overhead re-
coloring using extended TLB to record the cache color is also researched[12]. In
addition to these approaches requiring the extended hardware, OS and compiler
cooperative page coloring scheme without hardware extension using information
on access pattern of program provided by compiler is proposed[13].

This paper proposes the padding scheme to reduce conflict misses to improve
the performance of the coarse grain task parallel processing. In the cache opti-
mization for coarse grain task parallel processing [14], at first, complier divides
loops into smaller loops to fit data size accessed by loops to cache size. Next,
the compiler analyzes parallelism among tasks including the divided loops us-
ing Earliest Executable Condition analysis and schedules tasks which shared the
same data to the same processor so that the tasks can be executed consecutively
accessing the shared data on the cache. After that, cache line conflict misses
among tasks which are executed consecutively are reduced by padding proposed
in this paper. Although ordinary cache optimizations by the compiler target a
single loop or a fused loop, the proposed scheme optimizes cache performance
over loops.

The rest of this paper is organized as follows. In section 2, the coarse grain
task parallel processing is described. Section 3 describes the cache optimiza-
tion scheme using data localization for the coarse grain task parallel processing.
Section 4 proposes the padding scheme to reduce conflict misses over loops.
The effectiveness of the proposed schemes is evaluated on the commercial mul-
tiprocessors using several benchmarks in SPEC CFP95 in section 5. Finally,
concluding remarks are described in section 6.



2 Coarse Grain Task Parallel Processing

This section describes coarse grain task parallel processing to which the proposed
cache optimization scheme is applied. In the coarse grain task parallel process-
ing, a source program is decomposed into three kinds of coarse grain tasks,
or macro-tasks, namely block of pseudo assignment statements(BPA) repetition
block(RB), subroutine block(SB). Also, macro-tasks are generated hierarchically
inside of a sequential repetition block and a subroutine block.

2.1 Generation of Macro-task Graph

After the generation of macro-tasks, compiler analyzes data flow and control
flow among macro-tasks in each layer or each nested level. Next, to extract par-
allelism among macro-tasks, the compiler analyzes Earliest Executable Condi-
tion(EEC)[5] of each macro-task. EEC represents the conditions on which macro-
task may begin its execution earliest.
EEC of macro-task is represented in macro-task Graph (MTG) as shown in

Fig.1. In macro-task graph, nodes represent macro-tasks. A small circle inside
nodes represents conditional branches. Solid edges represent data dependencies.
Dotted edges represent extended control dependencies. Extended control depen-
dency means ordinary control dependency and the condition on which a data
dependent predecessor macro-task is not executed. A solid arc represents that
edges connected by the arc are in AND relationship. A dotted arc represents
that edges connected by the arc are in OR relation ship.

1

2 3

4

5

6

7

8

910 11

12

13

14

Data Dependency

Extended Control
Dependency

Conditional
Branch

AND

OR

Original
Control Flow

Fig. 1. An Example of Macro-Task Graph

2.2 Macro-Task Scheduling

In the coarse grain task parallel processing, static scheduling and dynamic schedul-
ing are used for assignment of macro-tasks to processors.
If a macro-task graph has only data dependencies and is deterministic, static

scheduling is selected. In the static scheduling, assignment of macro-tasks to pro-
cessors is determined at compile time by the scheduler in the compiler. Static



scheduling is useful since it allows us to minimize data transfer and synchroniza-
tion overhead without runtime scheduling overhead.
If a macro-task graph has control dependencies, dynamic scheduling is se-

lected to cope with runtime uncertainties like conditional branches. Scheduling
routine for dynamic scheduling are generated by compiler and embedded into a
parallelized program with macro-task code.

2.3 Code Generation

OSCAR compiler has several backends and generates the parallelized code for
multiple target architectures. In this paper, OpenMP backend is used to generate
OpenMP FORTRAN from sequential FORTRAN. OSCAR compiler generates
the portable code for various shared memory multiprocessors by using “one-time
single code generation” technique[5, 15]. Furthermore, by using native compiler
as the backend of OSCAR compiler, general optimizations and machine specific
optimizations provided by it are applied to the generated code. Therefore, the
performance of OSCAR compiler can be used as a performance booster of the
native compiler on the state of the art multiprocessor.

3 Cache Optimization for Coarse Grain Task Parallel

Processing

If macro-tasks that access the same data are executed consecutively on the same
processor, shared data can be transffered among these macro-tasks using fast
memory such as cache. This section describes cache optimization using data
localization[16] to enhance the performance of coarse grain task parallel process-
ing.

