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Abstract new generation parallelization techniques like multigrain
parallelization are desired to overcome the limitation of the
To improve effective performance and usability of shared loop parallelization.
memory multiprocessor systems, a multi-grain compilation ~ OSCAR FORTRAN compiler realizes multigrain paral-
scheme, which hierarchically exploits coarse grain paral- |elization [15, 16, 17] which uses coarse grain task paral-
lelism among loops, subroutines and basic blocks, con-jelism [15, 16, 17, 18, 19, 20, 21] among loops, subrou-
ventional loop parallelism and near fine grain parallelism tines and basic blocks and near fine grain parallelism[22,
among statements inside a basic block, is important. In or- 23] among statements inside a basic block in addition
der to efficiently use hierarchical parallelism of each nest to conventional loop parallelism among loop iterations.
level, or layer, in multigrain parallel processing, it is re-  Also, NANOS compiler[24, 25] based on Parafrase2 has
quired to determine how many processors or groups of pro- peen trying to exploit multi-level parallelism including
cessors should be assigned to each layer, according to thethe coarse grain parallelism by using extended OpenMP
parallelism of the layer. This paper proposes an automatic API. PROMIS compiler[26, 27] hierarchically combines
hierarchical parallelism control scheme to assign suitable Parafrase2 compiler[28] using HTG[29] and symbolic anal-

number of processors to each layer so that the parallelism ysis techniques[30] and EVE compiler for fine grain parallel
of each hierarchy can be used efficiently. Performance of theprocessing.

proposed scheme is evaluated on IBM RS6000 SMP server pgased on OSCAR compiler, Advanced Parallelizing

with 8 processors using 8 programs of SPEC95FP. Compiler (APC) project[31] was started in Fiscal Year of
2000 to improve the effective performance, ease of use and
cost performance of shared memory multiprocessor systems

1. Introduction as a part of Japanese Government Millennium Project IT21
with industries and universities.

As a parallel processing scheme on multiprocessor sys- In the coarse grain parallelization in OSCAR multigrain
tems, loop level parallelism has been widely used by auto-compiler, a sequential program is decomposed into three
matic parallelizing compilers[1, 2]. As examples of loop kinds of Macro-Tasks, namely Block of Pseudo Assignment
parallelizing research compilers, Polaris compiler[3, 4, 5] Statements (basic block), Repetition Block (loop) and Sub-
exploits loop parallelism by using inline expansion of sub- routine Block. Earliest Executable Condition analysis is ap-
routine, symbolic propagation, array privatization[4, 6] and plied to the generated macro-tasks and generates a macro-
run-time data dependence analysis[5] and SUIF compiler[7,task graph. A macro-task graph expresses coarse grain par-
8, 9] parallelizes loops with inter-procedure analysis, uni- allelism among macro-tasks. A sequential Repetition Block
modular transformation and data locality optimization [10, With a large loop body part or Subroutine Block is decom-
11]. Effective optimization of data locality is more and posed into coarse grain tasks hierarchically as shown in Fig-
more important because of the increasing gap betweerure 2. By these hierarchical definition of coarse grain tasks,
memory and processor speeds. Currently, many researche@ SCAR compiler can exploit more parallelism in a program
for data locality optimization using program restructuring in addition to the loop parallelism.
techniques such as blocking, tiling, padding and data local- However, compiler must decide which layer should be
ization, has been proceeded for high performance computparallelized and how many processors should be used for
ing and single chip multiprocessor systems [10, 12, 13, 14].the layer. This decision is very difficult for the ordinary

However, by those research efforts, the loop paralleliza- users since analysis of hierarchical parallelism and exam-
tion techniques are reaching maturity. In light of this fact, ination of the combination of hierarchical parallelism are
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Figure 1. A macro flow graph (MFG) and a
macro-task graph (MTG)
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Figure 2. Hierarchical macro-task graph
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very hard. This paper proposes an automatic determination
scheme of the number of processors to be assigned to each

program layer. ] ) i L
Figure 3. Hierarchical definition of processor

. . clusters and processor elements
2. Coarse grain task parallel processing

This section describes a coarse grain task parallel pro-
cessing scheme to decompose a sequential code to coarse
grain tasks hierarchically and to generate hierarchical@re analyzed. A macro flow graph in each layer is gener-
macro-task graph. ated as shown in Figure 1(a). In the figure, nodes repre-
The macro-tasks on a macro-task graph are assigned t§€nt macro-tasks, solid edges represent data dependencies
processor clusters(PC) or processor elements(PE) by a stati@Mong macro-tasks and dotted edges represent control flow.
or dynamic task scheduling method. A smalll circle inside a node represents a conditional branch
inside the macro-task. Though arrows of edges are omitted
in the macro-flow graph, it is assumed that the directions
are downward.

