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Abstract

To improve effective performance and usability of shared
memory multiprocessor systems, a multi-grain compilation
scheme, which hierarchically exploits coarse grain paral-
lelism among loops, subroutines and basic blocks, con-
ventional loop parallelism and near fine grain parallelism
among statements inside a basic block, is important. In or-
der to efficiently use hierarchical parallelism of each nest
level, or layer, in multigrain parallel processing, it is re-
quired to determine how many processors or groups of pro-
cessors should be assigned to each layer, according to the
parallelism of the layer. This paper proposes an automatic
hierarchical parallelism control scheme to assign suitable
number of processors to each layer so that the parallelism
of each hierarchy can be used efficiently. Performance of the
proposed scheme is evaluated on IBM RS6000 SMP server
with 8 processors using 8 programs of SPEC95FP.

1. Introduction

As a parallel processing scheme on multiprocessor sys-
tems, loop level parallelism has been widely used by auto-
matic parallelizing compilers[1, 2]. As examples of loop
parallelizing research compilers, Polaris compiler[3, 4, 5]
exploits loop parallelism by using inline expansion of sub-
routine, symbolic propagation, array privatization[4, 6] and
run-time data dependence analysis[5] and SUIF compiler[7,
8, 9] parallelizes loops with inter-procedure analysis, uni-
modular transformation and data locality optimization [10,
11]. Effective optimization of data locality is more and
more important because of the increasing gap between
memory and processor speeds. Currently, many researches
for data locality optimization using program restructuring
techniques such as blocking, tiling, padding and data local-
ization, has been proceeded for high performance comput-
ing and single chip multiprocessor systems [10, 12, 13, 14].

However, by those research efforts, the loop paralleliza-
tion techniques are reaching maturity. In light of this fact,

new generation parallelization techniques like multigrain
parallelization are desired to overcome the limitation of the
loop parallelization.

OSCAR FORTRAN compiler realizes multigrain paral-
lelization [15, 16, 17] which uses coarse grain task paral-
lelism [15, 16, 17, 18, 19, 20, 21] among loops, subrou-
tines and basic blocks and near fine grain parallelism[22,
23] among statements inside a basic block in addition
to conventional loop parallelism among loop iterations.
Also, NANOS compiler[24, 25] based on Parafrase2 has
been trying to exploit multi-level parallelism including
the coarse grain parallelism by using extended OpenMP
API. PROMIS compiler[26, 27] hierarchically combines
Parafrase2 compiler[28] using HTG[29] and symbolic anal-
ysis techniques[30] and EVE compiler for fine grain parallel
processing.

Based on OSCAR compiler, Advanced Parallelizing
Compiler (APC) project[31] was started in Fiscal Year of
2000 to improve the effective performance, ease of use and
cost performance of shared memory multiprocessor systems
as a part of Japanese Government Millennium Project IT21
with industries and universities.

In the coarse grain parallelization in OSCAR multigrain
compiler, a sequential program is decomposed into three
kinds of Macro-Tasks, namely Block of Pseudo Assignment
statements (basic block), Repetition Block (loop) and Sub-
routine Block. Earliest Executable Condition analysis is ap-
plied to the generated macro-tasks and generates a macro-
task graph. A macro-task graph expresses coarse grain par-
allelism among macro-tasks. A sequential Repetition Block
with a large loop body part or Subroutine Block is decom-
posed into coarse grain tasks hierarchically as shown in Fig-
ure 2. By these hierarchical definition of coarse grain tasks,
OSCAR compiler can exploit more parallelism in a program
in addition to the loop parallelism.

However, compiler must decide which layer should be
parallelized and how many processors should be used for
the layer. This decision is very difficult for the ordinary
users since analysis of hierarchical parallelism and exam-
ination of the combination of hierarchical parallelism are
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Figure 1. A macro flow graph (MFG) and a
macro-task graph (MTG)

very hard. This paper proposes an automatic determination
scheme of the number of processors to be assigned to each
program layer.

2. Coarse grain task parallel processing

This section describes a coarse grain task parallel pro-
cessing scheme to decompose a sequential code to coarse
grain tasks hierarchically and to generate hierarchical
macro-task graph.

