
Parallelizing Compiler Framework and API for
Power Reduction and Software Productivity of

Real-time Heterogeneous Multicores

Akihiro Hayashi, Yasutaka Wada, Takeshi Watanabe, Takeshi Sekiguchi,
Masayoshi Mase, Jun Shirako, Keiji Kimura, and Hironori Kasahara

Department of Computer Science and Engineering, Waseda University,
3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan,

{ahayashi,yasutaka,watanabe,
takeshi,mase,shirako,kimura}@kasahara.cs.waseda.ac.jp,

kasahara@waseda.jp,
http://www.kasahara.cs.waseda.ac.jp/

Abstract. Heterogeneous multicores have been attracting much atten-
tion to attain high performance keeping power consumption low in wide
spread of areas. However, heterogeneous multicores force programmers
very difficult programming. The long application program development
period lowers product competitiveness. In order to overcome such a sit-
uation, this paper proposes a compilation framework which bridges a
gap between programmers and heterogeneous multicores. In particular,
this paper describes the compilation framework based on OSCAR com-
piler. It realizes coarse grain task parallel processing, data transfer using
a DMA controller, power reduction control from user programs with
DVFS and clock gating on various heterogeneous multicores from dif-
ferent vendors. This paper also evaluates processing performance and
the power reduction by the proposed framework on a newly developed
15 core heterogeneous multicore chip named RP-X integrating 8 gen-
eral purpose processor cores and 3 types of accelerator cores which was
developed by Renesas Electronics, Hitachi, Tokyo Institute of Technol-
ogy and Waseda University. The framework attains speedups up to 32x
for an optical flow program with eight general purpose processor cores
and four DRP(Dynamically Reconfigurable Processor) accelerator cores
against sequential execution by a single processor core and 80% of power
reduction for the real-time AAC encoding.

Keywords: Heterogeneous Multicore, Parallelizing Compiler, API

1 Introduction

There has been a growing interest in heterogeneous multicores which integrate
special purpose accelerator cores in addition to general purpose processor cores
on a chip. One of the reason for this trend is because heterogeneous multi-
cores allow us to attain high performance with low frequency and low power

2

consumption. Various semiconductor vendors have released heterogeneous mul-
ticores such as CELL BE[15], NaviEngine[11], Uniphier[13], GPGPU[9], RP1[20]
and RP-X[21].

However, the softwares for heterogeneous multicores generally require large
development efforts such as the decomposition of a program into tasks, the im-
plementation of accelerator code, the scheduling of the tasks onto general pur-
pose processors and accelerators, and the insertion of synchronization and data
transfer codes. These software development periods are required even for expert
programmers.

Recent many studies have tried to handle on this software development issue.
For example, NVIDIA and Khronos Group introduced CUDA[3] and OpenCL[7].
Also, PGI accelerator compiler[19] and HMPP[2] provides a high-level program-
ming model for accelerators. However, these works focus on facilitating the de-
velopment for accelerators. Programmers need to distribute tasks among general
purpose processors and accelerator cores by hand. In terms of workload distribu-
tion, Qilin[10] automatically decides which task should be executed on a general
purpose processor or an accelerator at runtime. However, programmers still need
to parallelize a program by hand. While these works rely on programmers’ skills,
CellSs[1] performs an automatic parallelization of a subset of sequential C pro-
gram with data flow annotations on CELL BE. CellSs automatically schedules
tasks onto processor elements at runtime. The task scheduler of CellSs, how-
ever, is implemented as a homogeneous task scheduler, namely the scheduler is
executed on PPE and just distributes tasks among SPEs.

In the light of above facts, further explorations are needed since it is the
responsibility of programmers to parallelize a program and to optimize a data
transfer and a power consumption for heterogeneous multicores. One of our goals
is to realize a fully automatic parallelization of a sequential C or Fortran77 pro-
gram for heterogeneous multicores. We have been developing OSCAR paralleling
compiler for homogeneous multicores such as SMP servers and real-time multi-
cores[5, 8, 12]. These works realize automatic parallelization of programs written
in Fortran77 or Parallelizable C, a kind of C programming style for parallelizing
compiler, and power reduction with the support of both OSCAR compiler and
OSCAR API(Application Program Interface)[6]. This paper describes an auto-
matic parallelization for a real heterogeneous multicore chip. Though prior work
demonstrates the performance of automatic parallelization of a Fortran program
on a heterogeneous multicore simulator[18], this paper makes the following con-
tributions:

– A proposal of an accelerator-independent and general purpose compilation
framework including a compilation framework using OSCAR compiler and
an extention of OSCAR API[8] for heterogeneous multicore

– An evaluation of a processing performance and a power efficiency using 3 Par-
allelizable C applications on the newly developed RP-X multicore chip[21].