3.1 Loop Aligned Decomposition

To avoid cache misses among the macro-tasks, Loop Aligned Decomposition(LAD)[16]
is applied to loops that access large size data. LAD divides a loop into partial
loops with the smaller number of iterations so that data size accessed by the
divided loops is smaller than cache size.
Partial loops are treated as coarse grain tasks and the Earliest Executable

Condition(EEC) analysis is applied. Partial loops connected by data dependence
edge on the macro task graph are grouped into “Data Localization Group(DLG)”.
Partial loops, or macro-tasks, inside a DLG are assigned to the same processor
as consecutively as possible by static or dynamic scheduler.
In macro-task graph of Fig.2(a), it is assumed that macro-tasks 2, 3 and 7 are

parallel loops and they access the same shared variables and their size exceeds
cache size. In this example, loops are divided into four partial loops by the LAD.
For example, macro-task 2 in Fig.2(a) is divided into macro-task 2 A through
2 D in Fig.2(b). Also, DLGs are defined, for example, 2 A, 3 A, 7 A are grouped
into DLG A.



1

4 56

7

2

3

1

6 4 5

2_B

3_B

7_B

2_A

3_A

7_A

2_C2_D

3_C3_D

7_D7_C

(b) After Loop Aligned Decomp(a) Original

Fig. 2. Example of Loop Align Decomposition

3.2 Scheduling for Consecutive Execution of Macro-tasks

Macro-tasks are executed in the increasing order of the node number on the
macro-task graph in the original program. For example, the execution order of
macro-tasks 2 A to 3 D is 2 A, 2 B, 2 C, 2 D, 3 A 3 B, 3 C, 3 D. In this order,
macro-tasks in the same DLG are not executed consecutively.
However, the earliest executable condition shown in Fig. 2(b) means that

macro-task 3 B, for example, can be executed immediately after macro-task 2 B
because macro-task 3 B depends on only macro-task 2 B.
In the proposed cache optimization scheme, a task scheduler for the coarse

grain tasks assigns macro-tasks inside a DLG to the same processor as con-
secutively as possible[14] in addition to “critical path” priority. Fig.3 shows a
schedule when the proposed cache optimization is applied to macro-task graph
in Fig.2(b) for a single processor. As shown in Fig.3, macro-task 2 B, 3 B, 8 B
in DLG B and macro-task 2 C, 3 C, 7 C in DLG C are executed consecutively
to use cache effectively.

1

time

6 4 52_A 2_B 3_B 7_B 2_C 3_C 7_C3_A 2_D 3_D 7_A 7_D

DLG_A DLG_B DLG_C DLG_D DLG_A DLG_D

Fig. 3. Example of Scheduling Result on Single Processor

4 Reduction of Cache Conflict Misses

This section describes the data layout transformation using padding to reduce
conflict misses among macro-tasks in a DLG.

4.1 Conflict Misses in a DLG

In the data localization, loops accessing the same shared variable larger than
cache size are divided to smaller loops or macro-tasks. Furthermore, macro-
tasks in the same DLG are executed consecutively on the same processor. This
enables the shared data to be reused before cache out. However, if data accessed
by macro-tasks in a DLG share the same line on the cache, data may be removed



from the cache because of line conflict miss even though data size accessed in a
DLG is not larger than the cache size.
Conflict misses in a DLG are reduced by data layout transformation by inter-

array padding. In this section, SPEC CFP95 swim is used as an example for the
proposed padding scheme. Swim has 13 single precision 513x513 arrays and each
size is about 1MB. Fig.4 shows the data layout image on cache where 13 arrays
are allocated to 4MB direct map cache. In this figure, boxes framed by thick
lines show arrays. Horizontal direction represents 4MB cache space. This figure
means that arrays on the same vertical position are allocated to the same cache
lines and they cause line conflict misses. For example, arrays U, VNEW, POLD
and H are allocated to the same part of cache.
Dotted lines in the figure show the partial arrays accessed by the divided

loops by the LAD when loops are divided to 4 smaller loops. Gray part of each
array shows a partial array accessed by the divided loops in a DLG. As shown
in the figure, conflict misses may be caused among the partial arrays accessed
in a DLG, or on a vertically same position.

