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Abstract. In multiprocessor systems, the gap between peak and e�ec-
tive performance has getting larger. To cope with this performance gap,
it is important to use multigrain parallelism in addition to ordinary loop
level parallelism. Also, e�ective use of memory hierarchy is important
for the performance improvement of multiprocessor systems because the
speed gap between processors and memories is getting larger.

This paper describes coarse grain task parallel processing that uses par-
allelism among macro-tasks like loops and subroutines considering cache
optimization using data localization scheme. The proposed scheme is
implemented on OSCAR automatic multigrain parallelizing compiler.
OSCAR compiler generates OpenMP FORTRAN program realizing the
proposed scheme from an ordinary FORTRAN77 program. Its perfor-
mance is evaluated on IBM RS6000 SP 604e High Node 8 processors
SMP machine. In the evaluation, OSCAR compiler gives us up to 1.3
times speedup on 1PE, 4.7 times speedup on 4PE and 8.8 times speedup
on 8PE compared with a sequential processing time.

1 Introduction

Shared memory multiprocessor architecture is widely used from a single chip
multiprocessor to a high performance computer. The di�erence between peak
performance and e�ective performance has been getting larger with the increase
of the number of processors. Moreover, the speed gap between processors and
memories is getting signi�cant. Therefore, optimal use of hierarchical memories
and task parallelism are very important for the improvement of e�ective per-
formance of multiprocessor systems. However, the optimization requires high
expertise for the parallel processing and the data distribution to the hierarchi-
cal memories, scheduling and so on. Considering the above facts, to improve
e�ective performance and ease of use, an automatic parallelizing compiler real-
izing coarse grain parallel processing in addition to loop parallel processing with
memory hierarchy optimization is required.



As automatic parallelizing compilers, loop parallelizing compilers are very
popular for SMPs currently available on the market.

Also, advanced research compilers, such as Polaris[1] exploiting loop paral-
lelism by using inline expansion of subroutine, symbolic propagation, array pri-
vatization, range test and run-time data dependence analysis [2, 3] and SUIF[4]
which parallelizes loop by using inter-procedure analysis unimodular transfor-
mation and data locality optimization have been developed. [5{7].

The data locality optimization is essential to cope with increasing speed gap
between processors and memories. Many researches for data locality optimiza-
tion using program restructuring techniques such as blocking, tiling, padding
and data localization have been performed for high performance computers and
multiprocessor systems [8{10].

In spite of those e�orts, the gap between peak and e�ective performance
has been getting larger with increase of the number of processors. Therefore,
the exploitation of multigrain parallelism in addition to the loop parallelism is
required. Multigrain parallel processing, which has been realized in OSCAR com-
piler, uses not only loop level parallelism but also coarse grain task parallelism
among basic blocks, loops and subroutines and near �ne grain task parallelism
among statements. Based on the OSCAR multigrain parallelizing techniques,
\Advanced Parallelizing Compiler(APC)" project[11] has been started since the
autumn in 2000 as a part of Japanese Government Millennium project IT21. A
target of this project is to develop a practical multigrain parallelizing compiler
in cooperation with Government, Industry and Academia.

Also, PROMIS compiler[12] aims at integration of loop and instruction level
parallelism using a common intermediate representation. NANOS compiler[13]
exploits the multi level parallelism using extended OpenMP API.

This paper describes coarse grain task parallel processing considering cache
optimization using data localization[10] in order to enhance the performance of
coarse grain task parallel processing. The proposed scheme is implemented on
OSCAR automatic multigrain parallelizing compiler. OSCAR compiler gener-
ates a parallelized FORTRAN program using OpenMP API[14, 15], which is a
standard API for shared memory multiprocessor. OSCAR compiler realizes hi-
erarchical coarse grain task parallel processing with cache optimization without
special extension of OpenMP [16].

The rest of this paper is organized as follows. In section 2, coarse grain task
parallel processing is described. Section 3 proposes cache optimization scheme
for coarse grain task parallel processing. Section 4 describes the overview of
OSCAR compiler. The e�ectiveness of the proposed schemes is evaluated on
IBM RS6000 604e High Node using several benchmarks in SPEC95fp in section
5. Finally, conclusions are shown in section 6.