The macro-tasks on a macro-task graph are assigned to
processor clusters(PC) or processor elements(PE) by a static
or dynamic task scheduling method.

2.1. Generation of coarse grain tasks

In the coarse grain task parallelization, a Fortran source
program is decomposed into three kinds of macro-tasks,
namely, Block of Pseudo Assignment statements (BPA),
or Basic Block(BB), repetition Block(RB), or an outer-
most natural loop in the treated hierarchy, and Subroutine
Block(SB). RBs composed of sequential loops having large
processing cost and SBs to which inline expansion can not
be applied effectively, are hierarchically decomposed into
macro-tasks as shown in Figure 2.

2.2. Exploitation of coarse grain parallelism

After the generation of macro-tasks in each layer, or
each nest level, control and data flow among macro-tasks
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are analyzed. A macro flow graph in each layer is gener-
ated as shown in Figure 1(a). In the figure, nodes repre-
sent macro-tasks, solid edges represent data dependencies
among macro-tasks and dotted edges represent control flow.
A small circle inside a node represents a conditional branch
inside the macro-task. Though arrows of edges are omitted
in the macro-flow graph, it is assumed that the directions
are downward.

Then, compiler analyzes Earliest Executable
Condition[15, 18, 19] of all macro-task to exploit
coarse grain parallelism among macro-tasks. This con-
dition shows parallelism among macro-tasks considering
both data dependency and control dependency. Earliest
executable condition of each macro-task is shown as
macro-task graph in Figure 1(b). In the macro-task graph,
nodes represent macro-tasks. A small circle inside nodes
represents conditional branches. Solid edges represent
data dependencies. Dotted edges represent extended
control dependencies. Extended control dependency means
ordinary normal control dependency and the condition on
which a data dependent predecessor of a macro-task is not
executed.



2.3. Processor clusters and processor elements

In the coarse grain parallelization, macro-tasks on hierar-
chical macro-task graphs are assigned to processor clusters,
or groups of processors. OSCAR compiler groups proces-
sor elements(PE) into processor clusters(PC) logically, and
assigns macro-tasks in a macro-task graph to PCs. If a hi-
erarchical macro-task graph is defined inside a macro-task
as shown in Figure 2, processors are also grouped by soft-
ware logically into PCs hierarchically as shown in Figure 3.
Figure 3 shows 8 processors are grouped into 2 processor
clusters PC0 and PC1 having 4 processor elements respec-
tively in the first layer. In the second layer, 4 processors
in PC0 are grouped into 4 processor clusters PC0-0∼PC0-
3. On the other hand, PC1 is decomposed hierarchically
to 2 processor clusters PC1-0 and PC1-1 having 2 proces-
sor elements respectively in the second layer. Again, PC1-1
having 2 processor elements is grouped hierarchically into 2
processor clusters PC1-1-0 and PC1-1-1 each of which has
one PE in the third layer.

Compiler must decide how many PCs should be assigned
to each layer of macro-task graphs to exploit full hierarchi-
cal parallelism efficiently. Next section handles this prob-
lem.

3. Automatic determination of parallel pro-
cessing layer

This section describes how to decide the number of PCs
to be assigned to each layer of macro-task graph (MTG).
The parallel processing in the upper layer reduces overheads
for synchronization and scheduling because the upper layer
tasks usually have larger processing cost compared with
overheads. The proposed scheme allows us to use coarse
grain task parallelism and loop level parallelism.

3.1. Estimation of macro-task execution cost

First, the compiler estimates processing cost of each
macro-task. Sequential cost of each macro-task graph is the
sum of sequential cost of macro-tasks considering control
flow. If a macro-task is a DO-loop with undefined number
of loop iterations and arrays with loop index are accessed
in the loop, the compiler estimates the loop processing cost
using the dimension size of arrays as the number of loop
iterations. However, when the array appeared in the loop
doesn’t have any relationship with loop index or the num-
ber of iterations, the compiler assigns the all PE to the out-
ermost parallelism. If conditional branches are included in
a macro-task graph, execution cost is calculated by using
branch probability. In this paper, since it is assumed that the
compiler doesn’t use execution profiles, the cost of macro-
tasks is estimated using equal branch probability of 50%

for the both conditional branch directions. However, if ex-
ecution profile can be used, the cost of macro-tasks can be
estimated more precisely. The compiler estimates sequen-
tial execution cost of each macro-task graph by using the
hierarchical sum of inner macro-tasks.

