
Memory Management for Data Localization on OSCAR Chip

Multiprocessor

Hirofumi Nakanoy, Takeshi Kodakay, Keiji Kimuraz, Hironori Kasaharay
fhnakano,kodaka,kimura,kasaharag@oscar.elec.waseda.ac.jp

yDepartment of Computer Science,
School of Science and Engineering, Waseda University,

zAdvanced Research Institute for Science and Engineering, Waseda University,
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

1 Introduction
Recently, chip multiprocessor architecture that in-
tegrates multiple processor cores on a chip is get-
ting popular like Power4 [1], UltraSPARC IV [2] and
OSCAR chip multiprocessor (OSCAR CMP) [3] for
multigrain parallel processing. In order to control
data allocation by the multigrain parallelizing com-
piler, OSCAR CMP has local data memory (LDM) for
processor private data and distributed shared mem-
ory(DSM) having two ports for processor shared data.
With the increasing gap between processor and mem-
ory access speeds, e�ective use of local memory is get-
ting more important. This paper describes how to
manage LDM on OSCAR CMP for data localization
which exploits data locality by assigning coarse grain
tasks sharing the same data onto the same processor
consecutively. This scheme is implemented on OSCAR
multigrain parallelizing compiler [4]. The proposed
scheme is evaluated on OSCAR CMP, using Swim and
Tomcatv from the SPEC fp 95.

In this paper, Section 2 describes coarse grain task
parallel processing. Section 3 proposes local memory
management on OSCAR CMP for data localization.
Section 4 evaluate the performance of the proposed
schemes on OSCAR CMP using Swim and Tomcatv
from the SPEC fp 95 benchmark suite. Concluding
remarks are described in Section 5.

2 Coarse Grain Task Parallel

Processing
This section describes coarse grain task parallel pro-
cessing, which is a part of multigrain parallel process-
ing.

Coarse grain task parallel processing uses paral-
lelism among three kinds of macro-tasks(MTs), or
coarse grain tasks, namely, block of pseudo assignment
statements (BPA), repetition block (RB) and subrou-
tine block (SB).

The compiler decomposes a source program into
macro-tasks. Also, it generates macro-tasks hierar-

chically inside a sequential repetition block and a sub-
routine block.

Coarse grain task parallelization by OSCAR com-
piler is performed in the following steps.

1. Decomposition of a source program into macro-
tasks.

2. Analysis of data and control 
ows among macro-
tasks and generation of Macro Flow Graph
(MFG) representing data and control 
ows.

3. Analysis of Earliest Executable Condition (EEC)
based on data and control dependence analysis
that represents the condition, on which macro-
task may start its execution earliest, and genera-
tion of Macro Task Graph (MTG) that represents
the EEC.

4. Scheduling macro-tasks to processors or processor
groups.

When a macro-task graph has no conditional de-
pendencies, macro-tasks are statically scheduled to
processors or processor groups at a compiler time and
parallelized code is generated for each processor ac-
cording to the scheduling results. When macro-task
graph contains control dependencies, compiler gener-
ates dynamic scheduling routine to assign macro-tasks
to processors or processor clusters at a run time and
embeds the dynamic scheduling routine to the gener-
ated parallelized code with macro-task code in order
to cope with runtime uncertainties.

3 Memory Management for

Data Localization on OSCAR

CMP
In this section, at �rst, OSCAR CMP architecture is
described. Next, the proposed memory management
and data transfer calculation are explained.

3.1 OSCAR CMP
Figure 1 shows an OSCAR CMP architecture. OS-
CAR CMP has multiple PEs on a chip. Each PE has a

1



CSM

CPU

LPM

DTU

DSM

PE1 PE2

Bus interface

Interconnection Network

Chip

LDM

PEn

Figure 1: OSCAR Chip Multi Processor

simple single issue in-order processor core, Local Data
Memory(LDM) having one port for processor private
data, Distributed Shared Memory(DSM) having two
ports for shared data, Local Program Memory(LPM)
for program code, and Data Transfer Unit(DTU) for
asynchronous data transfer. All PEs on a chip are con-
nected by Interconnection network like bus and cross-
bar. In addition, Centralized Shared Memory(CSM)
is integrated on the chip.