In order to build an accelerator-independent and a general-purpose compila-
tion framework, we take care of utilizing existing tool chains such as accelerator
compilers and hand-tuned libraries for accelerators. Therefore, this paper firstly

3

Fig. 1. OSCAR API Applicable heterogeneous multicore architecture

defines an general-purpose architecture and compilation flow in Section 2. Sec-
ondly, we defines distinct responsibilities among these tool chains and interface
among them by extending OSCAR API in Section 3.

2 OSCAR API Applicable Heterogeneous Multicore
Architecture and Overview of the Compilation flow

This section defines both target architecture and compilation flow of the pro-
posed framework. In this paper, define a term “controller” as a general purpose
processor that controls an accelerator, that is to say, it performs part of coarse-
grain task and data transfers from/to the accelerator and offload the task to the
accelerator.

2.1 OSCAR API Applicable Heterogeneous Multicore Architecture

This section defines “OSCAR API Applicable Heterogeneous Multicore Archi-
tecture” shown in Fig.1.. The architecture is composed of general purpose pro-
cessors, accelerators(ACCs), direct memory access controller(DMAC), on-chip
centralized shared memory(CSM), and off-chip CSM. Some accelerators may
have its own controller, or general purpose processor. Both general purpose pro-
cessors and accelerators with controller may have a local data memory (LDM),
a distributed shared memory (DSM), a data transfer unit (DTU), a frequency
voltage control registers (FVR), an instruction cache memory and a data cache
memory. The local data memory keeps private data. The distributed shared
memory is a dual port memory, which enables point-to-point direct data transfer
and low-latency synchronization among processors. Each existing heterogeneous
multicore can be seen such as CELL BE[15], MP211[17] and RP1[20] as a subset

4

Fig. 2. Compilation flow of the proposed framework

of OSCAR API applicable architecture. Thus, OSCAR API can support such
chips and a subset of OSCAR API applicable heterogeneous multicore.

2.2 Compilation Flow

Fig.2. shows the compilation flow of the proposed OSCAR heterogeneous com-
piler framework. The input is a sequential program written in Parallelizable C or
Fortran77 and the output is an executable for a target heterogeneous multicore.
The following describes each step in the proposed compilation flow.

Step 1: Accelerator compilers or programmers insert hint directives immedi-
ately before loops or function calls , which can be executed on the accelera-
tor, in a sequential program.

Step 2: OSCAR compiler parallelizes the source program considering with hint
directives: the compiler schedules coarse-grain tasks[18] to processor or ac-
celerator cores and apply the low power control[8]. Then, the compiler gener-
ates a parallelized C or Fortran program for general purpose processors and
accelerator cores by using OSCAR API. At that time, the compiler gener-
ates C source codes as separate files for accelerator cores. Each file includes
functions to be executed on accelerators when a function is scheduled onto
accelerator by the compiler.

Step 3: Each accelerator compiler generates objects for its own target acceler-
ator. Note that each accelerator compiler also generates both data transfer
code between controller and accelerator, and accelerator invocation code.

Step 4: An API analyzer prepared for each heterogeneous multicore translates
OSCAR APIs into runtime library calls, such as pthread library. Afterwards,
an ordinary sequential compiler for each processor from each vender gener-
ates an executable.

It is important that the framework also allows programmers to utilize existing
hand-tuned libraries for the specific accelerator. This paper defines a term “hand-
tuned library” as an accelerator library which includes computation body on
the specific accelerator and both data transfer code between general purpose
processors and accelerators and accelerator invocation code.

5

int main() {

 int i, x[N], var1 = 0;

 /* loop1 */

 for (i = 0; i < N; i++) { x[i] = i; }

 /* loop2 */

#pragma oscar_hint accelerator_task (ACCa) \

 cycle(1000,((OSCAR_DMAC()))) workmem(OSCAR_LDM(), 10)

 for (i = 0; i < N; i++) { x[i]++; }

 /* function3 */

#pragma oscar_hint accelerator_task (ACCb) \

 cycle(100, ((OSCAR_DTU()))) in(var1,x[2:11]) out(x[2:11])

 call_FFT(var1, x);

 return 0;

}

void call_FFT(int var, int* x) {

#pragma oscar_comment "XXXXX"

 FFT(var, x); //hand-tuned library call

}

Fig. 3. Example of source code with hint directives

3 A Compiler Framework for Heterogeneous Multicores

This section describes the detail of OSCAR compiler and OSCAR API.