3.2. Calculation of parallelism of each layer of MTG

Coarse grain task parallelism of each macro-task
graph(MTG) is calculated by sequential execution cost and
critical path length of each MTG. Coarse grain task paral-
lelismParai of MTGi is defined as

Parai = Seqi/CPi

whereCPi is critical path length andSeqi is a sequen-
tial execution cost in MTGi. Therefore,dParaie shows
the minimum number of processor clusters(PC) to execute
MTGi in CPi.

Next, Para ALDi (Para After Loop Division) is
defined as total parallelism of coarse grain and loop iteration
level parallelism. In the proposed determination scheme of
parallel processing layer,Tmin is defined as a minimum
task cost for loop parallelization considering overheads of
parallel thread fork/join and task scheduling on each tar-
get multiprocessor system. This scheme assumes that par-
allelizable RB in MTGi is divided into sub RBs having
larger cost thanTmin. However, if the cost of iteration
of RB is larger thanTmin, the maximum number of de-
composed tasks is the number of loop iterations of the RB.
This task decomposition is considered for only calculation
of Para ALD and real task decomposition isn’t performed
at this phase. Critical path length after the temporary task
decomposition is represented asCP ALDi. Therefore,
Para ALD is defined by usingSeqi andCP ALDi.

Para ALDi = Seqi/CP ALDi

If MT i including MTGi as a loop body is parallelizable
loop, it is necessary to reflect loop parallelism of MTi itself
in Para ALDi hierarchically. In this case,Para ALDi

is the product of the innerPara ALD of MTGi and the
number of task decomposition of MTi, where the generated
macro-tasks by the decomposition of MTi have larger cost
thanTmin. dPara ALDie is the total number of proces-
sors which is necessary to execute MTGi in CP ALDi and
shows the suitable number of processor clusters to balance
execution cost among processor clusters. If more processors
thandPara ALDie were assigned to the MTG, possibility
of processors being idle is high.

Also, as the enough number of processors for using all
parallelism in lower layers of MTGi, Para maxi is defined
as the following equation:
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Figure 4. Calculation of Para, Para ALDPara max

Para maxi = dPara ALDie × dPara maxinnere

where Para maxinner is the maximumPara max
among macro-tasks in MTGi. However, if RB is a paral-
lelizable loop, the proposed scheme assumes that the loop
is divided bydPara ALDie andPara max of the paral-
lelizable loop in MTGi is calculated by considering the loop
decomposition of parallelizable loop. Practically, after the
number of processor clusters is determined, the actual num-
ber of decomposed tasks of a parallelizable loop is deter-
mined in the later stage of compilation by considering the
number of processor clusters or cache size. In this phase
calculating maximum parallelism, it is assumed that the
parallelizable loop in MTGi is divided bydPara ALDie
which is the number of necessary processors in MTGi.

As an example,Para, Para ALD andPara max in
Figure 4 is shown. In Figure 4, “DOALL” shows paral-
lelizable loop, “Seq. loop” shows un-parallelizable loop,
namely sequential loop. Thick edges show critical path and
numbers within nodes are sequential execution costs. Here,
Tmin, which is the minimum cost to realize efficient loop
parallel processing, is defined as 10000. To explain sim-
ply, it is assumed that there are no parallelism in the body
of MT1(DOALL) in MTG0, MT2-2, MT2-3 and MT2-4
in MTG2 which is inner macro-task graph of MT2(SB).
Though hierarchical macro-task graphs can be generated
inside these macro-tasks practically, the inner macro-task
graphs of MT1, MT2-2, MT2-3 and MT2-4 are omitted in
this example. First,Para, CP , Para ALD, CP ALD
andPara max are calculated from the deepest layer of a
program. Since macro-task graphs within MT2-2, MT2-3
and MT2-4 don’t have any parallelism as mentioned above,
Para = Para ALD = Para max = 1 for these loops.