In the coarse grain task parallelization, a Fortran source  Then, compiler analyzes Earliest Executable
program is decomposed into three kinds of macro-tasks,Condition[15, 18, 19] of all macro-task to exploit
namely, Block of Pseudo Assignment statements (BPA), coarse grain parallelism among macro-tasks. This con-
or Basic Block(BB), repetition Block(RB), or an outer- dition shows parallelism among macro-tasks considering
most natural loop in the treated hierarchy, and Subroutinepoth data dependency and control dependency. Earliest
Block(SB). RBs composed of sequential loops having large executable condition of each macro-task is shown as
processing cost and SBs to which inline expansion can notmacro-task graph in Figure 1(b). In the macro-task graph,
be applied effectively, are hierarchically decomposed into nodes represent macro-tasks. A small circle inside nodes
macro-tasks as shown in Figure 2. represents conditional branches. Solid edges represent
data dependencies. Dotted edges represent extended
control dependencies. Extended control dependency means
ordinary normal control dependency and the condition on

After the generation of macro-tasks in each layer, or which a data dependent predecessor of a macro-task is not
each nest level, control and data flow among macro-tasksexecuted.

2.1. Generation of coarse grain tasks

2.2. Exploitation of coarse grain parallelism



2.3. Processor clusters and processor elements for the both conditional branch directions. However, if ex-
ecution profile can be used, the cost of macro-tasks can be

In the coarse grain parallelization, macro-tasks on hierar-estimated more precisely. The compiler estimates sequen-

chical macro-task graphs are assigned to processor clustersial execution cost of each macro-task graph by using the

or groups of processors. OSCAR compiler groups proces-hierarchical sum of inner macro-tasks.

sor elements(PE) into processor clusters(PC) logically, and

assigns macro-tasks in a macro-task graph to PCs. If a hi-3.2_ Calculation of parallelism of each layer of MTG

erarchical macro-task graph is defined inside a macro-task

as shown in Figure 2, processors are also grouped by soft-

ware logically into PCs hierarchically as shown in Figure 3. raph(MTG) is calculated by sequential execution cost and

Figure 3 shows 8 processors are grouped into 2 IOr(')cessogritical path length of each MTG. Coarse grain task paral-
clusters PCO and PC1 having 4 processor elements respeGzism Para: of MTG. is defined as

tively in the first layer. In the second layer, 4 processors

in PCO are grouped into 4 processor clusters P&@00-

3. On the other hand, PC1 is decomposed hierarchically
to 2 processor clusters PC1-0 and PC1-1 having 2 proces-
sor elements respectively in the second layer. Again, PCl—].tia

having 2 processor elements is grouped hlerarch|cally into 2the minimum number of processor clusters(PC) to execute
processor clusters PC1-1-0 and PC1-1-1 each of which ha?vITG» inCP.

one PE n the third Iayer' . Next, Para_ALD; (Para After Loop Division) is
Compiler must decide how many PCs should be assigned,__. . : 4 .
defined as total parallelism of coarse grain and loop iteration

g;e ag?all?eylfsrr:fer;i?:(izﬁiltasll(\lgiatlzzsc:i% ﬁxhp;?]'élf;;l thr:iesrarr%rél: level parallelism. In the proposed determination scheme of
P Y- P parallel processing layeff,,;, is defined as a minimum

Coarse grain task parallelism of each macro-task

Para; = Seq;/CP;

whereC P, is critical path length andeg; is a sequen-
| execution cost in MTG Therefore,[ Para;| shows

lem. task cost for loop parallelization considering overheads of
. . parallel thread fork/join and task scheduling on each tar-
3. Automatic determination of parallel pro- get multiprocessor system. This scheme assumes that par-
cessing layer allelizable RB in MTG is divided into sub RBs having

larger cost thari;,;,. However, if the cost of iteration

This section describes how to decide the number of PCsof RB is larger tharil},,;,,, the maximum number of de-
to be assigned to each layer of macro-task graph (MTG).composed tasks is the number of loop iterations of the RB.
The parallel processing in the upper layer reduces overheadd his task decomposition is considered for only calculation
for synchronization and scheduling because the upper layeof Para_ALD and real task decomposition isn’t performed
tasks usually have larger processing cost compared withat this phase. Critical path length after the temporary task
overheads. The proposed scheme allows us to use coarséecomposition is represented @¥°_ALD;. Therefore,
grain task parallelism and loop level parallelism. Para_ALD is defined by usingeq; andCP_ALD;.