3.1 Hint Directives for OSCAR Compiler

This subsection explains the hint directives for OSCAR compiler that advice OS-
CAR compiler which parts of the program can be executed by which accelerator
core.

Fig.3. shows an example code. As shown in Fig.3., there are two types of hint
directives inserted to a sequential C program, namely “accelerator task” and “os-
car comment”. In this example, there are “#pragma oscar hint accelerator task
(ACCa) cycle(1000, ((OSCAR DMAC()))) workmem(OSCAR LDM(), 10)” and
“#pragma oscar hint accelerator task (ACCb) cycle(100, ((OSCAR DTU())))
in(var1, x[2:11]) out(x[2:11])”. In these directives, accelerators represented as
“ACCa” and “ACCb” is able to execute a loop named “loop2” and a function
named “function3”, respectively. The hint directive for “loop2” specifies that
“loop2” requires 1000 cycles including the cost of a data transfer performed by
DMAC if the loop is processed by “ACCa”. This directive also specifies that 10
bytes in local data memory are required in order to control “ACCa”. Similarly,
for “function3”, it takes 100 cycles including the cost of a data transfer by DTU.
Input variables are scalar variable “var1” and array variable “x” ranging 2 to
11. Also, output variable is array variable “x”. “oscar comment” directive is in-
serted so that either programmers or accelerator compilers give a comment to
accelerator compiler through OSCAR compiler.

3.2 OSCAR Parallelizing Compiler

This subsection describes OSCAR compiler.

6

T
im

e

MT1

for CPU

MT2

for CPU

MT3

for CPU

MT4

for ACC
MT5

for ACC

MT6

for CPU

MT7

for ACC

MT8

for CPU

MT9

for ACC

MT10

for ACC

MT11

for CPU

MT12

for ACC

MT13

for ACC

EMT

MT1

MT2

MT8

MT11

MT3

MT6

MT13

MT4
MT5
MT7

MT9

MT10

MT12

MT13

CPU0 CPU1 CPU2
+

ACCa

Fig. 4. An Example of Task Scheduling Result

First of all, the compiler decomposes a program into coarse grain tasks,
namely macro-tasks (MTs), such as basic block (BPA), loop (RB), and func-
tion call or subroutine call (SB). Then, the compiler analyzes both the control
flow and the data dependencies among MTs and represents them as a macro-
flow-graph (MFG). Next, the compiler applies the earliest executable condition
analysis, which can exploit parallelism among MTs associated with both the con-
trol dependencies and the data dependencies. The analysis result is represented
as a hierarchically-defined macro-task-graph (MTG)[5]. When the compiler can-
not analyze the input source for some reason, like hand-tuned accelerator library
call, “in/out” clause of “accelerator task” gives the data dependency information
to OSCAR compiler. Then, the compiler calculates the cost of MT and finds the
layer which is expected to apply coarse-grain parallel processing most effectively.
“cycle” clause of “accelerator task” tells the cost of accelerator execution to the
compiler.

Secondly, the task scheduler of the compiler statically schedules macro-tasks
to each core[18]. Fig.4. shows an example of heterogeneous task scheduling result.
First the scheduler gets ready macro-tasks from MTG(MT1 in Fig.4 in initial
state). Ready tasks satisfy earliest executable condition[4]. Then, the scheduler
selects a macro-task to be scheduled from the ready macro-tasks and schedules
the macro-task onto general purpose processor or accelerator considering data
transfer overhead, according to the priorities, namely CP length. The scheduler
performs above sequences until all macro-tasks are scheduled. Note that a task
for an accelerator is not always assigned to the accelerator when the accelerator
is busy. At this case, the task may be assigned to general purpose processor to
minimize total execution time.