Sequential cost of MTG2 is 30000 andCP2, CP ALD2

are 12000. Therefore,Para2 andPara ALD2 of MTG1

are Para2 = 30000/12000 = 2.5, Para ALD2 =
30000/12000 = 2.5 Also, since Para max = 1 in
MT2-2, MT2-3 and MT2-4 of MTG2 andPara max2 =
dPara ALD2e × Para maxmore inner = 3× 1 = 3, the
suitable number of processors which is assigned to MTG2

is 3.
Also, parallelizable loop MT1 (DOALL) can be di-

vided into 6 (60000/10000) sub macro-tasks. Therefore,
Para1 = 1, Para ALD1 = 6 for MT1(DOALL). Then,
each parameter in MTG0 is calculated. In Figure 4,Seq0 =
90100 and CP0 = 60100. CP ALD0 = 30100 is
the sum of sequential cost of MT2(SB) and MT3(BB)
if MT1(DOALL) is divided into 6 tasks (60000/10000).
Therefore,Para0 = 90100/60100 = 1.5, Para ALD0 =
90100/30100 = 3.0. ForPara max0, macro-tasks within
MTG0 are MT1 through MT3 and it is assumed that MT1
is divided byPara ALD0 = 3. Para max2 = 3 of
MT2(SB) which has MTG2 as mentioned above. Though
original Para max of MT1(DOALL) before task divi-
sion is Para max = 6, Para max = 6/3 = 2 in
one of divided MT1(DOALL) since MT1(DOALL) is di-
vided byPara ALD0 = 3. Therefore, MT having max-
imum Para max in MTG0 is MT2 andPara max0 =
dPara ALD0e × Para max2 = 9.

3.3. Determination scheme of PC and PE assign-
ment to each layer

This section describes an automatic determination
scheme of PC and PE assignment to each layer is described
by using parameters obtained in section 3.2.

Step 1 Since execution costs of tasks in an upper layer are
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Figure 5. Determination of NPC and NPE

larger than tasks in a lower layer in a program in gen-
eral, relative overheads of task scheduling and syn-
chronization are relatively small. Thus, the proposed
scheme tries to use more parallelism in an upper layer.
Let’s assume the number of processors which can be
used in MTGi is NAvail PEi. The number of pro-
cessor clusters and processor elements are denoted as
NPCi and NPEi. Relationship betweenParai and
NPCi should beParai ≤ NPCi to fully use coarse
grain task parallelism. Furthermore, if the number
of processor clusters is larger thanPara ALDi, the
some processor clusters may become idle. Therefore,
the combination of [NPCi, NPEi] is defined as fol-
lows:

Parai ≤ NPCi ≤ Para ALDi

NPCi ×NPEi = NAvail PEi

If Parai = Para ALDi, the number of proces-
sor clustersNPCi for MTGi is selected as the min-
imum number which satisfiesParai ≤ NPCi and
NPCi ×NPEi = NAvail PEi to use coarse grain task
parallelism in MTGi as much as possible. IfParai ≥
NAvail PEi, the combination of processor clusters and
processor elements will beNPCi = NAvail PEi and
NPEi = 1.

Step 2 MaxNPEi is defined as the maximumPara max
among macro-tasks which are not parallelizable loop
in MTGi. MaxNPEi means an upper limit of the
number of processors which can be assigned to lower
layer of MTGi, namely the upper limit ofNPEi. If

NPEi > MaxNPEi is used, possibility of unneces-
sary synchronization and number of overheads of task
scheduling are high since excessive processor elements
are assigned to a lower layer. To avoid such case,
NPEi = MaxNPEi is chosen in this step.

Step 3.a If all of the macro-tasks in MTGi is not paralleliz-
able loops, currentNPCi is chosen as the number of
processor clusters assigned to the MTGi.