U V

CU

P

ZCV

H

PNEW UOLD VOLD

UNEW

VNEW

POLD

0 1 2 3 4 MB
cache size

Fig. 4. Data Layout Image on Cache of Swim

This conflict misses interfere the data reuse among the consecutively executed
macro-tasks. Data layout transformation by the padding to reduce conflict misses
in a DLG is required for the cache optimization among loops or macro-tasks.
This section describes the padding scheme to reduce conflict misses in a DLG.

4.2 Inter-Array Padding

This section describes an inter-array padding procedure using array declaration
size change.

Step1 Select Target Arrays Since OSCAR compiler on which the proposed
scheme is implemented generates the parallelized OpenMP FORTRAN, the ac-
tual data layout is determined by the machine native compiler which is used
as the back end of OSCAR compiler. Therefore, in the current implementation,
OSCAR compiler chooses arrays of the same size as the target of the proposed
padding and changes declaration size of the target arrays to realize inter-array
padding.
Arrays in FORTRAN “common block” are also chosen as the target of inter-

array padding if a common block has the same shape over all program modules
because changing declaration size of such arrays dose not break the program
semantics. Padding for arrays in common block that has different shapes are
described in section 4.3.



Step2 Generate Data Layout Image on Cache Next, a compiler calculates
addresses of selected arrays and generates data layout image on cache as shown
in Fig.4. In this step, because all target arrays have the same size, a compiler can
determine the data layout image regardless of the actual data layout determined
by the native compiler.

Step3 Calculate Minimum Division Number A compiler calculates the
minimum division number (div num) to make data size accessed in a DLG
smaller than the cache size by dividing total array size of target arrays by cache
size. In the example in Fig.4, total array size is 13MB and cache size is 4MB.
Then, div num is ceil(13/4) = 4.

Step4 Calculate Maximum DLG Access Size The maximum data size
accessed in a DLG (part size, gray range in Fig.4) is calculated by dividing
array size by div num. If there are overlaps among partial arrays of part size in
data layout image on cache, it means that conflicts may be caused among arrays
accessed in a DLG. If there is no overlap, padding is not applied.

Step5 Calculate Padding Size To remove conflict, the distance on the cache
between the base address of first array (array U in Fig.4) and the base address of
first array after cache size (array VNEW) should be part size. Padding size to
remove conflict between U and VNEW is cache size+ part size− base address
where base address is the base address of VNEW. Similarly, same size pads are
inserted to remove all conflicts as shown in Fig.5(a).

Step6 Change Array Size In the proposed scheme, pads inserted among cer-
tain arrays as shown in Fig.5(a) are distributed to all arrays so that the data lay-
out dose not depends on the specific order of arrays. In practice, the rightmost di-
mension of each array is changed to increase array size by padding size/narrays,
where narrays is the number of arrays in the range from the beginning to
cache size+ part size(4 in this example). Fig.5(b) shows the data layout image
on cache after the proposed padding by changing array size.

U V

CU

P

ZCV

H

0 1 2 3 4 MB

VNEW PNEW UOLD

POLD

UNEW

cache size

VOLD

:padding

U V

CU

P

Z

CV

H

0 1 2 3 4 MB

VNEW PNEW UOLD VOLD

POLD

UNEW

cache size

: padding

(a) padding for swim (b) padding by changing array size

Fig. 5. Inter-Array Padding for Swim

4.3 Padding for Common Block

Some program modules may have the different array declarations size for a com-
mon block. Because padding among arrays in such common block may change



the program semantics, it is difficult to apply inter-array padding to such ar-
rays. Therefore, a compiler merges such common blocks to single large common
block and inserts pads among common blocks to maintain program semantics
and reduce conflict misses among arrays in common blocks.

4.4 Set Associative Cache

In the current implementation, the proposed padding targets LRU replacement
policy for a set associative cache. A set associative cache is treated as a direct
map cache of same size. If padding removes conflicts on a direct map cache, the
number of overlaps on n-way cache is smaller than n because the data layout
image on cache of n-way set associative is same as that of a direct map cache of
1/n size. Therefore, there is no conflict on an n-way cache because a cache set
of n-way cache can hold n lines.

4.5 Page Placement Policy of Operating System

Data layout transformation by a compiler is made on virtual address. Therefore,
page placement policy of operating system to map a virtual address to a physical
address affects it on a physically-indexed cache.
A simple page coloring maps sequential virtual pages to sequential physical

pages. Therefore, a page conflicts with the page apart from it by cache size. Data
transformation by a compiler is effective in this policy because continuity of the
address on virtual address is kept on physical address.
In bin hopping, sequential physical pages are assigned to virtual pages in

the order of page fault, irrespective of their virtual address. Continuity on the
virtual address is not remained on physical address in this policy. Therefore, it
is difficult that a compiler applies data layout transformation effectively beyond
the page size on virtual address.