Thirdly, the compiler tries to minimize total power consumption by changing
frequency and voltage(DVFS) or shutting power down the core during the idle
time considering transition time[16]. The compiler determines suitable voltage
and frequency for each macro-task based on the result of static task assignment

7

CPU0

MT1

FULL

ACC0ACC0

MT2

FULL
T
im
e

CPU0

MT1

MID

ACC0

MT2

MIDT
im
e

CPU0

MT1

FULL

ACC0

MT2

FULL

T
im
e

Power

Off
Power

Off

Deadline Deadline

Off

Deadline

FV state example : FULL= 648MHz@1.3V, MID = 324MHz@1.1V, LOW = 162MHz@1.0V

Fig. 5. Power control by compiler

in order to satisfy the deadline for real-time execution(Fig.5.). In Fig.5., FULL
is 648MHz and MID is 324MHz, respectively. Each of which is used in RP-X
described in Section4.

Finally, the compiler generates parallelized C or Fortran program with OS-
CAR API. OSCAR compiler generates the function which includes original
source for accelerator. Generation of data transfer codes and accelerator in-
vocation code is responsible for accelerator compiler.

OSCAR compiler uses processor configurations, such as number of cores,
cache or local memory size, available power control mechanisms, and so on. This
information is provided by compiler options.

3.3 The Extension of OSCAR API for Heterogeneous Multicores

This subsection describes API extension for heterogeneous multicores to be the
output of OSCAR compiler. Thee extension is very simple. Only one directive
“accelerator task entry” is added to OSCAR homogeneous API. This directive
specifies the function’s name where general purpose processor invokes an accel-
erator.

Let us consider an example where the compiler parallelizes the program in
Fig.3. We assume a target multicore includes two general purpose processors,
one ACCa as an accelerator with its controller and one ACCb as an accelera-
tor without its controller. One of general purpose processors, namely CPU1, is
used as controller for ACCb in this case. Fig.6. shows as example of the paral-
lelized C code with OSCAR heterogeneous directive generated by OSCAR com-
piler. As shown in Fig.6., functions named “MAIN CPU0()”, “MAIN CPU1()”
and “MAIN CPU2()” are invoked in omp parallel sections. These functions are
executed on general purpose processors. In addition, hand-tuned library “oscar-
task CTRL1 call FFT()” executed on ACCa is called by controller “MAIN CPU1()”.
“MAIN CPU2” also calls kernel function “oscartask CTRL2 call loop2()” exe-
cuted on ACCb. “accelerator task entry” directive specifies these two functions.
“controller” clause of the directive specifies id of general purpose CPU which
controls the accelerator. Note that there exists “oscar comment” directives at
same place shown in Fig.3.. “oscar comment” directives may be used to give

8

int main() {

#pragma omp parallel sections

 {

#pragma omp section

 { MAIN_CPU0(); }

#pragma omp section

 { MAIN_CPU1(); }

#pragma omp section

 { MAIN_CPU2(); }

 }

 return 0;

}

int MAIN_CPU1() {

 ...

 oscartask_CTRL1_call_FFT(var1, &x);

 ...

}

int MAIN_CPU2() {

 ...

 oscartask_CTRL2_call_loop2(&x);

 ...

}

#pragma oscar accelerator_task_entry controller(2) \

 oscartask_CTRL2_loop2

void oscartask_CTRL2_loop2(int *x) {

 int i;

 for (i = 0; i <= 9; i += 1) { x[i]++; }

}

#pragma oscar accelerator_task_entry controller(1) \

 oscartask_CTRL1_call_FFT

void oscartask_CTRL1_call_FFT(int var1, int *x) {

#pragma oscar_comment "XXXXX"

 oscarlib_CTRL1_ACCEL3_FFT(var1, x);

}Source Code for CPUs

Source Code for ACCa

Source Code for ACCb

Fig. 6. Example of parallelized source code with OSCAR API

SH-X3 SH-X3 SH-X3 SH-4A

I$ D$

ILM

CPU FPU

URAM

CRU

DLM

SH-4A

DTU

MX2
#0-1

SHPB

HPB
LBSC SATA SPU2 PCI

exp

DBSC
#0

DMAC
#0

DMAC
#1

DBSC
#1

FE
#0-3 VPU5

SHwy#0(Address=40,Data=128) SHwy#1(Address=40,Data=128)

SHwy#2(Address=32,Data=64)

SNC

SH-X3 SH-X3 SH-X3 SH-4A

L2C

Fig. 7. RP-X heterogeneous multicore for consumer electronics

accelerator specific directives, such as PGI accelerator directives, to accelerator
compilers. Afterwards, accelerator compilers generates the source code for the
controller and objects for the accelerator, interpreting these directives.