2 Coarse Grain Task Parallel Processing

This section describes coarse grain task parallel processing, which is a part of
multigrain parallel processing. Coarse grain task parallel processing uses paral-



lelism among three kinds of macro-tasks or coarse grain tasks, namely block of
pseudo assignment statements(BPA) repetition block(RB), subroutine block(SB).
The compiler decomposes a source program into the macro-tasks. Also, it hierar-
chically generates macro-tasks inside inside of a sequential repetition block and
a subroutine block.

Coarse grain task parallel processing in OSCAR compiler is performed in the
following steps.

1. Decomposition of a source program into macro-tasks.
2. Analysis of data dependencies and control ows among macro-tasks and

generation of Macro Flow Graph (MFG) that represents them.
3. Analysis of Earliest Execution Condition(EEC) that represents the condition

on which macro-task may start its execution earliest and generation of Macro
Task Graph (MTG).

4. Scheduling macro-tasks to processors or processor groups. When a macro-
task graph has no conditional dependencies, macro-tasks are scheduled to
processors or processor clusters at a compiler time and parallelized code
is generated for each processor according to the scheduling results. When
macro-task graph contains control dependencies, compiler generates dynamic
scheduling routine to assign macro-tasks to processors or processor clusters
at a run time and embeds the dynamic scheduling routine to the gener-
ated parallelized code with macro-task code in order to cope with runtime
uncertainties.

2.1 Generation of macro-tasks

The compiler �rst generates macro-tasks namely block of pseudo assignment
statements(similar to basic blocks), repetition blocks and subroutine blocks from
a source program. Furthermore, compiler hierarchically decomposes the body of
sequential repetition block and a subroutine block.

If a repetition block(RB) is a parallelizable loop, it is divided into partial
loops by loop iteration direction taking into consideration the number of proces-
sors, cache size and so on. These partial loops are de�ned as di�erent macro-tasks
that are executed in parallel.

2.2 Generation of macro ow graph

After generation of macro-tasks, the data dependency and control ow among a
macro-tasks for each layer are analyzed hierarchically, and represented by macro
ow graph(MFG) as shown in Fig.1(a).

In the Fig. 1(a), nodes represent macro-tasks, solid edges represent data
dependencies among macro-tasks and dotted edges represent control ow. A
small circle inside a node represents a conditional branch inside a macro-task.
Though arrows of edges are omitted in the macro ow graph, it is assumed that
the directions are downward.
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Fig. 1. Macro Flow Graph and Macro Task Graph

2.3 Generation of macro task graph

To extract parallelism among macro-tasks from macro ow graph, compiler anal-
yses Earliest Executable Condition of each macro-task. Earliest Executable Con-
dition represents the conditions on which macro-task may begin its execution
earliest.

Earliest execution condition of macro-task is represented in macro task Graph(MTG)
as shown in Fig. 1(b).

In macro task graph, nodes represent macro-tasks. A small circle inside nodes
represents conditional branches. Solid edges represent data dependencies. Dot-
ted edges represent extended control dependencies. Extended control dependency
means ordinary normal control dependency and the condition on which a data
dependence predecessor macro-task is not executed. Solid and dotted arcs con-
necting solid and dotted edges have two di�erent meanings. A solid arc represents
that edges connected by the arc are in AND relationship. A dotted arc represents
that edges connected by the arc are in OR relation ship. In macro task graph,
though arrows of edges are omitted assuming downward, an edge having arrow
represents original control ow edges, or branch direction in macro ow graph.



2.4 Macro-Task Scheduling

In the coarse grain task parallel processing, static scheduling and dynamic schedul-
ing are used for assignment of macro-tasks to processors or processor clusters.
A suitable scheduling scheme is selected considering the shape of macro task
graph and target machine parameters such as the synchronization overhead,
data transfer overhead and so on.

Static scheduling If a macro task graph has only data dependencies and is de-
terministic, static scheduling is selected. In the static scheduling, assignment of
macro-tasks to processors or processor clusters is determined at compile time by
a scheduler in the compiler. Static scheduling is useful since it allows us to min-
imize data transfer and synchronization overhead without run-time scheduling
overhead.