5 Performance Evaluation

This section describes the performance evaluation of the proposed scheme on Sun
Ultra 80 and IBM RS/6000 44p-270. Ultra80 has four 450MHz Ultra SPARC-
IIs with 4MB direct map L2 cache for each processor and RS/6000 has four
375MHz Power3s with 4MB 4-way set associative L2 cache(LRU). Both caches
are physically-indexed caches. Solaris 8 on Ultra 80 and AIX 4.3 on RS/6000
support page coloring and bin hopping.
In the evaluation, sequential FORTRAN programs are translated into par-

allelized OpenMP FORTRAN programs using OSCAR compiler on which the
proposed scheme has been implemented. Three kinds of compilation, namely OS-
CAR with the proposed padding, OSCAR without the padding and automatic
parallelization by the machine native compiler are compared.
SPEC CFP95 tomcatv, swim, hydro2d and turb3d are used in this evaluation.

Original sources code of SPEC are used by both OSCAR and native compiler



for tomcatv, swim and hydro2d. However, turb3d is preprocessed by APC com-
piler[6] in order to parallelize some loops containing subroutine calls because
both OSCAR and native compilers currently cannot parallelize such loops.
Since data size of programs used in this evaluation are about ten MB, the

target of the proposed padding with data localization in this evaluation is L2
cache that has larger miss penalty and larger impact on performance than L1
cache of 32KB or 64KB. In this evaluation, the number of loops generated from a
loop by loop division is same as the number of processors. Therefore, performance
improvement is obtained mainly by the proposed padding.
The proposed inter-array padding extends 513x513 2-dimensional array to

513x573 for tomcatv, 513x513 to 513x544 for swim, 66x64x64 to 66x64x71 for
turb3d. The padding for common blocks is applied to hydro2d. Four common
blocks, VAR1, VAR2, VARH and SCRA, are merged to a common block and a
dummy array of 318696 bytes is inserted between VAR2 and VARH.

5.1 Performance on Sun Ultra 80

Solaris 8 supports Hashed VA, V.addr=P.addr and bin hopping as the page
placement policy. V.addr=P.addr method keeps continuity on virtual address on
physical address. Hashed VA is similar to V.addr=P.addr but it inserts a small
gap every L2 cache size (4MB) to avoid conflict miss among two addresses,
distance among which is just L2 cache size. Default policy of Solaris 8 is Hashed
VA.
Speedups for 4PEs against sequential execution by Sun Forte 6 update 2

compiler on Sun Ultra 80 are shown in Fig.6. Numbers above the bar in the
figure show execution times. In addition, the number of cache misses measured
by CPU Performance count of Ultra SPARC-II is shown in Fig.7.

tomcatv swim hydro2d turb3d
0.0

2.0

4.0

6.0

8.0

10.0

sp
ee

du
p 

ag
ai

ns
t 

1p
e

117s
96s

49s
47s

191s

60s60s62s

107s

37s36s35s

142s

63s

44s44s

forte single
forte max

oscar w/ padding
oscar w/o padding

tomcatv swim hydro2d turb3d

121s
98s

89s

19s

191s

66s
68s56s

104s

61s
61s

11s

141s

77s
62s

31s

(a) Hashed VA (b) Bin Hopping

Fig. 6. Speedups on Sun Ultra 80

Speedups on Hashed VA by the automatic parallelization of Forte for tom-
catv, swim and hydro2d are only 1.2, 1.7 and 1.8 times against sequential ex-
ecution respectively as shown in Fig.6(a). Also, speedups by OSCAR without
padding are 1.4, 1.7 and 2.3 times, since conflict misses prevent the scalability.



L
2

 c
ac

he
 m

is
se

s 
x1

08

0.0

1.0

2.0

3.0

4.0

5.0

6.0
forte single
forte max

oscar w/ padding
oscar w/o padding

tomcatv swim hydro2d turb3d tomcatv swim hydro2d turb3d

(a) Hashed VA (b) Bin Hopping

Fig. 7. L2 Cache Misses on Sun Ultra 80

For example, the number of cache misses of swim by Forte automatic paralleliza-
tion is 300 million and that of OSCAR without padding is also 300 million as
shown in Fig.7(a). These are not much reduced compared with that of the se-
quential execution (350 million) in spite of the quadruple cache size on 4PEs. On
the other hand, turb3d has two kinds of loops. The first access is sequential and
it causes conflict misses as show in section 4. However, because second access
pattern is interleaved, cache performance is better than other three programs.

