
Parallel Processing using Data Localization

for MPEG2 Encoding on OSCAR Chip Multiprocessor

Takeshi Kodaka†, Hirohumi Nakano†, Keiji Kimura†† and Hironori Kasahara†

†Dept. of Computer Science, Waseda University
††Advanced Research Institute for Science and Engineering, Waseda University

Okubo, Shinjuku-ku, Tokyo, Japan, 169-8555, TEL: +81-3-5286-3371
URL: http://www.kasahara.elec.waseda.ac.jp/

1 Introduction
Need for efficient processing of multimedia applica-

tions on PCs, mobile phones, games and so on have
been increasing. Especially, low cost, low power con-
sumption and high performance processors for multi-
media applications have been expected. To satisfy the
demands, chip multiprocessor architectures which al-
low to give us scalability using multigrain parallelism
are attracting much attention. However, to get per-
formance of chip multiprocessor architectures, data
locality optimization for target applications is also
required. This paper describes a parallel processing
scheme for MPEG2 encoding using data localization
technique which improves execution efficiency by us-
ing global data locality optimization among different
loops with coarse grain task parallel processing, and
evaluates the performance of the proposal scheme on
OSCAR chip multiprocessor architecture.

2 Coarse-grain Task Parallel Process-

ing and Data Localization
This section describes coarse grain task parallel pro-

cessing [1] and data localization [2].
In coarse grain task parallel processing [1], a se-

quential program is decomposed into three kinds
of coarse grain tasks, or MacroTasks (MTs), such
as Block of Pseudo Assignment statements (BPA)
like a basic block and a fused basic block, Repeti-
tion Block (RB) like a loop, and Subroutine Block
(SB) composed of a subroutine. After generation
of MacroTasks, the compiler analyzes control flow
and data dependence among MacroTasks and gen-
erates a directed acyclic graph called MacroFlow-
Graph (MFG). Next, in order to find maximum paral-
lelism among MacroTasks considering control depen-
dencies and data dependencies, the compiler analyzes
an earliest-executable-condition for each MacroTask.
The result of this analysis is represented by a directed
acyclic graph called MacroTask-Graph (MTG). After
generation of MTG, the compiler assigns MacroTasks
onto processor-groups (PGs), each of which consists of
several processors logically.

To use processor local memory and/or cache mem-
ory efficiently, the data localization scheme has been

proposed [2]. In the data localization, Loop Aligned
Decomposition (LAD) is applied to loops that access
the same shared data. LAD divides each loop into par-
tial loops having smaller number of iterations so that
data size accessed by the divided loops is smaller than
processor local memory and/or cache memory. After
LAD, each partial loop is treated as coarse grain task
and exploit parallelism, and MTs using same range
of data are grouped into “Data Localization Group
(DLG)”. Next, each partial loop inside a DLG is as-
signed onto same processor consecutively as much as
possible statically or dynamically.

3 OSCAR Chip Multiprocessor Archi-

tecture

This section describes the OSCAR Chip Multipro-
cessor architecture (OSCAR CMP) [3].

The OSCAR Chip Multiprocessor architecture
(OSCAR CMP) is shown in Figure 1. In this archi-
tecture, each processor-element (PE) has simple CPU
core, local program memory (LPM) which stores pro-
gram code exclusively generated for each PE by the
compiler, local data memory (LDM) which stores PE
local data, distributed shared memory (DSM) hav-
ing two ports which provides low-latency data trans-
fer and low-overhead synchronization and data trans-
fer unit (DTU) which is used for overlapping of data
transfer and task processing. These PEs are con-
nected by interconnection network like multiple buses
or crossbar network. Furthermore, this architecture
has centralized shared memory (CSM).

The parameters of OSCAR CMP in this paper
are following: The capacity of LDM on each PE is
256Kbytes respectively. The DSM is 16 Kbytes per
PE. The access latency of LDM is one clock cycle. Lo-
cal DSM access latency is one clock cycle and that of
remote DSM is four clock cycles. The access latency of
CSM is 20 clock cycles. A processor core inside a PE
is simple single issue core based on pipeline configu-
ration similar to UltraSPARC-II. Three buses connect
PEs. DTU is not used in this evaluation.

CPU
PE0 PEn

DTU

CHIP

LDM

DSM

Bus Interface

LPM

CSM

Interconnection Network

PE1

Figure 1: OSCAR CMP architecture

predict dct type
estimation

motion
estimation transform putpict

iquantizeitransform

current frame
picture

Buffer

Bitstream
Output

Encoded
Frame Data

reference
picture

Figure 2: MPEG2 encode block diagram

4 Parallel Processing

scheme for MPEG2 Encoding with

the Data Localization

This section proposes parallel processing scheme for
MPEG2 encoding with the data localization.