Dynamic scheduling If a macro task graph has control dependencies, dy-
namic scheduling is selected to cope with runtime uncertainties like conditional
branches. Scheduling routine for dynamic scheduling are generated and embed-
ded into a parallelized program with macro-task code by compiler to eliminate
the overhead for runtime thread scheduling.

Though dynamic scheduling overhead is generally large, the dynamic schedul-
ing overhead in OSCAR compiler is relatively small since it is used for the coarse
grain tasks with relatively large processing time.

There are two types of dynamic scheduling; Centralized dynamic scheduling
and Distributed dynamic scheduling. The centralized dynamic scheduling routine
is executed by one processor speci�ed as the scheduler and other processors
execute only macro-task code according to scheduling result. In the distributed
dynamic scheduling, scheduling routines are distributed to the all processors with
exclusive accesses to scheduling information such as ready task queues, earliest
exclusive conditions and so on.

3 Cache Optimization For Coarse Grain Task Parallel

Processing

This section describes the scheme to use cache e�ectively in order to enhance
the performance of coarse grain task parallel processing.

If macro-tasks that access the same data are executed on the same processor
as consecutively as possible, data can be transfered among these macro-tasks
using fast memory near a processor such as cache, distributed shared memory
or local memory.

To realize such task assignments, the data localization scheme[10] has been
proposed.

In this paper, this data localization scheme is extended to use cache e�ectively
on the shared memory machine. A task scheduler for coarse grain task parallel



processing is extended to assign macro-tasks that access the same data to be
executed as consecutively as possible on the same processor considering task
parallelism.

A simple example of the proposed scheme is shown in Fig. 2. In the macro task
graph in Fig. 2(b), macro-task 1 and 6 access the same data. However, execution
order in the original program is the increasing order of the task number as
shown in Macro Flow Graph in Fig.2(a). Therefore, macro-task 2, 3, 4 and 5 are
executed after macro-task 1 prior to the macro-task 6.In this case, shared data
accessed by macro-task 1 may be forced out of cache by macro-task 2 through 5
before macro-task 6 is executed. However, because macro-task 6 depends on only
macro-task 1 and 5, macro-task 6 can be executed immediately after macro-task
1 and macro-task 6 can access data in the cache.
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Fig. 2. An example of cache optimization for a macro task graph

The proposed cache optimization scheme using data localization mainly con-
sists of two techniques; loop aligned decomposition and partial static task as-
signment.

3.1 Loop Aligned Decomposition

To avoid cache misses, Loop Aligned Decomposition(LAD)[17] is applied to loops
that use large size of data. LAD divides a loop into partial loops with the smaller



number of iterations so that data size used in the divided loops is smaller than
cache size.

The partial loops are treated as coarse grain tasks. Next, the partial loops
connected by data dependence edge on the macro task graph are grouped into
\Data Localization Group(DLG)" [10]. The partial loops, or tasks, inside a DLG
are assigned to the same processor by static or dynamic scheduler.

In macro-task graph in Fig. 3(a), it is assumed that macro-tasks 2, 3 and
7 are parallel loops and they access the same data and its size exceeds cache
size. In this example, these loops are divided into four partial loops by LAD.
For example, macro-task 2 in Fig. 3(a) is divided into macro-task 2 through 5 in
Fig. 3(b). In this case, the Data Localization Groups of macro-tasks with large
share data are respectively (2, 6, 13), (3, 7, 14), (4, 8, 15), (5, 9, 16) in Fig.
3(b). In Fig. 3(b), the light gray band shows DLG. For example, DLG0 contains
macro-tasks 2, 6 and 13 and DLG1 contains macro-tasks 3, 7 and 14 and so on.

1

2

3 4 56

7

(a) befor loop decomposition

1

2 45

6 7 8910 1112

1314 15 16

3

DLG0DLG1 DLG2 DLG3

(b) after loop aligned decomposition

Fig. 3. Example of Loop Align Decomposition

3.2 Partial Static Assignment

As mentioned above, in the proposed cache optimization scheme, a task scheduler
for coarse grain task parallel processing is extended to assign macro-tasks inside
DLG to be executed on same processor consecutively.

This extension is called as partial static assignment[17] and it can be applied
to both centralized and distributed dynamic scheduling. It is implemented in
distributed dynamic scheduling routine at present in OSCAR compiler. This
extended distributed dynamic scheduling routine with partial static assignment
for cache is summarized as follows.