Since Ultra 80 used in this evaluation has a single memory bank, memory
accesses are serialized and the bottleneck of scalability. Therefore, reduction of
conflict misses to improve the L2 cache performance is important. Speedups by
OSCAR with padding on Hashed VA are 6.3 times for tomcatv, 9.4 for swim, 4.6
for hydro2d and 3.4 for turb3d on 4PEs against the sequential execution. Also,
padding increases the performance of OSCAR without padding 4.7, 5.5, 2.0 and
1.2 times respectively. The number of cache misses are decreased by padding to
3.5% of OSCAR without padding for tomcatv, 4.2% for swim, 25% for hydro2d,
61% for turb3d as shown in Fig.7.

Speedups by OSCAR without padding against sequential execution on bin
hopping are 2.4 times for tomcatv, 3.0 swim, 3.2 for hydro2d and 3.2 for turb3d
as shown in figure 6(b). These are 1.8, 1.7, 1.4 and 1.1 times better than OSCAR
without padding on Hashed VA. The reason is that conflict misses assumed on
virtual address dose not appear on physical address. Speedups by OSCAR with
padding on bin hopping are 2.5, 3.0, 3.2, 3.0 times for each program and only
few percentage speedups compared with OSCAR without padding.

In this evaluation, the best performance on Ultra 80 is given by OSCAR
with padding on Hashed VA. Execution times by it are 19 seconds for tomcatv,
11 seconds for swim, 31 seconds for hydro2d and 56 seconds for turb3d and
minimum execution times on bin hopping are 47 seconds, 35 seconds, 44 seconds
and 60 seconds respectively.



5.2 IBM RS/6000 44p-270

Fig.8 shows speedups for 4PEs against sequential execution on IBM RS/6000
44p-270 with 4-way set associative L2 cache(LRU). Default page placement pol-
icy of AIX 4.3 is bin hopping and page coloring is supported.

tomcatv swim hydro2d turb3d

sp
ee

du
p 

ag
ai

ns
t 1

pe


69s
47s

44s

23s

82s

27s27s25s

62s
43s

33s

8.0s

71s
57s

26s

17s

0.0

2.0

4.0

6.0

8.0

tomcatv swim hydro2d turb3d

69s

40s34s
27s

80s

26s25s25s

62s

34s

13s12s

74s

41s

17s16s

xlf single
xlf max
oscar w/o padding
oscar w/ padding

(a) Page Coloring (b) Bin Hopping

Fig. 8. Speedups on RS/6000 44p-270

As shown in Fig.8(a), speedups by OSCAR with padding against sequential
execution on bin hopping are 2.6 times for tomcatv, 5.0 for swim, 4.6 for hydro2d
and 3.2 for turb3d. They are 27%, 4.6%, 2.3%, 0.2% better than OSCAR without
padding.
Speedups by OSCAR without padding on page coloring are 1.6, 1.9, 2.9, 3.0

times against sequential execution and less than on bin hopping. Bin hopping
show 1.2 times better performance for XLF automatic parallelization, 1.5 times
better for OSCAR without padding compared with page coloring. However, OS-
CAR with padding gave us 3.0 times speedup for tomcatv, 7.8 for swim, 4.3 for
hydro2d and 3.2 for turb3d against sequential execution on bin hopping. Padding
increases the performance by OSCAR without padding 2.0, 4.1, 1.5 and 1.1 times
for each program.
Execution times by OSCAR with padding on page coloring are 23 seconds for

tomcatv, 8 seconds for swim, 17 seconds for hydro2d and 25 seconds for turb3d
and minimum execution times on bin hopping are 27 seconds, 12 seconds, 16
seconds and 25 seconds for respectively. OSCAR with padding on page coloring
gave us the best performance on RS/6000 44p-270.

6 Conclusions

This paper has described the cache optimization with data localization for coarse
grain tasks parallel processing on SMP machine. In the proposed scheme, loops
are divided into smaller loops to fit the cache and loops accessing the shared
data are executed on the same processor as consecutively as possible to improve
temporal locality over different loops. Moreover, cache line conflicts among loops
are reduced by inter-array padding.