3.1. Estimation of macro-task execution cost Para_ALD; = Seq;/CP_ALD,;

First, the compiler estimates processing cost of each If MT; including MTG; as a loop body is parallelizable
macro-task. Sequential cost of each macro-task graph is thdoop, it is necessary to reflect loop parallelism of MiBelf
sum of sequential cost of macro-tasks considering controlin Para_ALD; hierarchically. In this casePara-ALD;
flow. If a macro-task is a DO-loop with undefined number is the product of the innePara_ALD of MTG, and the
of loop iterations and arrays with loop index are accessednumber of task decomposition of M;Twhere the generated
in the loop, the compiler estimates the loop processing costmacro-tasks by the decomposition of lMAave larger cost
using the dimension size of arrays as the number of loopthanT;,;,. [Para_ALD;] is the total number of proces-
iterations. However, when the array appeared in the loopsors which is necessary to execute MTiGC P_ALD,; and
doesn't have any relationship with loop index or the num- shows the suitable number of processor clusters to balance
ber of iterations, the compiler assigns the all PE to the out- execution cost among processor clusters. If more processors
ermost parallelism. If conditional branches are included in than[Para_ALD;]| were assigned to the MTG, possibility
a macro-task graph, execution cost is calculated by usingof processors being idle is high.
branch probability. In this paper, since itis assumed that the Also, as the enough number of processors for using all
compiler doesn't use execution profiles, the cost of macro- parallelism in lower layers of MTG Para_max; is defined
tasks is estimated using equal branch probability of 50% as the following equation:
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Figure 4. Calculation of Para, Para_ALDPara_max

Sequential cost of MT&is 30000 and’' P,, CP_ALDs
are 12000. Thereford?aras and Para_ALD4 of MTG;
are Para; = 30000/12000 = 2.5, Para_ALDs; =
30000/12000 = 2.5 Also, since Para-max = 1 in

Para-maz; = [Para_ALD;]| X [Para-mazinner |

where Para_maxipner 1S the maximumPara_max
among macro-tasks in MTG However, if RB is a paral-

MT2-2, MT2-3 and MT2-4 of MTG and Para_-maxy; =
[Para_ALDs| x Para-mazmoere_inner = 3 X 1 = 3, the

lelizable loop, the proposed scheme assumes that the looguitable number of processors which is assigned to MTG

is divided by[Para_ALD;] and Para_-max of the paral-

is 3.

lelizable loop in MTG is calculated by considering the loop Also, parallelizable loop MT1 (DOALL) can be di-
decomposition of parallelizable loop. Practically, after the vided into 6 (60000/10000) sub macro-tasks. Therefore,
number of processor clusters is determined, the actual num-pgrq, = 1, Para_ ALD, = 6 for MT1(DOALL). Then,
ber of decomposed tasks of a parallelizable loop is deter-egch parameter in MTgs calculated. In Figure &eqo =
mined in the later stage of compilation by considering the 90100 and CP, = 60100. CP_ALD, = 30100 is
number of processor clusters or cache size. In this phasehe sum of sequential cost of MT2(SB) and MT3(BB)
calculating maximum parallelism, it is assumed that the if MT1(DOALL) is divided into 6 tasks (60000/10000).
parallelizable loop in MTGis divided by[Para_ALD;] Therefore,Parag = 90100/60100 = 1.5, Para_ALDy =
which is the number of necessary processors in MTG 90100/30100 = 3.0. For Para_maz,, macro-tasks within
As an examplepPara, Para_ALD and Para-maz in  MTG, are MT1 through MT3 and it is assumed that MT1
Figure 4 is shown. In Figure 4, “DOALL" shows paral- s divided by Para_ALDy, = 3. Para-maz, = 3 of
lelizable loop, “Seq. loop” shows un-parallelizable loop, MT2(SB) which has MTG as mentioned above. Though
namely sequential loop. Thick edges show critical path and original Para_maxz of MT1(DOALL) before task divi-
numbers within nodes are sequential execution costs. Heresion is Para_maxz = 6, Para.maxz = 6/3 = 2 in
T'min, Which is the minimum cost to realize efficient loop one of divided MT1(DOALL) since MT1(DOALL) is di-
parallel processing, is defined as 10000. To explain sim-vided by Para_ALD, = 3. Therefore, MT having max-
ply, it is assumed that there are no parallelism in the bodyimum Para_maz in MTG, is MT2 and Para_maz, =
of MT1(DOALL) in MTG,, MT2-2, MT2-3 and MT2-4 [Para_ALDqy]| x Para_mazs = 9.
in MTG, which is inner macro-task graph of MT2(SB).
Though hierarchical macro-task graphs can be generate 3. Determination scheme of PC and PE assign-
inside these macro-tasks practically, the inner macro-task ment to each layer
graphs of MT1, MT2-2, MT2-3 and MT2-4 are omitted in
this example. FirstPara, CP, Para_.ALD, CP_ALD This section describes an automatic determination
and Para-mazx are calculated from the deepest layer of @ scheme of PC and PE assignment to each layer is described