1 Execute its distributed scheduling routine to determine the macro-task to be
executed next. This scheduler assigns, or acquires, macro-tasks outside DLG
to own processor from the ready macro-task queue. At this time, if there is
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no macro-task outside DLG in the ready macro-task queue, scheduler assigns
macro-tasks inside DLG.

2 Execute the assigned macro-task. If an executed macro-task is the special
macro-task which represents the end of the macro task graph, the execution
of this hierarchy of the macro task graph is �nished. Otherwise goto step3.

3 If the last executed macro-task is inside the DLG, goto 3.1, otherwise goto
3.2.

3.1 Assign macro-task in the same DLG from ready queue. If there is no
macro-task inside the same DLG, assign macro-task outside DLG. If
there is no ready macro-task outside DLG, assign macro-task in another
DLG.

3.2 Assign macro-task outside DLG. If there is no such macro-task, assign
macro-task inside the DLG.

4 Goto 2.

Fig. 4 shows a schedule when the proposed partial static task assignment for
cache optimization is applied to macro task graph in Fig. 3(b) for a single pro-
cessor. As described above, macro-tasks are executed in the increasing order of
the node number on the macro task graph in original program. Fig. 4 shows that
macro-tasks in the same DLG are executed consecutively to use cache e�ectively
by using partial static assignment. As shown in Fig. 4, macro-task 3, 7 and 14
in DLG1 and macro-task 4, 8 and 15 in DLG2 are executed consecutively.

4 OSCAR Multigrain Parallelizing Compiler

Fig. 5 shows the overview of OSCAR compiler. It consists of frontend, middle
path and backends. OSCAR compiler has various backends for di�erent tar-
get multiprocessor systems like OSCAR type distributed/shared memory single
chip multiprocessor system[18], UltraSparc, MPI-2 and OpenMP. OpenMP back-
end used in this paper generates the parallelized FORTRAN source code with
OpenMP directives.

In OpenMP backend, OSCAR compiler is used as a preprocessor that trans-
forms an ordinary sequential FORTRAN program to OpenMP FORTRAN pro-
gram for shared memory multiprocessor system.
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4.1 Realization of the Proposed Scheme Using OpenMP

This section describes the program generated by OSCAR compiler which real-
izes the proposed scheme using OpenMP API. A code image for eight threads
generated by OpenMP backend for a macro task graph in Fig. 6(a) is shown in
Fig. 6(b).

In this �gure, eight threads are generated by OpenMP PARALLEL SEC-
TIONS directive and these generated threads join only once at the end of pro-
gram based on \one time single level thread generation"[16].

In this example, static scheduling is applied to the �rst layer. In this case,
the eight threads are grouped into two thread groups, each of which has four
threads. Macro-task 1 1 and 1 3 are statically assigned to thread group0 and
macro-task 1 2 is assigned to thread group1. When static scheduling is applied,
compiler generates di�erent codes into each OpenMP SECTION for each thread
according to the static scheduling result. The assigned macro-tasks to thread
groups are processed in parallel by threads inside the thread group by using
static scheduling or dynamic scheduling hierarchically.

Macro-task 1 2 in Fig. 6 assigned onto thread group1 is processed by four
threads in parallel using the centralized dynamic scheduling. In this example,
thread 4 works as the centralized scheduler and thread 5 to 7 execute sub macro-
tasks 1 2 1, 1 2 2 and so on, which generated by decomposition of the inside of
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macro-task 1 2, according to the dynamic scheduling result of the centralized
scheduler.

Macro-task 1 3 shows an example of distributed dynamic scheduling. In this
case, macro-task 1 3 is decomposed into sub macro-tasks and assigned thread
group0 0 and 0 1 de�ned inside thread group0. In this example, the thread
group0 0 and 0 1 has two threads. The distributed dynamic scheduling routines
that perform partial static task assignment for cache optimization are embedded
into before each macro-task code as shown in Fig. 6. Furthermore, Fig. 6 shows
macro-task 1 3 1, 1 3 2 and so on are processed by two threads inside thread
group0 0, or 0 1.