Step 3.b If MaxNPEi is smaller than currentNPEi, NPEi

is set to MaxNPEi in Step 2. However, when
MTGi has parallelizable loops andNPCi × NPEi <
NAvail PEi is satisfied, possibility of lack of avail-
able processors to parallelize these loops effectively is
high. In this case,NPCi×MaxNPEi is set to be over
the upper limit of the number of processors in MTGi

MaxNPCPEi = Para maxi. MaxNPCPEi means
an upper limit of total number of processors which are
assigned to MTGi and its lower layer. Therefore, the
proposed scheme chooses the minimumNPCi which
satisfiesNPCi ×MaxNPEi ≥ MaxNPCPEi. How-
ever, if NPCi × MaxNPEi > NAvail PEi, the pro-
posed scheme chooses the maximumNPCi which is
NPCi ×MaxNPEi ≤ NAvail PEi.

These steps are started from highest layer in a program
to lower layers untilNAvail PEi = 1.

Figure 5 explains the processor assignment scheme. Fig-
ure 5 consists of 4 hierarchical macro-task graphs, namely
the highest, or the first, level MTG0, the second level MTG2
and the third level MTG2-2 and MTG2-3. Sequential cost,
CP, Para and so on are shown in Figure 5. It is assumed that



MTG2-2 and MTG2-3 have no parallelism and no lower
layers. Therefore,Para = Para ALD = Para max =
1. The number of available processors is eight, namely
NAvail PE0 = 8. For MTG0, sinceNPC0 = 2 from
Para0 = 2 ≤ NPC0 ≤ Para ALD = 2 in Figure 5
, the combination of [NPC0, NPE0] is [2PC, 4PE] from
Step 1. Also,MaxNPE0 = Para max2 = 12 since
MT1 and MT2 in MTG0 aren’t parallelizable loops. There-
fore, the proposed scheme understands that the lower layer
of MTG0, or MTG2, needs 4 processors, and determines
NPE0 = 4 from Step 2. The combination [NPC2, NPE2] is
determined. SinceNPE0 = 4, NAvail PE2 = 4 in MTG2.
Here, the possible combinations of [NPC2, NPE2] are [1,
4], [2, 2] and [4, 1]. NPC2 = 2 is satisfiedPara2 =
1.2 ≤ NPC2 ≤ Para ALD2 = 3.0 in Figure 5 and avail-
able combinations of [NPC2, NPE2] from Step 1. Though
NPE2 = 2, MaxNPE2 = Para max2−2,2−3 = 1. Thus
NPE2 = 1 from Step 2. By Step 3b, sinceMaxNPCPE2 =
12 in Figure 5,NPC2 which satisfiesNPC2×MaxNPE2 ≤
MaxNPCPE2 = 12 is NPC2 = 4, thus [NPC2, NPE2] =
[4PC, 1PE]. Here, the process of assignment of PC and PE
is ended sinceNAvail PE2−2,2−3 = 1.

Therefore, the proposed scheme determines [NPC0,
NPE0] = [2PC, 4PE], [NPC2, NPE2] = [4PC, 1PE] and
[NPC2−2,2−3, NPE2−2,2−3] = [1PC, 1PE].

4. Performance evaluation

This section evaluates the performance of the proposed
parallelism control scheme for multigrain parallel process-
ing on IBM RS6000 SP 604e High Node 8 processors SMP
server. This scheme was implemented in OSCAR multi-
grain parallelizing compiler.

4.1. Evaluation environment

In this evaluation, OSCAR compiler with the proposed
scheme is used as a parallelizing pre-processor and gen-
erates a coarse grain task parallel program with OpenMP
API. This OpenMP program uses the “one time single level
thread generation” scheme which can minimize thread gen-
eration overhead by forking and joining parallel threads at
the beginning and the end of the program only once and
realize hierarchical coarse grain task parallel processing
[32, 33].

The generated OpenMP program is compiled by IBM
XL Fortran for AIX Version 7.1 and executed on IBM
RS6000 SP 604e High Node. This machine is a SMP server
having 8 Power PC 604e processors (200MHz). Each pro-
cessor has 32 Kbytes instruction / data L1 cache respec-
tively and 1 MB unified L2 cache. A size of shared main
memory is 1 GB.

In this evaluation, the best compile options, by which XL
Fortran compiler gave us minimum processing time for se-
quential and parallel execution respectively, are used. How-
ever, the other parameter tuning for OS and runtime library
isn’t performed to only evaluate the pure performance of
compilers.