program. Since macro-task graphs within MT2-2, MT2-3 py ysing parameters obtained in section 3.2.
and MT2-4 don’t have any parallelism as mentioned above,

Para = Para_ALD = Para_max = 1 for these loops. Step 1 Since execution costs of tasks in an upper layer are
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larger than tasks in a lower layer in a program in gen-
eral, relative overheads of task scheduling and syn-
chronization are relatively small. Thus, the proposed
scheme tries to use more parallelism in an upper layer.
Let's assume the number of processors which can be
used in MTG is Nayei_pri- The number of pro-
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Npc and Npg

Npg; > MaxNpg; is used, possibility of unneces-
sary synchronization and number of overheads of task
scheduling are high since excessive processor elements
are assigned to a lower layer. To avoid such case,
Npg; = MaxNpg; is chosen in this step.

cessor clusters and processor elements are denoted aztep 3.a If all of the macro-tasks in MTGis not paralleliz-

Npc; and Npg;. Relationship betwee®ara; and
Npc; should bePara; < Np¢; to fully use coarse
grain task parallelism. Furthermore, if the number
of processor clusters is larger th&tura_ALD;, the
some processor clusters may become idle. Therefore,
the combination of Np¢;, Npg;] is defined as fol-
lows:

Para; < Npci < Para_ALD;

Npci X Npgi = Navail_PEi

If Para; = Para_ALD;, the number of proces-
sor clustersNpc; for MTG; is selected as the min-
imum number which satisfie®ara; < Npc; and
Npoi X Npgi = Nayai_pE; t0 USE coarse grain task
parallelism in MTG as much as possible. Rara; >

N avaii_pEi, the combination of processor clusters and
processor elements will b pc; = Navair_pri and
Npgi = 1.

able loops, curreniVpg; is chosen as the number of
processor clusters assigned to the MTG

Step 3.b If MaxNpg; is smallerthan currei¥pg;, Npg;

is set to MaxNpg; in Step 2. However, when
MTG,; has parallelizable loops aniipo; X Npg; <
Navai_pr; IS satisfied, possibility of lack of avail-
able processors to parallelize these loops effectively is
high. In this caseNp¢; x MaxNpg; is set to be over
the upper limit of the number of processors in MTG
MaxNpcpg; = Para.max;. MarNpcpg; means
an upper limit of total number of processors which are
assigned to MTGand its lower layer. Therefore, the
proposed scheme chooses the minimi¥ig; which
satisfiesNpc; X MaxNpg; > MaxNpcpg;. HOw-
ever, ifNPCi X MaxrNpg; > Navail_PEi» the pro-
posed scheme chooses the maximi¥p; which is
Npci X MaxNpg; < Navail_PEi-

These steps are started from highest layer in a program

Step 2 MaxNpg; is defined as the maximuara_max

to lower layers untilV 4,451_pe; = 1.