The proposed scheme is implemented in OSCAR compiler as a core compiler
of APC compiler developed in the Japan METI Advanced Parallelizing Compiler
project in a part of Millennium Project IT21[6] and it was evaluated on the
two commercial SMP workstations having different cache configurations with
popular page placement policies of operating system. In the evaluation on the
Sun Ultra 80(4pe) which has 4MB direct map L2 cache, the proposed padding
scheme gave us 5.9 times speedup against sequential execution at the average of
4 programs of SPEC CFP95, tomcatv, swim, hydro2d and turb3d, on the default
page placement policy called Hashed VA. OSCAR with padding on page coloring
also gave us 4.6 times speedup against sequential execution on the RS/6000 44p-
270(4pe) having 4MB 2-way set associative L2 cache. The evaluation on two
multiprocessors shows that OSCAR with padding on page coloring gave us the
best performance on both machines.

Acknowledgments

This research is supported by METI/NEDE millennium project IT21 “advanced
Parallelizing Compiler” and STARC (Semiconductor Technology Academic Re-
search Center).

References

1. R. Eigenmann, J. Hoeflinger, and D. Padua. On the automatic parallelization of
the perfect benchmarks. IEEE Trans. on parallel and distributed systems, 9(1),
Jan. 1998.

2. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S. Liao, E. Bugnion,
and M. S. Lam. Maximizing multiprocessor performance with the suif compiler.
IEEE Computer, 1996.

3. X. Martorell, E. Ayguade, N. Navarro, J. Corbalan, M. Gonzalez, and J. Labarta.
Thread fork/join techniques for multi-level parallelism exploitatio in numa multi-
processors. Proc. of the 1999 International Conference on Supercomputing, June
1999.

4. C. J. Brownhill, A. Nicolau, S Novack, and C. D. Polychronopoulos. Achieving
multi-level parallelization. Proc. of the International Symposium on High Perfor-
mance Computing, 1997.

5. H. Kasahara, M. Obata, and K. Ishizaka. Automatic coarse grain task parallel pro-
cessing on smp using openmp. Proc. of 13 th International Workshop on Languages
and Compilers for Parallel Computing 2000, Aug. 2000.

6. APC. Advanced parallelizng compiler project. http://www.apc.waseda.ac.jp.
7. G. Rivera and C-W. Tseng. Eliminating conflict misses for high performance

architectures. Proc. of the 1998 ACM International Conference on Supercomputing,
July 1998.

8. Naraig Manjikian and Tarek S. Abdelrahman. Fusion of loops for parallelism and
locality. Proc. of the 24th International Conference on Parallel Processing, Aug.
1995.

9. Naraig Manjikian and Tarek S. Abdelrahman. Array data layout for the reduction
of cache conflicts. Proc. of 8th International Conference on Parallel and Distributed
Computing Systems, Sep. 1995.



10. R. E. Kessler and Mark D. Hill. Page placement algorithms for large real-indexed
caches. ACM transaction of Computer Systems, Nov. 1992.

11. Brian N. Bershad, Dennis Lee, Theodore H. Romer, and J. Brandley Chen. Avoid-
ing conflict misses dynamically in large direct-mapped caches. Proc. of the Sixth
Internatinal Symposium of Architectural Support for Programing Languages and
Operating Systems, Oct. 1994.

12. Timothy Sherwood, Brad Calder, and Joel Ember. Reducing cache misses using
hardware and software page placement. In Proc. of the International Conference
of Supercomputing, June 1999.

13. E. Bugnion, J. M. Anderson, T. C. Mowry, M. R. Rosenblum, and M. S. Lam.
Compiler-directed page coloring for multiprocessors. Proc. of the Seventh Inter-
natinal Symposium of Architectural Support for Programing Languages and Oper-
ating Systems, Oct. 1996.

14. K. Ishizaka, M. Obata, and H. Kasahara. Coarse grain task parallel processing
with cache optimization on shared memory multiprocessor. In Proc. of 14th In-
ternational Workshop on Languages and Compilers for Parallel Computing, Aug.
2001.

15. H. Kasahara et al. Performance of multigrain parallelization in japanese millen-
nium project it21 advanced parallelizing compiler. In Proc. of 10th International
Workshop on Compilers for Parallel Computers (CPC), Jan. 2003.

16. H. Kasahara A. Yhoshida, K. Koshizuka. Data-localization using loop aligned
decomposition for macro-dataflow processing. Proc. of 9th Workshop on Languages
and Compilers for Parallel Computing, Aug. 1996.