MPEG2 encoding algorithm used here is that of
“mpeg2encode” from MediaBench [4]. MPEG2 en-
coding consists of the following seven stages as shown
in Figure 2:
1. Calculation of a motion vector of the luminance
frame in each macroblock (motion estimation)
2. Predicting motion compensation (predict)
3. Selection DCT mode from frame or field DCT (dct
type estimation)
4. Discrete cosine transformation (DCT) using DCT
mode (transform)
5. Quantization DCTed blocks and output of bit
stream code (putpict)
6. Inverse quantization to quantized blocks (iquan-
tize)
7. Inverse DCT to dequantized blocks for reconstruc-
tion (itransform)
In “mpeg2encode”, each stage is performed on one
MacroBlock at a time.

To exploit parallelism in MPEG2 encoding, paral-
lelism among multiple macroblocks with no data de-
pendence among macroblocks except putpict stage is
used. Therefore, motion estimation, predict, dct type
estimation, transform, iquantize and itransform stages
can be executed in parallel using macroblock level par-
allelism. However, putpict stage has loop carried de-
pendence caused by the bit rate control and bitstream
output order. Therefore, currently putpict stage is
executed sequentially.

Considering the memory capacity of OSCAR CMP,
LDM is not enough for the encoding process on an en-
tire frame for popular data size like QCIF and QVGA.
To solve this problem, the data localization scheme
is applied. At first, each stage is decomposed into
partial loops considering data dependency among dif-
ferent loops. In MPEG2 encoding, since each stage
is performed in macroblock level, each stage is de-
composed into macroblock level tasks. After the de-
composition, these macroblock level tasks are defined
as coarse grain tasks or MTs, and parallelism among
MTs is exploited. Figure 3 shows the MacroTask-
Graph in which each stage is decomposed into four
partial loops or MTs. In Figure 3, each node rep-
resents MTs, each edge represents data dependency
among MTs. Figure 3 shows that there is no data
dependence among macroblock level tasks which are
originally defined as the same stage except putpict
stage. As to the data dependence edges of putpict
stage, the size of shared data between putpict and
iquantize stage (ex. between MT5 1 and MT6 1) is
much larger than inside between putpict stage (ex.
between MT5 1 and MT5 2). Putpict and iquantize
stage (ex. MT5 1 and MT6 1) should be assigned onto
the same processor for data locality. Based on the
above, macrotasks that treat same macroblock are as-
signed onto the same processor to exploit data locality
as much as possible. Figure 4 shows the scheduling
result by the proposed scheme in which each stage
is divided into eight partial loops. Therefore, shared
data can be passed through among different stages via
LDM, so that improvement of efficient execution can
be achieved.

5 Performance Evaluation

This section describes performance evaluation re-
sults of MPEG2 encoding by the proposed data lo-
calization scheme on OSCAR CMP, and loop parallel
processing is also evaluated for comparison with the
proposed scheme.

In this evaluation, clock level detailed simulator of
OSCAR CMP architecture is used. The evaluation
program in this paper is rewritten MPEG2 encod-
ing program derived from “mpeg2encode” in Medi-
aBench [4] by Fortran to use the OSCAR multigrain
parallelizing compiler. To apply the proposed scheme
, exploitation of coarse grain task parallelism and ma-
chine code generation are performed by the OSCAR
multigrain parallelizing compiler. Input data is four
frames of QCIF (176×144) data which is reduced size
used in MediaBench because of our architecture sim-
ulator requires very long time to evaluate full size of
data.

Figure 5 shows evaluation result of MPEG2 encod-
ing on OSCAR CMP. In this figure, horizontal axis
shows the number of processors or PEs, and each bar
shows speedup against sequential execution time. The
left bar for 2PEs, 4PEs and 8PEs shows the speedup

MT1_1 MT1_2 MT1_3 MT1_4

MT2_1 MT2_2 MT2_3 MT2_4

MT3_4MT3_1 MT3_2 MT3_3

MT4_1 MT4_2 NT4_3 MT4_4

MT5_1

MT5_2

MT5_3

MT5_4

MT6_1

MT6_2

MT6_3

MT6_4

MT7_1

MT7_2

MT7_3

MT7_4

EMT

MT1 : motion estimation

MT2 : predict

MT4 : transform

MT5 : putpict

MT6 : iquantize

MT7 : itransform

MT3 : dct type estimation

Figure 3: MacroTask Graph of MPEG2 encoding

ratio of MPEG2 encoding applied loop parallel pro-
cessing (LOOP) and the right bar for 1PE, 2PEs, 4PEs
and 8PEs shows that of proposed scheme (LOCAL).