Figure 5 explains the processor assignment scheme. Fig-
among macro-tasks which are not parallelizable loop ure 5 consists of 4 hierarchical macro-task graphs, namely
in MTG,;. MaxNpg; means an upper limit of the the highest, or the first, level MTGO, the second level MTG2
number of processors which can be assigned to lowerand the third level MTG2-2 and MTG2-3. Sequential cost,
layer of MTG;, namely the upper limit ofNpg;. If CP, Para and so on are shown in Figure 5. Itis assumed that



MTG2-2 and MTG2-3 have no parallelism and no lower In this evaluation, the best compile options, by which XL

layers. ThereforePara = Para_ALD = Para_max = Fortran compiler gave us minimum processing time for se-
1. The number of available processors is eight, namely quential and parallel execution respectively, are used. How-
Navait_peo = 8. For MTG,, since Npcg = 2 from ever, the other parameter tuning for OS and runtime library

Parag = 2 < Npcg < Para_ALD = 2 in Figure 5 isn't performed to only evaluate the pure performance of
, the combination of Npco, Npgo] is [2PC, 4PE] from compilers.
Step 1. Also,MaxNpgyg = Para_maxs, = 12 since
MT1 and MT2 in MTG, aren’t parallelizable loops. There- 4.2 Evaluation result of SPEC95FP
fore, the proposed scheme understands that the lower layer
of MTG,, or MTGs, needs 4 processors, and determines
Npgo = 4from Step 2. The combinatiodNpc2, Npga]is
determined. SinNC& pro = 4, Naveir_pE2 = 4 in MTGs.
Here, the possible combinations &Y o2, Npgo] are [1,
4], [2, 2] and [4, 1]. Npce = 2 is satisfiedParas =
1.2 < Npgo < Para_ALD, = 3.0 in Figure 5 and avail-
able combinations ofN pc2, Npg2] from Step 1. Though
Npgos = 2, MaxNpgs = Para,maajg,g,g,g = 1. Thus
Npgo = 1from Step 2. By Step 3b, sincdax Npcpgs =
12 in Figure 5,Npco Which satisfiesVpoo X Max Npgs <
MaxNpcpr2 = 1218 Npco = 4, thus [Npoa, Npga] =
[4PC, 1PE]. Here, the process of assignment of PC and P
is ended SinC@\fAvainEQ,lQ,;g =1.

Therefore, the proposed scheme determin®%,
Npgo] = [2PC, 4PE], Npc2, Npgo] = [4PC, 1PE] and
[Npc2-22-3, NpE2—22-3] = [1PC, 1PE].

In this evaluation, 8 programs from SPEC95fp, such
as SWIM, TOMCATV, MGRID, HYDRO2D, SU2COR,
TURB3D, APPLU and FPPPP, are used and the perfor-
mance of OSCAR compiler and XL Fortran compiler is
compared. Compilation options for native XL Fortran com-
piler are “-O3 -gsmp=noauto -ghot -garch=ppc -qtune=auto
-qcache=auto -gstrict” for OpenMP programs generated
by OSCAR compiler, "-O5 -gsmp=auto -ghot -garch=ppc
-gtune=auto -qcache=auto” for automatic parallelization
by XL Fortran compiler and "-O5 -ghot -garch=ppc -

tune=auto -gcache=auto” for sequential execution. For
wo programs, such as SU2COR and TURB3D, manual re-
structuring, such as inline expansion, array renaming, loop
distribution were made to avoid OSCAR compiler's bugs
and the same restructured programs are used for sequential
execution, automatic loop parallelization and coarse grain
parallelization.
4. Performance evaluation Execution time of SPEC95FP is shown in Table 1. Also,
Figure 6 shows speedup ratio of each SPEC95FP program
Jay 8 processors against sequential execution time. In Table
1, the sequential processing time by XL Fortran, the auto-
matic loop parallel processing time by XL Fortran using 8
processors, the shortest execution time by XL Fortran using
up to 8 processors and the coarse grain task parallel process-
ing time by OSCAR compiler using 8 processors are shown
for each SPEC95FP programs.

In SWIM on Table 1, the sequential execution time was
549.1 seconds and the shortest parallel processing time by

In this evaluation, OSCAR compiler with the proposed automatic loop parallelization by XL Fortran was 112.6 sec-
scheme is used as a parallelizing pre-processor and genends. OSCAR compiler using the proposed scheme was
erates a coarse grain task parallel program with OpenMP64.4 seconds and gave us 8.53 times speedup against the
API. This OpenMP program uses the “one time single level sequential time as shown in Figure 6. OSCAR compiler’s
thread generation” scheme which can minimize thread gen-“one time single level thread generation” with the paral-
eration overhead by forking and joining parallel threads at lelism control could boost up 1.75 times the maximum per-
the beginning and the end of the program only once andformance of XL Fortran though XL Fortran suffered from
realize hierarchical coarse grain task parallel processinglarge thread management overhead.