4 Performance Evaluations on RP-X

This section evaluates the performance of the proposed framework on 15 core
heterogeneous multicore RP-X[21] using media applications.

4.1 Evaluation Environment

The RP-X processor is composed of eight 648MHz SH-4A general purpose pro-
cessor cores and four 324MHz FE-GA accelerator cores, the other dedicated
hardware IP such as matrix processor “MX-2” and video processing unit “VPU5”,
as shown in Fig.7.. Each SH-4A core consists of a 32KB instruction cache, a 32KB

9

data cache, a 16KB local instruction/data memory(ILM and DLM in Fig.7.), a
64KB distributed shared memory(URAM in Fig.7) and a data transfer unit. Fur-
thermore, FE-GA is used as an accelerator without controller because FE-GA
is directly connected with on-chip interconnection network named “SHwy#1”,
a split transaction bus. With regard to the power reduction control mechanism
of RP-X, DVFS and clock gating for each SH-4A core can be controlled inde-
pendently using special power control register by a user. DVFS for FE-GAs can
be controlled by a user. This hardware mechanism is low overhead, for example
frequency change needs a few clocks. This paper evaluates both generating the
object code by accelerator compiler and using the hand-tuned library on RP-X
processor. We evaluate the processing performance and the power consumption
of the proposed framework using upto eight SH-4A cores and four FE-GA cores.

4.2 Performance by OSCAR compiler with Accelerator Compiler

An “optical flow” application from OpenCV[14] is used for this evaluation. The
algorithm is a type of object tracking system, which calculates velocity field
between two images. The program is modified in Parallelizable C[12] in this
evaluation. This program consists of the following parts: dividing the image into
16x16 pixel blocks, searching a similar block in the next image for every block
in the current image, shifting 16 pixels and generating the output. OSCAR
compiler parallelizes the loop which searches a similar block in the next image.
In addition, FE-GA compiler developed by Hitachi analyzed that the sum of
absolute difference(SAD), which occupies a large part of the program execution
time, is to be executed on FE-GA. FE-GA compiler also automatically inserts the
hint directives to the C program. OSCAR compiler generates parallel C program
with OSCAR heterogeneous API. The parallel program is translated into parallel
executable binary by using API analyzer which translates the directives to library
calls and sequential compiler and FE-GA compiler translates the program parts
in the accelerator files to FE-GA binary. Input images are two 320x352 bitmap
images. Data transfer between SH-4A and FE-GA is performed by SH-4A via
data cache.

Fig.8. shows parallel processing performance of the optical flow on RP-X.
The horizontal axis shows the processor configurations. For example, 8SH+4FE
represents for the configuration with eight SH-4A general purpose cores and four
FE-GA accelerator cores. The vertical axis shows the speedup against the se-
quential execution by a SH-4A core. As shown in Fig.8, the proposed compilation
framework achieves speedups of up to 12.36x with 8SH+4FE.

4.3 Performance by OSCAR compiler and Hand-tuned Library

In this evaluation, we evaluate two applications written in Parallelizable C. The
one is the optical flow from Hitachi Ltd. and Tohoku university, and the other
is AAC encoder available on a market from Renesas Technology.

10

0

3.75

7.50

11.25

15.00

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

12.36

5.48

2.65

5.64

3.46

1.90
1.00

Fig. 8. Performance by OSCAR compiler and FE-GA Compiler(Optical Flow)

0

10

20

30

40

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

32.65

26.71

18.85

5.40
3.092.29

1.00

Fig. 9. Performance by OSCAR compiler and Hand-tuned Library(Optical Flow)

There are a few differences between the optical flow program used in this
section and the program in Section4.2: In the optical flow program for this sec-
tion, shift amount is 1 pixel, the input of the application is a sequence of images,
and hand-tuned library for FE-GA is utilized. OSCAR compiler parallelizes the
same loop, which is shown in the previous subsection. The hand-tuned library,
which executes 81 SAD functions in parallel, is used for FE-GA. The hint direc-
tives are inserted to the parallelizable C program. OSCAR compiler generates
parallel C program with OSCAR API or directives for these library function
calls. The directives in the parallel program is translated to library calls by us-
ing API analyzer. Then, sequential compiler generates the executables linking
with hand-tuned library for SAD. Input image size, number of frames and block
size is 352x240, 450, 16x16, respectively. Data transfer between SH-4A and FE-
GA is performed by SH-4A via data cache. AAC encoding program is based on
the AAC-LC encode program provided by Renesas Technology and Hitachi Ltd.
This program consists of filter bank, midside(MS) stereo, quantization and huff-
man coding. OSCAR compiler parallelizes the main loop which encodes a frame.