3.2 Data Localization
In order to exploit data locality from a program and
use LDM on each PE e�ciently, the data localization
with Loop Aligned Decomposition [5] is applied. The
LAD processes on multiple RBs like doall loops and
reduction loops.

In the data localization, �rst, RBs on the critical
path, their preceding RBs and succeeding RBs are se-
lected and grouped into a Target Loop Group(TLG)
to which the LAD is applied. Next, macro-tasks in
the TLG are decomposed so that shared data can be
passed through LDM considering LDM size. Data
Localization Group(DLG) is de�ned as the group of
macro-tasks to be assigned to the same processor con-
secutively to localize the decomposed arrays.

3.3 Scheduling considering Data Lo-
calization Groups

After LAD, macro-tasks are scheduled onto PEs stati-
cally in this paper. The LAD decomposes MTs so that
all macro-tasks in the same DLG can be assigned to
the same processor consecutively. The scheduler is de-
veloped based on ETF/CP/MISF [6], and made some
modi�cation in the scheduling priority. Macro-tasks
inside of DLG are assigned to the same processor as
consecutively as possible, and macro-tasks outside of
DLG are assigned not to disturb it.

3.4 Local Memory Management
Figure 2 shows an image of memory map of LDM on
each PE. As shown in this �gure, a memory area on
LDM, named DLG Slot is allocated for each TLG. The

DLG_Slot for
TLG1

DLG_Slot for
TLG2

DLG_Slot for
TLGn

...

Array1

Array2

...

Array m

LDM DLG_Slot

Figure 2: Local Memory Map

arrays which are decided to located on LDM, are as-
signed these DLG Slot. As described in section 3.3,
the static scheduler assigns all macro-tasks in the same
DLG consecutively onto one PE, so that all localized
arrays in the macro-tasks which belong to the same
DLG can be assigned to one DLG Slot.

3.5 Data Transfer Calculation
All localized arrays in the macro-tasks which belong
to the same DLG are passed through LDM. Therefore
data transfers among such macro-tasks are unneces-
sary. Data transfers between MTi (1 � i � total
number of macro-tasks) inside of DLGj (1 � j � n.
Here, each macro-task in the TLG is decomposed into
n sub macro-tasks) andMTk (1 � k � total number of
macro-tasks) outside of DLGj , similarly, data trans-
fers between MTi and Layeroutside which is outside
of target MTG are necessary. How to calculate data
transfers among relationships is described here. First,
array def-use chains(DU Chain[producer][consumer])
among such relationship are calculated. Then, load
and store of MTi are represented as following.

load[MTi]

= [(DU Chain[l][MTi]�DU Chain[l][pred])

Here, l means macro-tasks inside of DLGj or
Layeroutside, and pred means macro-tasks inside of
DLGj and predecessor of MTi.

store[MTi] = [(DU Chain[MTi][l])

Here, l means macro-tasks outside of DLGj .

4 Performance Evaluation
In this section, the performance of the proposed
scheme is evaluated on OSCAR CMP using Swim and
Tomcatv from the SPEC fp 95.

4.1 Evaluation Environment
The proposed scheme is evaluated using Swim and
Tomcatv from SPEC fp 95. To reduce simulation time,
number of iterations in each loop is reduced. The

2



0

1

2

3

4

5

6

7

8

1 2 4 8

Number of Processors

S
p
e
e
d
u
p
 
(
v
s
.
 
w
/
 
l
o
c
a
l
 
1
p
e

 
 
 
 
 
 
 
 
o
f
 
e
a
c
h
 
l
a
t
e
n
c
y
)

w/o local(lat20)
w/o local(lat40)
w/o local(lat80)
w/ local(lat20)
w/ local(lat40)
w/ local(lat80)

Figure 3: Speedup of Swim

0

1

2

3

4

5

6

7

8

1 2 4 8

Number of Processors

S
p
e
e
d
u
p
 
(
v
s
.
 
w
/
 
l
o
c
a
l
 
1
p
e

 
 
 
 
 
 
 
 
o
f
 
e
a
c
h
 
l
a
t
e
n
c
y
)

w/o local(lat20)
w/o local(lat40)
w/o local(lat80)
w/ local(lat20)
w/ local(lat40)
w/ local(lat80)

Figure 4: Speedup of Tomcatv

whole data size of Swim and Tomcatv in this eval-
uation are about 3.3MB and 230KB respectively. The
evaluated memory latency set of OSCAR CMP are
described in Table 1. The detailed architecture simu-
lator is used for these evaluations.