4.2. Evaluation result of SPEC95FP

In this evaluation, 8 programs from SPEC95fp, such
as SWIM, TOMCATV, MGRID, HYDRO2D, SU2COR,
TURB3D, APPLU and FPPPP, are used and the perfor-
mance of OSCAR compiler and XL Fortran compiler is
compared. Compilation options for native XL Fortran com-
piler are “-O3 -qsmp=noauto -qhot -qarch=ppc -qtune=auto
-qcache=auto -qstrict” for OpenMP programs generated
by OSCAR compiler, ”-O5 -qsmp=auto -qhot -qarch=ppc
-qtune=auto -qcache=auto” for automatic parallelization
by XL Fortran compiler and ”-O5 -qhot -qarch=ppc -
qtune=auto -qcache=auto” for sequential execution. For
two programs, such as SU2COR and TURB3D, manual re-
structuring, such as inline expansion, array renaming, loop
distribution were made to avoid OSCAR compiler’s bugs
and the same restructured programs are used for sequential
execution, automatic loop parallelization and coarse grain
parallelization.

Execution time of SPEC95FP is shown in Table 1. Also,
Figure 6 shows speedup ratio of each SPEC95FP program
by 8 processors against sequential execution time. In Table
1, the sequential processing time by XL Fortran, the auto-
matic loop parallel processing time by XL Fortran using 8
processors, the shortest execution time by XL Fortran using
up to 8 processors and the coarse grain task parallel process-
ing time by OSCAR compiler using 8 processors are shown
for each SPEC95FP programs.

In SWIM on Table 1, the sequential execution time was
549.1 seconds and the shortest parallel processing time by
automatic loop parallelization by XL Fortran was 112.6 sec-
onds. OSCAR compiler using the proposed scheme was
64.4 seconds and gave us 8.53 times speedup against the
sequential time as shown in Figure 6. OSCAR compiler’s
“one time single level thread generation” with the paral-
lelism control could boost up 1.75 times the maximum per-
formance of XL Fortran though XL Fortran suffered from
large thread management overhead.

In TOMCATV and HYDRO2D, sequential execution
times for TOMCATV and HYDRO2D were 636.8 and
987.7 seconds. OSCAR compiler’s execution times were
107.2 seconds for TOMCATV and 116.7 seconds for HY-
DRO2D as shown in Table 1. The shortest execution time
by automatic loop parallelization of XL Fortran was 373.0
seconds for TOMCATV using 3 processors and 426.2 sec-
onds for HYDRO2D using 4 processors. OSCAR compiler



Table 1. Execution time(seconds) of SPEC95FP on 8 processors IBM RS6000 SP 604e High Node
Benchmark SWIM TOMCATV HYDRO2D MGRID SU2COR TURB3D APPLU FPPPP

Sequential 549.1 636.8 987.7 592.0 517.2 649.0 707.4 505.9
XLF for 8PEs 130.6 1180.5 620.7 344.8 941.9 2071.9 489.9 506.3

XLF minimum (PE) 112.6(6) 373.0(3) 426.2(4) 193.0(4) 197.9(4) 649.0(1) 489.9(8) 505.9(1)
OFC for 8PEs 64.4 107.2 116.7 93.6 120.1 197.9 423.7 506.0

*OFC: OSCAR FORTRAN COMPILER, XLF: XL Fortran, ( ): the number of PEs giving the minimum time
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Figure 6. Speedup ratio of SPEC95FP using 8 processors

gave us 5.94 times speedup for TOMCATV and 8.46 times
speedup for HYDRO2D compared with the sequential exe-
cution as shown in Figure 6 and boosted up 3.48 times for
TOMCATV and 3.65 times for HYDRO2D the maximum
performance of XL Fortran. Though TOMCATV and HY-
DRO2D consists of parallelizable loops, the proposed paral-
lelism control scheme could find parallelizable loops which
should not be processed in parallel.

In MGRID of Table 1, sequential execution time was
592.0 seconds and the shortest automatic loop parallel pro-
cessing time by XL Fortran was 193.0 seconds. OSCAR
compiler gave us 93.6 seconds, or 6.32 times speedup
against the sequential execution as shown in Figure 6. The
proposed scheme assigns all processors to the outermost
parallelism in MGRID as section 3.1 because this program
uses adjustable array and change array dimension in sub-
routines and function calls.