11

0

5

10

15

20

1SH 2SH 4SH 8SH 2SH+1FE 4SH+2FE 8SH+4FE

16.08

8.77

4.60

6.33

3.86

1.98
1.00

Fig. 10. Performance by OSCAR compiler and Hand-tuned Library(AAC)

The hand-tuned library for filter bank, MS stereo and quantization is used for
FE-GA. Data transfer between SH-4A and FE-GA is performed by DTU via
distributed shared memory.

Fig.9. shows parallel processing performance of the optical flow at RP-X.
The horizontal axis shows the processor configurations. For example, 8SH+4FE
represents for the configuration with eight SH-4A general purpose cores and four
FE-GA accelerator cores. The vertical axis shows the speedup against the se-
quential execution by a SH-4A core. As shown in Fig.9, the proposed framework
achieved speedups of up to 32.65x with 8SH+4FE.

Fig.10. shows parallel processing performance of the AAC at RP-X. As
shown in Fig.10, the proposed framework achieved speedups of up to 16.08x
with 8SH+4FE.

Without Power Control With Power Control

0

0.5

1.0

1.5

2.0

2SH+1FE 4SH+2FE 8SH+4FE

0.450.46
0.55

1.68
1.63

1.55

-65% -75%-72%

Fig. 11. Power reduction by OSCAR compiler’s power control (Optical Flow)

12

0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

P
o
w
e
r[
W
]

Time

33[ms]
0

0.5

1

1.5

2

2.5

0 200 400 600 800 1000

P
o
w
e
r
[W

]

Time

33[ms]

a) Without Power Saving(Average:1.68W) b) With Power Saving(Average:0.45W)

Fig. 12. Waveforms of Power Consumption(Optical Flow)

CPU0 CPU1 CPU2 CPU3 CPU FE-GA00 CPU FE-GA11 CPU FE-GA22 CPU FE-GA3

Sleep

Timer

Sleep Sleep Sleep

Sleep SleepSleepMID MID MID MID

0

T
im

e

3

cycle

Sleep

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

MID

Deadline

=1fps

=33ms

FV state example : FULL= 648MHz@1.3V, MID = 324MHz@1.1V, LOW = 162MHz@1.0V

Fig. 13. Power Control for 8SH+4FE(Optical Flow)

4.4 Evaluation of Power Consumption

This section evaluates a power consumption by using optical flow and AAC
encoding for real-time execution on RP-X. Fig.11 shows the power reduction by
OSCAR compiler’s power control, under the condition satisfying the deadline.
The deadline of the optical flow is set to 33ms for each frame processing so that
standard 30 [frames/sec] for moving picture processing can be achieved. The
minimum number of cores required for the deadline satisfaction of optical flow
calculation is 2SH+1FE. As shown in Fig.11, OSCAR heterogeneous multicore
compiler reduces from 65% to 75% of power consumption for each processor
configuration. Although power consumption is increased by the augmentation of
processor core, the proposed framework reduces the power consumption.

Fig.12 shows the waveforms of power consumption in the case of optical flow
using 8SH+4FE. The horizontal axis and the vertical axis show elapsed time and
a power consumption, respectively. In the Fig.12, the arrow shows a processing

13

0

0.5

1

1.5

2

2.5

3

3.5

0

P
o
w
e
r
[W

]

Time

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500

P
o
w
e
r
[W

]

Time

a) Without Power Saving(Average:1.9W) b) With Power Saving(Average:0.38W)

0.46[s]

0.46[s]

Fig. 14. Waveforms of Power Consumption(AAC)

period for one frame, or 33ms. In the case of applying power control(shown in
Fig.12. b), each core executes the calculation by changing the frequency and
the voltage on a chip. As a result, the consumed power ranges 0.3 to 0.7[W]
by OSCAR compiler’s power control. On the contrary, in the case of applying
no power control(shown in Fig.12. a), the consumed power ranges 2.25[W] to
1.75[W].