[32, 33]. In TOMCATV and HYDROZ2D, sequential execution

The generated OpenMP program is compiled by IBM times for TOMCATV and HYDRO2D were 636.8 and
XL Fortran for AIX Version 7.1 and executed on IBM 987.7 seconds. OSCAR compiler's execution times were
RS6000 SP 604e High Node. This machine is a SMP serverl07.2 seconds for TOMCATV and 116.7 seconds for HY-
having 8 Power PC 604e processors (200MHz). Each pro-DRO2D as shown in Table 1. The shortest execution time
cessor has 32 Kbytes instruction / data L1 cache respechy automatic loop parallelization of XL Fortran was 373.0
tively and 1 MB unified L2 cache. A size of shared main seconds for TOMCATYV using 3 processors and 426.2 sec-
memory is 1 GB. onds for HYDRO2D using 4 processors. OSCAR compiler

This section evaluates the performance of the propose
parallelism control scheme for multigrain parallel process-
ing on IBM RS6000 SP 604e High Node 8 processors SMP
server. This scheme was implemented in OSCAR multi-
grain parallelizing compiler.

4.1. Evaluation environment



Table 1. Execution time(seconds) of SPEC95FP on 8 processors IBM RS6000 SP 604e High Node

Benchmark | swiM [ TOMCATV | HYDRO2D | MGRID | SU2COR | TURB3D | APPLU | FPPPP
Sequential 549.1 636.8 987.7 592.0 517.2 649.0 707.4 505.9
XLF for 8PEs 130.6 1180.5 620.7 344.8 941.9 2071.9 489.9 506.3
XLF minimum (PE) | 112.6(6)| 373.0(3) | 426.2(4) | 193.0(4)| 197.9(4)| 649.0(1)| 489.9(8)| 505.9(1)
OFC for 8PEs 64.4 107.2 116.7 93.6 120.1 197.9 423.7 506.0

*OFC: OSCAR FORTRAN COMPILER, XLF: XL Fortran, (): the number of PEs giving the minimum time
giving
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Figure 6. Speedup ratio of SPEC95FP using 8 processors

gave us 5.94 times speedup for TOMCATV and 8.46 times piler obtained 120.1 seconds, or 4.31 times speedup against
speedup for HYDRO2D compared with the sequential exe- the sequential execution as shown in Figure 6. Therefore
cution as shown in Figure 6 and boosted up 3.48 times for OSCAR compiler boosted up 1.65 times the performance
TOMCATV and 3.65 times for HYDRO2D the maximum of XL Fortran. XL Fortran compiler used loop level paral-
performance of XL Fortran. Though TOMCATV and HY- lelism in the deepest nest level with relatively small cost.
DRO2D consists of parallelizable loops, the proposed paral-On the contrary, the proposed scheme could find coarse
lelism control scheme could find parallelizable loops which grain task parallelism in the upper layer which is the in-
should not be processed in parallel. side of loop block “DO 400" in subroutine LOOPS. Since

In MGRID of Table 1, sequential execution time was this layer hasPara = 1.90, Para-ALD = 3.00, the pro-
592.0 seconds and the shortest automatic loop parallel proposed scheme determines the combination of PC and PE
cessing time by XL Fortran was 193.0 seconds. OSCAR [2PC, 4PE] and can use coarse grain parallelism effectively.
compiler gave us 93.6 seconds, or 6.32 times speedup In TURB3D of Table 1, execution time by XL Fortran
against the sequential execution as shown in Figure 6. Thewas 649.0 seconds for sequential execution time and the
proposed scheme assigns all processors to the outermoshortest time by loop parallel processing using up to 8 pro-
parallelism in MGRID as section 3.1 because this program cessors. The OpenMP code generated by OSCAR compiler
uses adjustable array and change array dimension in subgave us 197.9 seconds, and boosted up 3.28 times the per-
routines and function calls. formance of XL Fortran as shown in Figure 6. In TURB3D,

In SU2COR of Table 1, sequential execution time was coarse grain parallelism was extracted dhgra = 5.98
517.2 seconds. Though the execution time of loop paral-was calculated by OSCAR compiler in RB of subroutine
lelization by XL Fortran was 197.9 seconds, OSCAR com- TURB3D. Therefore, the proposed scheme chooses the
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