5 Performance Evaluation

This section describes the result of the performance evaluation of the proposed
scheme on a commercial SMP machine, IBM RS6000 SP 604e High Node. The
generated OpenMP FORTRAN programs by OSCAR compiler are compiled
by IBM XL FORTRAN compiler version 6.1 for RS6000. RS6000 used in this
evaluation has eight 200MHz PowerPCs each of which has 32KB L1 instruction
and data cache respectively, 2MB uni�ed L2 cache per two processors and 512MB
main memory. Programs used for this evaluation are tomcatv, swim and mgrid
in SPEC95fp benchmarks.

5.1 Tomcatv

Tomcatv is a vectorized mesh generation program. The convergence loop in main
routine spends nearly 99% of execution time. There are several loops inside
the body of convergence loop and these loops access shared data which are
larger than cache size. Therefore cache optimization is applied these loops. The
obtained speedups against sequential processing are shown in Fig. 7.

The sequential execution time of tomcatv was measured with XL FOR-
TRAN compiler option \-O3 -qhot -qmaxmem=-1 -qarch=auto -qtune=auto
-qcach=auto"and it was 693 seconds. The execution times of automatic loop
parallelization by XL FORTRAN compiler were 370 seconds for 2PEs, 233 sec-
onds for 4PEs and 177 seconds for 8PEs. When OSCAR compiler was used as
a preprocessor of XL FORTRAN compiler, the execution times were reduced
to 523 seconds for 1PE, 275 seconds for 2PEs, 147 seconds for 4PEs and 86.8
seconds for 8PEs.

5.2 Swim

Swim solves the system of shallow water equation using di�erence approxima-
tions and has large loop level parallelism. The most execution time is spent in
three subroutines, namely \calc1", \calc2", \calc3" called from main loop. These
subroutines contain several loops which access larger data than cache size. There-
fore, coarse grain task parallel processing with cache optimization is applied to
these loops inside subroutines. The evaluation results are shown in Fig. 8
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When swim was compiled by only XL FORTRAN compiler for single proces-
sor, the sequential execution time was 521 seconds and the execution times were
277 seconds for 2PE, 183 seconds for 4PE, 169 seconds for 8PE by using XLF
FORTRAN compiler automatic parallelization. The execution times of OSCAR
compiler were 443 seconds for 1PE, 221 seconds for 2PEs, 113 seconds for 4PEs
and 60.2 seconds for 8PEs.

5.3 Mgrid

Mgrid is the 3 dimensional multi-grid solver. About 70% of execution time is
spent in subroutine \resid" and \psinv". These subroutines contain loops which
access larger data than the cache size. Therefore, the proposed coarse grain task
parallel processing with cache optimization is applied inside these subroutines.
Fig. 9 shows the speedups against sequential processing by XL FORTRAN com-
piler.

Mgrid by XL FORTRAN compiler needed 676 seconds for a single processor.
The execution times of OSCAR compiler were 637 seconds for 1PE,352 seconds
for 2PEs, 174 seconds on 4PE and 94.5 seconds on 8PEs in Mgrid. Scalable
speedups was obtained and it was shown that OSCAR compiler gave us lager
speedup than XL FORTRAN compiler which spent 552 seconds for 2PEs, 594
seconds for 4PEs and 722 seconds for 8PEs.

6 Conclusions

This paper has proposed coarse grain task parallel processing with cache opti-
mization to enhance the e�ective performance of shared memory multiprocessor



1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8
sp

ee
du

p

number of processos

XLF
OSCAR

Fig. 8. Speedup of swim

systems. The proposed schemes are implemented in OSCAR automatic multi-
grain parallelizing compiler. OSCAR compiler generates parallelizing code using
ordinary OpenMP API for portability.

In the performance evaluation, several programs in SPEC95fp were paral-
lelized by OSCAR compiler and were run on the commercial shared memory
multiprocessor IBM RS 6000 SP 604e High Node. Evaluation results show that
coarse grain task parallel processing with cache optimization gave us speedups
for tomcatv, swim and mgrid on 8 processors against 8.0, 8.6 and 7.2 respec-
tively. Furthermore, compared with XL FORTRAN loop parallelizing compiler
2.0, 2.8 and 7.6 times speedups were obtained.

A part of this research has been supported by METI/NEDO Millennium
project IT21 \Advanced Parallelizing Compiler".
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