Table 1: Evaluated Memory Latency of OSCAR CMP

lat20 lat40 lat80
CSM latency 20 40 80
LDM latency 1 2 4
DSM latency 1 2 4
LPM latency 1 1 1

4.2 Performance
Performance evaluation results for Swim and Tomcatv
are shown in Figure 3 and 4 respectively. These �g-
ures show speedup against sequential execution clocks
by the proposed scheme for each latency set. In these
�gures, \w/o local" means result when the proposed
scheme was not applied to the programs, and \w/ lo-
cal" means result when the proposed scheme was ap-
plied. Lat20, lat40 and lat80 are evaluated latency
sets described in Table 1 respectively.

In Figure 3, results of \w/ local" show scal-
able speedup, for example 6.87 times(lat20), 5.92
times(lat40) and 5.02 times(lat80) when using 8PEs.
On the other hand, results of \w/o local" don't show
scalable speedup. Comparing results of \w/ local" and
\w/o local" when using 8PEs, \w/ local" is 1.76 times

faster than \w/o local"(lat20), 2.25 times(lat40) and
2.62 times(lat80). This is because \w/o local" con-
�gurations are su�ered from CSM access contentions
with the increase of the number of processors, while
\w/ local" scheme can use LDM e�ectively.

In Figure 4, results of \w/ local" show scal-
able speedup, for example 6.55 times(lat20), 5.79
times(lat40) and 4.84 times(lat80) when using 8PEs.
On the other hand, results of \w/o local" don't show
scalable speedup. Comparing results of \w/ local" and
\w/o local" when using 8PEs, \w/ local" is 2.26 times
faster than \w/o local"(lat20), 3.49 times(lat40) and
4.96 times(lat80). This is because \w/o local" con-
�gurations are su�ered from CSM access contensions
with the increase of the number of processors, while
\w/ local" scheme can use LDM e�ectively.

5 Conclusions
This paper has proposed local memory management
on OSCAR CMP for data localization. The proposed
scheme is implemented on OSCAR Fortran multigrain
parallelizing compiler.

Its performance is evaluated on OSCAR CMP ar-
chitecture using Swim and Tomcatv from the SPEC fp
95. The result of evaluation show us that speedups of
Swim and Tomcatv for 8 PEs were 6.87 times and 6.55
times respectively against sequential execution time.

A part of this research has been supported by
STARC \Automatic Parallelizing Compiler Coop-
erative Single Chip Multiprocessor", Grants-in-Aid
for JSPS Fellows(# 1501202), the project of Ad-
vanced Research Institute for Science and Engi-
neering, Waseda University \Automatic Parallelizing
Compiler cooperative Chip Multiprocessor" and JSPS
Grants-in-Aid for Young Scientists(B)(# 15700074).

References
[1] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.

Power4 system microarchitecture. Technical White Paper,
Oct 2001.

[2] Kevin Krewell. UltraSPARC IV mirrors predecessor. In
Microprocessor Report, Nov. 2003.

[3] K. Kimura, T. Kodaka, M. Obata, and H. Kasahara.
Multigrain parallel processing on compiler cooperative oscar
chip multiprocessor architecture. In IEICE Trans. ELEC-
TRON., Apr 2003.

[4] H. Kasahara, M. Obata, K. Ishizaka, K. Kimura, H. Kami-
naga, H. Nakano, K. Nagasawa, A. Murai, H. Itagaki, and
Shirako J. Multigrain automatic parallelization in japanese
millenium project it21 advanced parallelizing compiler. In
Proc. of IEEE PARELEC, Sep 2002.

[5] A. Yoshida, K. Koshizuka, M. Okamoto, and Kasahara H.
A data-localization scheme among loops for each layer in
hierarchical coarse grain parallel processing. Trans. of IPSJ,
40(5):2054{2063, 1999.

[6] H. Kasahara. Parallel Processing Technology. CORONA
PUBLISHING CO., LTD., 1991.

3