When proposed scheme (LOCAL) is applied, 1PE
gives us 1.07 times speedup, 2PEs gives us 2.12 times
speedup, 4PEs gives us 4.06 times speedup and 8PEs
gives us 6.82 times speedup against sequential execu-
tion time respectively. When loop parallel processing
(LOOP) is applied, 2PEs gives us 1.77 times speedup,
4PEs gives us 2.82 times speedup and 8PEs gives us
4.17 times speedup against sequential execution time
respectively. As to compare LOCAL with sequential
execution, LOCAL gives us 7% speedup against se-
quential execution. This result shows that efficiency
of memory access is improved by the data localiza-
tion scheme. Improvement of speedup ratio of LO-
CAL is better than that of LOOP with the increase
of the number of processors. The reason of these dif-
ferences is that when LOCAL is applied, while one
PE is executing putpict stage, the other PE(s) can ex-
ecute motion estimation to transform stage of other
macroblocks using the data on the LDM.

6 Conclusions
This paper has proposed parallel processing for

MPEG2 encoding using the data localization. The
performance evaluation on OSCAR CMP showed that
proposed scheme gives us 4.06 times speedup for 4 pro-
cessors and 6.82 times speedup for 8 processors against
sequential execution time, and 1.43 times speedup for
4 processors and 1.63 times speedup for 8 processors

MT1-1

MT6 -1

MT2 -1

MT3 -1

MT4 -1

MT5 -1

MT7 -1

MT1-2

MT6 -2

MT2 -2

MT3 -2

MT4 -2

MT5 -2

MT7 -2

MT1-3

MT6 -3

MT2 -3

MT3 -3

MT4 -3

MT5 -3

MT7 -3

MT1-4

MT6 -4

MT2 -4

MT3 -4

MT4 -4

MT5 -4

MT7 -4

MT1-5

MT6 -5

MT2 -5

MT3 -5

MT4 -5

MT5 -5

MT7 -5

MT1-6

MT6 -6

MT2 -6

MT3 -6

MT4 -6

MT5 -6

MT7 -6

MT1-7

MT6 -7

MT2 -7

MT3 -7

MT4 -7

MT5 -7

MT7 -7

MT1-8

MT6 -8

MT2 -8

MT3 -8

MT4 -8

MT5 -8

MT7 -8

P G 1 P G 2 P G 3 P G 4

MT1 motion estimation

MT2 p r ed ic t

MT3 d c t ty p e estimation

MT4 tr ansf or m

MT5 p u tp ic t(b it str eam ou tp u t)

MT6 iq u antiz e

MT7 itr ansf or m

Figure 4: Scheduling result

����

����

����

����

����

����

����

����

����

����

����

	���

����

���

����

����

����

��� ���
 ���
 ���

�
�
�
�
�
�
�
��
�
��
�
�
	
�
�

��

��
�
�
�
�
�
��
�

��
��
�

�������������������		
��

�����	�
�	�����

	������
��

Figure 5: Evaluation result of MPEG2 encoding

against the loop parallel processing.

Acknowledgments
This research has been supported by “Automatic Paral-

lelizing Compiler cooperative Chip Multiprocessor” in STARC
and Advanced Research Institute for Science and Engineering,
Waseda University, and JSPS Grants-in-Aid for Young Scien-
tists (B) (#15700074) and for JSPS Fellows(#1501202). The
authors thank to Mr. Miyamoto (STARC), Mr. Takahashi (Fu-
jitsu), Mr. Takayama(Panasonic), Mr. Yasukawa (Toshiba) and
Mr. Kurata (Sony).

References
[1] H. Kasahara, M. Obata, and K. Ishizaka. Automatic coarse

grain task parallel processing on smp using openmp. In
Proc. 12th Workshop on Languages and Compilers for Par-
allel Computing, Aug. 2000.

[2] A. Yoshida, K. Koshizuka, M. Okamoto, and H. Kasahara.
A data-localization scheme among loops for each layer in
hierarchical coarse grain parallel processing. Trans. of IPSJ,
40(5), May. 1999.

[3] K. Kimura, T. Kato, and H. Kasahara. Evaluation of pro-
cessor core architecture for single chip multiprocessor with
near fine grain parallel processing. Trans. of IPSJ, 42(4),
Apr. 2001.

[4] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Medi-
abench: A tool for evaluating and synthesizing multimedia
and communications systems. In 30th International Sym-
posium on Microarchitecture (MICRO-30), Nov. 1997.