Fig.13 shows the summary of frequency and voltage status for optical flow
calculation with 8SH+4FE. In this figure, FULL is 648MHz with 1.3V, MID is
324MHz with 1.1V, and LOW is 162MHz with 1.0V. Each box labeled “MID”
and “timer” “Sleep” represents macro-task. As shown in Fig.13., four SAD tasks
are assigned to each FE-GA, and the tasks are executed at MID. All SH-4A core
except “CPU0” is shutdown until the deadline comes. “CPU0” executes “timer”
task for satisfying the deadline. In other words, “CPU0” boot up other SH-4A
cores when the program execution reaches the deadline. Note that FE-GA core
is not shutdown after task execution because DVFS is only applicable.

For AAC program, an audio stream is processed per frame. The deadline
of AAC is set to encode 1 [sec] audio data within 1 [sec]. Fig.14 shows the
waveforms of power consumption in the case of AAC using 8SH+4FE. In the case
of applying power control(shown in Fig.14. b)), each core execute the calculation
by changing the frequency and the voltage on a chip. As a result, the consumed
power ranges 0.4 to 0.55[W]. On the contrary, in the case of applying no power
control(shown in Fig.14. a), the consumed power ranges 1.9[W] to 3.1[W]. In
summary, the proposed framework realizes the automatically power reduction of
heterogeneous multicore for several applications.

5 Conclusions

This paper has proposed OSCAR heterogeneous multicore compilation frame-
work. In particular, this paper introduces (1)the general purpose and multi-
platform automatic compilation flow using OSCAR compiler and various ac-

14

celerator compilers or hand-tuned libraries and (2)the heterogeneous extension
of OSCAR homogeneous API. In this paper, we have evaluated the processing
performance and the power efficiency of the proposed framework using RP-X,
15 core heterogeneous multicore chip, as an example. The developed framework
automatically gave us speedups of up to 32x for an optical flow program with
eight general purpose processor cores and four accelerator cores against sequen-
tial execution. Also, it shows 80% of power reduction by automatic DVFS for the
real-time AAC encoding execution mode with eight general purpose processor
cores and four accelerator cores compared with no power control.

Acknowledgement

This work has been partly supported by the METI/NEDO project “Heteroge-
neous Multicore for Consumer Electronics” and MEXT project “Global COE
Ambient Soc”. Specifications of OSCAR API[6] heterogeneous multicore exten-
sion are developed by NEDO Heterogeneous multicore architecture and API
committee at Waseda university. The authors specially thanks to the members
of the API committee from Fujitsu Laboratory, Hitachi, NEC, Panasonic, Rene-
sas Technology, and Toshiba. The hand-tuned library for FE-GA is provided by
Hariyama Lab. at Tohoku university and Hitachi.

References

1. Bellens, P., Perez, J.M., Badia, R.M., Labarta, J.: Cellss: a programming model
for the cell be architecture. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing(SC’06) (2009)

2. Dolbeau, R., Bihan, S., Bodin, F.: Hmpp(tm):a hybrid multi-core parallel program-
mingg environment. In: GPGPU ’07: Proceedings of the 1st Workshop on General
Purpose Processing on Graphics Processing Units (2007)

3. Garland, M., Grand, S.L., Nickolls, J., Anderson, J., Hardwick, J., Morton, S.,
Phillips, E., Zhang, Y., Volkov, V.: Parallel computing experiences with cuda.
IEEE Micro 28(4), 13–27 (2008)

4. Kasahara, H., Honda, H., Mogi, A., Ogura, A., Fujiwara, K., Narita, S.: A multi-
grain parallelizing compilation scheme for OSCAR (Optimally scheduled advanced
multiprocessor). In: Proceedings of the Fourth International Workshop on Lan-
guages and Compilers for Parallel Computing. pp. 283–297 (August 1991)

5. Kasahara, H., Obata, M., Ishizaka, K.: Automatic coarse grain task parallel pro-
cessing on smp using openmp. Proc of The 13th International Workship on Lan-
guages and Compilers for Parallel Computing(LCPC2000) (2000)

6. kasahara.cs.waseda.ac.jp: Oscar-api v1.0. http://www.kasahara.cs.waseda.ac.jp/

7. khronos.org: Opencl. http://www.khronos.org/opencl/

8. Kimura, K., Mase, M., Mikami, H., Miyamoto, T., Kasahara, J.S.H.: Oscar api for
real-time low-power multicores nad its performance on multicores and smp servers.
Proc of The 22nd International Workship on Languages and Compilers for Parallel
Computing(LCPC2009) (2009)