In SU2COR of Table 1, sequential execution time was
517.2 seconds. Though the execution time of loop paral-
lelization by XL Fortran was 197.9 seconds, OSCAR com-

piler obtained 120.1 seconds, or 4.31 times speedup against
the sequential execution as shown in Figure 6. Therefore
OSCAR compiler boosted up 1.65 times the performance
of XL Fortran. XL Fortran compiler used loop level paral-
lelism in the deepest nest level with relatively small cost.
On the contrary, the proposed scheme could find coarse
grain task parallelism in the upper layer which is the in-
side of loop block “DO 400” in subroutine LOOPS. Since
this layer hasPara = 1.90, Para ALD = 3.00, the pro-
posed scheme determines the combination of PC and PE
[2PC, 4PE] and can use coarse grain parallelism effectively.

In TURB3D of Table 1, execution time by XL Fortran
was 649.0 seconds for sequential execution time and the
shortest time by loop parallel processing using up to 8 pro-
cessors. The OpenMP code generated by OSCAR compiler
gave us 197.9 seconds, and boosted up 3.28 times the per-
formance of XL Fortran as shown in Figure 6. In TURB3D,
coarse grain parallelism was extracted andPara = 5.98
was calculated by OSCAR compiler in RB of subroutine
TURB3D. Therefore, the proposed scheme chooses the



combination of [8PC, 1PE] sincePara ≤ NPC , and gave
us better performance.

In APPLU of Table 1, sequential execution time was
707.4 seconds. Though automatic loop parallel processing
time by XL Fortran was 489.9 seconds, coarse grain paral-
lel processing time by OSCAR compiler was 423.7 seconds,
or 1.67 times speedup against sequential execution time as
shown in Figure 6. APPLU has five subroutine including
parallelizable blocks having large execution cost, namely
JACLD, JACU, RHS, BUTS and BLTS. Current OSCAR
compiler uses parallelism in subroutines JACLD, JACU and
RHS and can not parallelize subroutine BUTS and BLTS.
As the results, the proposed parallelism control scheme par-
allelizes the inside of subroutine JACLD, JACU and RHS
automatically.

Finally, in FPPPP, execution time by XL Fortran and OS-
CAR compiler was the same 506 seconds as shown in Table
1. XL Fortran compiler and OSCAR compiler found no par-
allelism in FPPPP. However, there is statement level near
fine grain parallelism in subroutine FPPPP and the paral-
lelism can be exploited by OSCAR multigrain compiler on
OSCAR chip multiprocessor[23].

5. Conclusions

This paper has proposed the automatic determination
scheme of parallel processing layer and the number of pro-
cessors to be assigned to each layer of macro-task graph
for multigrain parallel processing. The performance eval-
uation of OSCAR compiler with the proposed scheme us-
ing SPEC95FP on IBM RS6000 SP 604e High Node 8
processors SMP server showed OSCAR compiler gave us
8.53 times speedup for SWIM, 5.94 times speedup for
TOMCATV, 8.46 times speedup for HYDRO2D, 6.32 times
speedup for MGRID, 4.31 times speedup for SU2COR,
3.28 times speedup for TURB3D, 1.67 time speedup for
APPLU and 1.00 times speedup for FPPPP compared with
the sequential execution by XL Fortran for AIX Version 7.1.
Also, OpenMP coarse grain task parallel code generated by
OSCAR compiler boosted up the performance of XL For-
tran 1.75 times for SWIM, 3.48 times for TOMCATV, 3.65
times for HYDRO2D, 2.06 times for MGRID, 1.65 times
for in SU2COR, 3.28 times for TURB3D and 1.16 times
for in APPLU. From these results, it was confirmed the pro-
posed scheme could find suitable or un-suitable layer for
parallel processing and assign the suitable number of pro-
cessors to each layer of macro-task graph without perfor-
mance degradation with the increase processors.

Currently, the authors are researching on a chip
multiprocessor[23] which supports the multigrain parallel
processing and performance evaluation of the OSCAR com-
piler on larger scale multiprocessor systems.
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