15

9. Luebke, D., Harris, M., Govindaraju, N., Lefohn, A., Houston, M., Owens, J., Se-
gal, M., Papakipos, M., Buck, I.: Gpgpu: General-purpose computation on graphics
hardware. In: 2006 ACM/IEEE Conference on Supercomputing, SC’06 (11 Novem-
ber 2006 through 17 November 2006 2006)

10. Luk, C., Hong, S., Kim, H.: Qilin: Exploiting parallelism on heterogeneous mul-
tiprocessors with adaptive mapping, microarchitecture. 2009. MICRO-42. Pro-
ceedings. 42th Annual IEEE/ACM International Symposium on Microarchitecture
(2009)

11. Masayasu, Y., Takeshi, S., Toshiaki, T., Yasuhiko, K., Toshinori, I.: Naviengine 1,
system lsi for smp-based car navigation systems. NEC TECHNICAL JOURNAL
2(4) (2007)

12. Mase, M., Onozaki, Y., Kimuraa, K., Kasahara, H.: Parallelizable c and its per-
formance on low power high performance multicore processors. In: Proc. of 15th
Workshop on Compilers for Parallel Computing (Jul 2010)

13. Nakajima, M., Yamamoto, T., Yamasaki, M., Hosoki, T., Sumita, M.: Low power
techniques for mobile application socs based on integrated platform ”uniphier”. In:
ASP-DAC ’07: Proceedings of the 2007 Asia and South Pacific Design Automation
Conference (2007)

14. opencv.org: Opencv. http://opencv.org/
15. Pham, D., Asano, S., Bolliger, M., Day, M.N., Hofstee, H.P., Johns, C., Kahle,

J., Kameyama, A., Keaty, J., Masubuchi, Y., Riley, M., Shippy, D., Stasiak, D.,
Suzuoki, M., Wang, M., Warnock, J., Weitzel, S., Wendel, D., Yamazaki, T.,
Yazawa, K.: The design and implementation of a first-generation cell processor.
In: 2005 IEEE International Solid-State Circuits Conference, ISSCC (6 February
2005 through 10 February 2005 2005)

16. Shirako, J., Oshiyama, N., Wada, Y., Shikano, H., Kimura, K., Kasahara, H.:
Compiler control power saving scheme for multi core processors. Lecture Notes in
Computer Science 4339 pp. 362–376 (2007)

17. Torii, S., Suzuki, S., Tomonaga, H., Tokue, T., Sakai, J., Suzuki, N., Murakami, K.,
Hiraga, T., Shigemoto, K., Tatebe, Y., Obuchi, E., Kayama, N., Edahiro, M., Ku-
sano, T., Nishi, N.: A 600mips 120mw 70μ a leakage triple-cpu mobile application
processor chip. ISSCC (2005)

18. Wada, Y., Hayashi, A., Masuura, T., Shirako, J., Nakano, H., Shikano, H., Kimura,
K., Kasahara, H.: Parallelizing compiler cooperative heterogeneous multicore. In:
Proceedings of Workshop on Software and Hardware Challenges of Manycore Plat-
forms, SHCMP’08 (Jun 2008)

19. Wolfe, M.: Implementing the pgi accelerator model. In: GPGPU ’10: Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units (2010)

20. Yoshida, Y., Kamei, T., Hayase, K., Shibahara, S., Nishii, O., Hattori, T.,
Hasegawa, A., Takada, M., Irie, N., Uchiyama, K., Odaka, T., Takada, K., Kimura,
K., Kasahara, H.: A 4320mips four-processor core smp/amp with individually man-
aged clock frequency for low power consumption. IEEE International Solid-State
Circuits Conference, ISSCC (Feb 2007)

21. Yuyama, Y., Ito, M., Kiyoshige, Y., Nitta, Y., Matsui, S., Nishii, O., Hasegawa,
A., Ishikawa, M., Yamada, T., Miyakoshi, J., Terada, K., Nojiri, T., Satoh, M.,
Mizuno, H., Uchiyama, K., Wada, Y., Kimura, K., Kasahara, H., Maejima, H.:
A 45nm 37.3gops/w heterogeneous multi-core soc. IEEE International Solid-State
Circuits Conference, ISSCC (Feb 2010)

